Primordial Black Holes

Alexandre Arbey

Institut de Physique des 2 Infinis de Lyon

Atelier "Physique théorique des deux infinis" June 8th, 2021

Primordial black holes ●○○○	Hawking radiation	Constraints O	Perspectives
General Relativity black hole	S		

(Natural unit system with $c = \hbar = 1$.)

Schwarzschild metric for a static compact object of mass M

$$d\tau^{2} = \left(1 - \frac{2GM}{r}\right)dt^{2} - \frac{dr^{2}}{1 - \frac{2GM}{r}} - r^{2}\left(d\theta^{2} + \sin^{2}\theta \,d\phi^{2}\right)$$

One defines the Schwarzschild radius: $R_s = 2GM$. If the mass M is completely within $r < R_s$, the radius $r = R_s$ consistutes a horizon.

 \longrightarrow Black Hole!

Kerr metric for a static compact object of mass M and angular momentum J

$$d\tau^{2} = \left(dt - a\sin^{2}\theta d\phi\right)^{2}\frac{\Delta}{\Sigma} - \left(\frac{dr^{2}}{\Delta} + d\theta^{2}\right)\Sigma$$
$$-\left(\left(r^{2} + a^{2}\right)d\phi - adt\right)^{2}\frac{\sin^{2}\theta}{\Sigma}$$

a=J/M, $\Sigma=r^2+a^2\cos^2 heta$, $\Delta=r^2-R_sr+a^2$, $R_s=2GM$

The horizon exists but is deformed and flattened \longrightarrow Kerr (Rotating) Black Hole!

Primordial black holes ○●○○	Hawking radiation	Constraints O	Perspectives
Observed black holes			

Three types of black holes have been discovered

- $\bullet\,$ Stellar black holes BHs originated in the explosion of massive stars/supernovae, $\sim 3-100 M_{\odot}$
- Intermediate mass black holes (IMBH) New class of recently discovered BHs, $\sim 10^3 10^6 M_{\odot}$
- supermassive black holes (SMBH) BHs at the center of galaxies, $\sim 10^6 - 10^9 M_{\odot}$

Primordial black holes	Hawking radiation	Constraints	Perspectives
0000			
Origin of primordial black ho	les		

Multiple inflationary origins

- collapse of large primordial overdensities
- phase transitions
- collapse of cosmic strings, domain walls

Mass predictions

Assuming that one PBH can be formed in a Hubble volume in the early Universe, one gets

$$M_{
m PBH} \sim M_{
m Planck} imes rac{t_0}{t_{
m Planck}} \sim 10^{38} \ {
m g} \ imes t_0({
m s})$$

where t_0 is the creation time.

We get:

- $M \sim 10^{-5}$ g for $t_0 \sim 10^{-43}$ s ightarrow Planck black holes
- $M \sim 10^{15}$ g for $t_0 \sim 10^{-23}$ s ightarrow lightest black holes still (possibly) existing
- $M \sim 10^5 \ M_{\odot}$ for $t_0 \sim 1 \ {
 m s}
 ightarrow {
 m IMBH}$? seeds for SMBH?

Primordial black holes	Hawking radiation	Constraints	Perspectives
0000			
The Cosmic Uroboros			

A cosmic vision of PBHs by B. Carr (from arXiv:1703.08655)

0000	●00	0	000
Black hole Hawking radiat	ion		
	norize	source: actusf.com	

What Hawking radiation tells us...

- $M \sim 10^{-5}~{
 m g}
 ightarrow {
 m Planck}$ mass BHs ightarrow probes of quantum gravity
- $M \sim 10^{15} \text{ g} \rightarrow \text{PBHs}$ emitting a lot of particles today \rightarrow cosmic rays, gamma rays, ...
- $\bullet~M \gg 10^{15}~{
 m g}
 ightarrow {
 m PBHs}$ with low Hawking emission $ightarrow {
 m BHs}$ as dark matter
- M ≪ 10¹⁵ g → PBHs which evaporated (and disappeared?) long ago → probes of inhomogeneities, phase transitions, ...

Primordial black holes	Hawking radiation	Constraints	Perspectives
	000		
Advertisement: BlackHawk			

First public C code computing Hawking radiation:

- Schwarzschild & Kerr PBHs
- primary spectra of all Standard Model fundamental particles
- secondary spectra of stable particles (hadronization with PYTHIA or HERWIG)
- extended mass functions
- time evolution of the PBHs

Download: http://blackhawk.hepforge.org

Manual: arXiv:1905.04268, Eur.Phys.J. C79 (2019) 693

Primordial black holes	Hawking radiation	Constraints	Perspectives
	000		
Hawking radiation of parti	cles		

All particles can be emitted by a black hole!

Including gravitons / gravitational waves...

Primordial black holes	Hawking radiation	Constraints ●	Perspectives
Constraints			

Plausible dark matter candidates

- no need for Standard Model / General Relativity extension
- dynamically cold
- BH existence (somehow) proven
- mass ranges still available for BHs to represent all of dark matter

Constraints on PBHs - from Carr & Kuhnel, 2006.02838

red: evaporation blue: lensing gray: gravitational waves light blue: accretion orange CMB distortions green: dynamical effects purple: large scale structure

A-D: possible open windows

Alexandre Arbey

Primordial black holes	Hawking radiation	Constraints O	Perspectives ●00
Domains related to black hol	es		

- Gravity
 - tests of general relativity
 - nature of singularities, horizons, ...
 - links with wormholes, white holes, extradimensions, ...
 - o portal to new physics?
- Quantum physics
 - Hawking radiation
 - physics at Planck scale
 - links with quantum gravity
- Astrophysics
 - formation mechanisms
 - nature of black holes
 - distinction between neutrons stars and black holes
- Cosmology
 - candidate for dark matter
 - tests of mechanisms in the early Universe
 - links with particle and astroparticles physics
 - relation with inflation

Primordial black holes	Hawking radiation	Constraints O	Perspectives ○●○
Research axes			

- Formal aspects
 - theories and models of black holes
 - information theory and thermodynamics
 - quantum gravity theories and consequences on black holes
 - string theory and consequences on black holes
- Models and simulations
 - structure formation and dynamics in presence of black holes
 - formation of black holes
 - mergers of black holes
- Cosmological and astrophysical searches
 - gravitational lensing
 - telescopes
- Multi-messenger searches
 - gravitational waves
 - from mergers (LIGO, Virgo, ...)
 - from formation mechanisms (eLISA, future experiments)
 - from Hawking radiation
 - astroparticles: electrons and positrons (e.g. Voyager-2, AMS-02, ...), antiprotons (AMS-02), photons (X-rays, gamma-rays, ...)
 - from Hawking radiation of PBHs
 - from accretion discs and asymmetric mergers

Primordial black holes	Hawking radiation	Constraints O	Perspectives ○○●
Summary			

- Primordial black holes are under scrutiny
- They originate from primordial cosmology
- They are linked to different domains of fundamental physics
- Gravitational wave observations have opened a new way to probe black holes
- Primordial black holes are also connected to astroparticle physics

Primordial black holes are prototypical examples of the physics of the two infinities!

THANK YOU FOR YOUR ATTENTION!