Inflationary cosmology

Sébastien Renaux-Petel

CNRS - Institut d'Astrophysique de Paris

Atelier Physique Théorique des deux infinis IN2P3 June 8th 2021

European Research Council Established by the European Commission

Inflation: a giant microscope

a tiny patch of space becomes the entire observable universe

Inflation: a giant microscope

vacuum quantum fluctuations stretched to cosmological scales

Primordial fluctuations

Primordial Superhorizon - adiabatic density fluctuations: almost scale-invariant - Gaussian

Simplest fit: single-field slow-roll inflation...

... but not more than toy models

Primordial fluctuations

adiabatic
$$\delta\left(\frac{n_X(\boldsymbol{x})}{n_Y(\boldsymbol{x})}\right) = 0 \longrightarrow \zeta$$
 curvature perturbation

almost
scale-invariance
$$\mathcal{P}_{\zeta}(k) \sim (10^{-5})^2 \left(\frac{k}{k_{\star}}\right)^{n_s(k_{\star})-1} n_s = 0.9649 \pm 0.0042 \ (68\% \text{CL})$$

approximate time translation invariance during inflation

Gaussian
$$\zeta \sim \zeta_G \left(1 + f_{\rm NL} \zeta_G\right) \qquad |f_{\rm NL}| \lesssim \mathcal{O}(10)$$

Gaussian to better than 0.01%

Energy scale of inflation?

gravity at Planck scale

Physics of inflation? ton? Primordial universe: invaluable observation physics ential?

What is the inflaton?

Origin of its potential?

Which extension of the Standard Model?

At which energy inflation occured?

How did it transfert its energy to Standard Model particles?

The only degree of freedom?

Coupling to other fields?

The Eta problem

$$\eta \equiv M_{\rm pl}^2 \frac{V_{,\phi\phi}}{V} \ll 1$$

Prolonged phase of inflation

Why is the inflaton so light? $\eta \approx \frac{m_{\phi}^2}{H^2} \ll 1$

like the Higgs hierarchy problem

$\begin{aligned} & \textbf{UV-sensitivity of inflation} \\ \mathcal{L} = -\frac{1}{2} (\partial \phi)^2 - V_0(\phi) + \sum_{\delta} \frac{\mathcal{O}_{\delta}(\phi)}{M^{\delta - 4}} \end{aligned}$

Slow-roll action

Corrections to the low-energy effective potential

 $\frac{\Delta m_{\phi}^2}{H^2} \sim \left(\frac{M_{\rm Pl}}{M}\right)^2$

Planck-scale physics does not decouple Symmetries do not help

Guidance from UV complete theories

Supergravity, string theory: many degrees of freedom

Supergravity, string theory: many degrees of freedom

<u>Hope</u>: light inflaton, Planck-mass dofs

Find: masses of all kinds

MP

Mm

Н

Multiple degrees of freedom

Steep potentials

Large couplings

How does simplicity of data emerge from complicated UV theories?

Looking for new physics

- Single-field slow-roll: at best emergent approximate description
- Cosmologists seek deviations to it in motivated manner

(202?)

Extensively studied for CMB, LSS, with interesting constraints

Primordial features

Breaking of time translation invariance

Primordial non-Gaussianities: Inflation as a collider

Higher-order correlators: beyond free fields

bispectrum (3 pt function)

$$\begin{pmatrix} f_{\rm NL}^{\rm loc} = -0.9 \pm 5.1 \\ f_{\rm NL}^{\rm eq} = -26 \pm 47 \\ f_{\rm NL}^{\rm orth} = -38 \pm 24 \end{pmatrix} (68 \% \,{\rm CL})$$

Significance of local shape: not possible in single-clock inflation

Prospects

Prospects

Prospects

21cm emission from hydrogen clouds during dark ages radio-astronomy from the far side of the moon!

Cosmological collider physics, aka NGs in soft limits

Cosmological collider physics, aka NGs in soft limits

Non-Gaussianity as a particle detector

Cosmological bootstrap

Scattering amplitudes contained in analytical structures of cosmological correlators

Cosmological correlators constrained and computable from first principles (unitarity, locality, causality)

Positivity and the Bootstrap

31 May 2021 to 2 June 2021 CERN Europe/Zurich timezone

Beyond the potential

Geometrical destabilization of inflation

Renaux-Petel, Turzynski 2015

Probing small-scale primordial features

Gravitational-Wave Primordial Cosmology

17-19 May 2021 Europe/Paris timezone

https://indico.in2p3.fr/event/23850/overview

Work to prepare for observations:

figure out best use of data

Frequency profile

Chirality

Non-Gaussianity/correlation with other probes

SGWB anisotropies

Many reasons for IN2P3 to support early-universe theorists

From precision experiments and formal developments close to particle physics to new observational windows