CNIS

Compositeness from particle collisions to space

Giacomo Cacciapaglia IP2I Lyon, France (with Aldo Deandrea and Benjamin Fuks)

Atelier "Physique Théorique des Deux Infinis"

June 7-8, 2021

Why compositeness?

A scalar field may be made of more fundamental fields

· We have seen this in Nature: Low-energy QCD!

- Symmetries can be broken dynamically without
 generating hierarchies of scales!
- Very simple models can be built. (with caveats...)

Composite Higgs models 101

- · Symmetry broken by a condensate (of TC-fermions)
- Higgs and longitudinal Z/W emerge as mesons
 (pions)

Scales:

f : Higgs decay constant v : EW scale $m_\rho \sim 4\pi f$

EWPTs + Higgs coupl. limit:

 $f \gtrsim 4v \sim 1 \,\,\mathrm{TeV}$

Composite Higgs models 101

	<i>SU</i> (2) _{TC}	$SU(4)_{\psi}$	SU(2) _L	<i>U</i> (1) _Y	
$\left(egin{array}{c} \psi^1 \ \psi^2 \end{array} ight)$			2	0	
ψ^3			1	-1/2	
ψ^4			1	1/2	

T.Ryttov, F.Sannino 0809.0713 Galloway, Evans, Luty, Tacchi 1001.1361

The EW symmetry is embedded in the global flavour symmetry SU(4)!

The global symmetry is broken: SU(4)/Sp(4)
 Witten, Kosower

o 5 Goldstones (pions) arise:

additional singlet

Muon 9-2 anomaly

 $\Delta a_{\mu} = \frac{g_{\mu} - 2}{2} = \Delta a_{\mu}|_{QED} + \Delta a_{\mu}|_{EW} + \Delta a_{\mu}|_{QCD} + \Delta a_{\mu}|_{BSM}$

116584718.9(1) × 10⁻¹¹ 0.001 ppm 153.6(1.0) × 10⁻¹¹ 0.01 ppm

 $6845(40) \times 10^{-11}$ 0.37 ppm $92(18) \times 10^{-11}$ 0.15 ppm

Muon 9-2 anomaly

$$\Delta a_{\mu} = \frac{g_{\mu} - 2}{2} = \Delta a_{\mu}|_{QED} + \Delta a_{\mu}|_{EW} + \Delta a_{\mu}|_{QCD} + \Delta a_{\mu}|_{BSM}$$

$\Delta a_{\mu}|_{BSM} = 251(59) \times 10^{-11}$ $\Delta a_{\mu}|_{BSM} \approx \frac{m_{\mu}^2}{\Lambda^2}$

$\Lambda \approx 2 \text{ TeV} \approx 4\pi v$

Anomaly point to the most natural scale of Technicolor! (compositeness at the EW scale)

Muon 3-2 anomaly

$$\Delta a_{\mu} = \frac{g_{\mu} - 2}{2} = \Delta a_{\mu}|_{QED} + \Delta a_{\mu}|_{EW} + \Delta a_{\mu}|_{QCD} + \Delta a_{\mu}|_{BSM}$$

New Lattice results reduce tension: stay tuned!

5

There's something about Muons

 $R_K = \frac{\mathrm{BR} \left(B^+ \to K^+ \mu^+ \mu^-\right)}{\mathrm{BR} \left(B^+ \to K^+ e^+ e^-\right)} = 0.846^{+0.044}_{-0.041}$

- o g-2 fixes the scale of new physics
- natural values for TC-like
 theories!
- RK requires large muon couplings
 (attainable in strong dynamics)
 - These anomalies will be further probed in the near future!

Perspectives: Low energy

- A complete scenario motivated by the muon anomalies can be constructed.
- The Higgs must be a light dilaton-like composite resonance.
- Low scale => testable at the LHC and future colliders.
- BSM Lattice studied can point towards the correct underlying theory (model building)

Light composite resonances How can light states emerge?

Composite ALP Lagrangian:

$$\mathcal{L}_{\text{eff}}^{D\leq 5} = \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{m_{a,0}^2}{2} a^2 + \frac{\partial^{\mu} a}{\Lambda} \sum_{F} \bar{\psi}_F \, \mathcal{C}_F \, \gamma_{\mu} \, \psi_F + g_s^2 \, C_{GG} \, \frac{a}{\Lambda} \, G_{\mu\nu}^A \, \tilde{G}^{\mu\nu,A} + g^2 \, C_{WW} \, \frac{a}{\Lambda} \, W_{\mu\nu}^A \, \tilde{W}^{\mu\nu,A} + g'^2 \, C_{BB} \, \frac{a}{\Lambda} \, B_{\mu\nu} \, \tilde{B}^{\mu\nu} \,,$$

Composite Higgs scenario:

$$\frac{C_{WW}}{\Lambda} \sim \frac{C_{BB}}{\Lambda} \sim \frac{N_{\rm TC}}{64\sqrt{2} \pi^2 f}$$
$$(C_{\gamma\gamma} = C_{WW} + C_{BB})$$

 $\frac{C_{GG}}{\Lambda} = 0$

(Poor bounds at the LHC)

 \mathbf{C}_F is loop-induced:

M.Bauer et al, 1708.00443

Tera-Z portal to compositeness (via ALPs)

This process is always associated with a monochromatic photon.

Too small to explain the muon 9-2 anomaly! M.Bauer et al, 1704.08207

Typical EWPT bound

Perspectives: Light composites

- Composite (Higgs) models naturally feature very light (pseudo)scalars
- Ideal Physics case for FCC-ee (FCC-France initiative)
- Exotic decays of top parters: systematic study at the LHC, "Master" UFO model files @ NLO
- If below MeV, they can produced inside stars,
 and affect the Cosmological evolution

Composite (Higgs) in space!

Origin inte	of rac	flav tiov	vou Ns	r

Resonances, confinement

Pions

Higgs and EW scale

Important Events in the Universe Time (seconds) Temperature (Kelvin) 0 ∞ Big Bang 10-43 1032 Quantum Cosmology 10-35 1028 Baryogenesis / Inflation 10-11 1016 EM separates from Weak Nuclear 10-6 1013 Quark-Hadron Transition 1-10² 1010 Nucleosynthesis 10¹³ 3•10³ Recombination 5.10 3 Now 2003 STURIT J. RODDING

12

Composite (Higgs) in space!

Composite (Higgs) in space!

Outlook

- Composite (Higgs or Dark Matter) models are a feasible route for New Physics
- @ g-2 and RK explainable via TC-like theories
- Phenomenology at LHC and FCC-ee
- Phase transitions in the early Universe can
 generate relic gravitational waves
- Interesting and fun physics from Low energies to <u>Cosmology!</u>