UNIVERSITE PARIS-SACLAY

Pôle Théorie - IJCLAB-Orsay

Heavy neutral fermions and neutrino physics

Contribution of A.A, A.M. Teixeira

- Neutrino data calls for New Physics
- ☞ Which BSM? Neutrino mass models
- Reference Many BSM (with m_{ν}): neutrino mass generation mechanisms
- Bottom-up approach: extra neutral fermions like right-handed neutrinos
- Reference the searches at different energy scales

Journée prospectives, juin 2021

Asmaa Abada

Indisputable: ν s are massive and mix

⇒ Lepton mixing & massive neutrinos: unique signal for NP

- $\ensuremath{\mathbb{R}}\xspace^{\ensuremath{\mathbb{R}}\xspace}$ SM has other issues that call for BSM
 - observational problems (ν masses & mixings): BAU and Dark Matter
 - ► theoretical caveats: fine-tuning, hierarchy and flavour problems
- \mathbb{R} ν -SM = New Physics just to explain ν masses and mixings
 - ▶ New d.o.f, for example Right-Handed Neutrinos, $HY^{\nu} \nu_L \nu_R + ... \rightarrow m_{\nu}$
 - ▶ What is the neutrino mass generation mechanism?
 - ▶ $\nu \leftrightarrow \bar{\nu}$ the only particle that can have *both* Dirac or Majorana descriptions
- \bowtie ν -SM will allow for many new phenomena
 - ▶ LFV in neutral sector. Why not in the charged sector? $\ell_i \rightarrow \ell_j \ \ell_k \ \ell_l$, $\ell_i \rightarrow \ell_j \gamma$, ...
 - ▶ If ν is a Majorana particle → LNV observables, ...
 - ▶ Contributions to g 2, lepton EDMs
 - Signatures of the new heavy states at colliders, ...
- B

Determination of ν -SM/BSM model requires combinations of many \neq observables

 $(m_{\nu} \neq 0 \Rightarrow$ New Physics Scale)

Standard Model

▶ ν_L only and no $\nu_R \implies$ No Dirac mass term: $\mathcal{L}_{m_D} = m_D \left(\overline{\nu_L} \nu_R + \overline{\nu_R} \nu_L \right)$

- ▶ No Higgs triplet \implies No Majorana mass term: $\mathcal{L}_{m_M} = \frac{1}{2}M\overline{\nu_L^c}\nu_L + h.c.$
- \blacktriangleright Lepton number symmetry is accidental \implies Non-renormalisable operators dim 5, 6 ...

See-Saw mechanism, SM + ν_R

▶ Dimension 6: $c^{d=6} \sim (c^{d=5})^2 \Rightarrow$ small $m_{
u}$ preclude observable effects from $\mathcal{O}_i^{d=6}$

Extending the SM with sterile fermions: (testable!) theoretical frameworks

▶ Incorporating ν_R - low scale seesaws: type I seesaw [TeV] → small Y_{ν}

 $\mathcal{M}_{\nu} = \begin{pmatrix} 0 & v Y_{\nu}^{T} \\ v Y_{\nu} & M_{R} \end{pmatrix} \qquad \qquad \text{type I seesaw variants} \implies \text{"large"} Y_{\nu} \\ \nu \text{MSM [GeV]} \implies \text{tiny } Y_{\nu} \\ \hline m_{\nu} \approx -v^{2} Y_{\nu}^{T} \frac{1}{M_{R}} Y_{\nu} \end{pmatrix}$

Regional Extended seesaw: Inverse and Linear Seesaw

▶ Incorporating ν_R and additional steriles ν_S : Inverse seesaw (ISS) ➡ sizeable Y_{ν}

$$\mathcal{M}_{\mathsf{ISS}} = \begin{pmatrix} 0 & Y_{\nu}^{T} v & 0 \\ Y_{\nu} v & 0 & M_{R} \\ 0 & M_{R}^{T} & \mu_{X} \end{pmatrix}$$

$$\mathbf{\mathcal{M}_{\mathsf{ISS}}} = \begin{pmatrix} 0 & Y_{\nu}^{T} v & M_{L}^{T} \\ Y_{\nu} v & 0 & M_{R} \\ M_{\mathsf{LSS}} = \begin{pmatrix} 0 & Y_{\nu}^{T} v & M_{L}^{T} \\ Y_{\nu} v & 0 & M_{R} \\ M_{L} & M_{R}^{T} & 0 \end{pmatrix}$$

$$\mathbf{\mathcal{M}_{\mathsf{ISS}}} = \begin{pmatrix} 0 & Y_{\nu}^{T} v & M_{L}^{T} \\ Y_{\nu} v & 0 & M_{R} \\ M_{L} & M_{R}^{T} & 0 \end{pmatrix}$$

▶ Heavy physical states ➡ pseudo-Dirac pairs: $m_{N^{\pm}} \approx M_R \pm \mu_X$

Sterile fermions or heavy neutral fermions

- Extending the SM with other "sterile fermions": singlets under SU(3)_c×SU(2)_L×U(1)_Y
 Interactions with SM fields: through mixings with active neutrinos
 A priori, no bound on the number of sterile states, no limit on their mass scale(s)
- Interest/phenomenological implications of new "neutrinos" (v_R) dependent on their mass!
 eV scale ↔ extra neutrinos suggested by reactor (& short baseline?) v-oscil. anomalies
 keV scale ↔ warm dark matter candidates; explain pulsar velocities (kicks); 3.5 keV line..
 MeV TeV scale ↔ experimental testability, i.e. high-intensity/colliders (+ BAU, DM, ...)
 Beyond 10⁹ GeV ↔ theoretical appeal: standard seesaw, BAU, GUTs

$m_{{\cal V}_S}$	Motivation	u-oscillations	laboratory searches	
\lesssim eV	u-oscil. anomalies, dark radiation	massses by seesaw, explain anomalies	oscillation anomalies, eta -decays	
keV	DM	no if DM	direct searches? , nuclear decays?	c
MeV	testability	masses by seesaw	intensity frontier, $0\nu\beta\beta$	c
GeV	testability, minimality	masses by seesaw	intensity frontier, EW precision data, $0\nu\beta\beta$	c
TeV	minimality, testability	masses by seesaw	LHC	c
$\gtrsim 10^9 { m GeV}$	grand unification, "naturality"	masses by seesaw	-	

m_{ν_S}	СМВ	BBN	DM	Leptogenesis	
\lesssim eV	explain $N_{ m eff} > 3$	may explain	20	no	
		$N_{\rm eff} > 3$			
keV	act as DM,	effect on $N_{ m eff}$	good candidate	no	
	no effect on $N_{ m eff}$	too small if DM			
MeV	unaffected	constrains	no	possible	
		$m_{{m u}_S}\gtrsim200{ m MeV}$		(finetuning)	
GeV	unaffected	unaffected	no	possible	
TeV	unaffected	unaffected	no	possible	
$\gtrsim 10^9 { m GeV}$	unaffected	unaffected	no	natural	

Extending SM with "sterile" fermions: phenomenological consequences

▶ Modified charged (W^{\pm}) and neutral (Z^0) current interactions:

$$\mathcal{L}_{W^{\pm}} \sim -\frac{g_{w}}{\sqrt{2}} W_{\mu}^{-} \sum_{\alpha=e,\mu,\tau} \sum_{i=1}^{3+N_{S}} \mathbf{U}_{\alpha i} \bar{\ell}_{\alpha} \gamma^{\mu} P_{L} \nu_{i}$$
$$\mathcal{L}_{Z^{0}} \sim -\frac{g_{w}}{2\cos\theta_{w}} Z_{\mu} \sum_{i,j=1}^{3+N_{S}} \bar{\nu}_{i} \gamma^{\mu} \left[P_{L} (\mathbf{U^{\dagger}U})_{ij} - P_{R} (\mathbf{U^{\dagger}U})_{ij}^{*} \right] \nu_{j}$$

 $\mathbf{U}_{\alpha i} \rightarrow \mathbf{m}$ modified lepton mixing - now encodes also active-sterile mixings (for $N_s = 0$, $\mathbf{U}_{\alpha i} = U_{\text{PMNS}}$)

▶ If sufficiently light, sterile ν_{s} can be **produced as final states**

INST Many new searches proposed → Huge impact for numerous observables!

But also abundant constraints !!

[Deppisch et al, '15,] [updated 2018: AA et al, 1712.03984]

Sterile fermions impact on

- **Oscillation parameters:** \tilde{U}_{PMNS} comply with observed mixings, mass ordering, δ CPV phase
- **Electroweak precision tests:** invisible Z width; leptonic Z width; Weinberg angle...
- ▶ Searches at the LHC: invisible Higgs decays $H \rightarrow \nu_L \nu_R$; direct searches, ...
- ▶ Peak searches in meson decays: monochromatic lines in ℓ^{\pm} spectrum from $X_M^{\pm} \to \ell^{\pm} \nu_s$
- ► Beam dump experiments: ν_s decay products (light mesons, ℓ^{\pm}) from X_M^{\pm} decays [PS191, CHARM, NuTeV, ...]
- ▶ Neutrinoless double beta decays $|m_{ee}|$
- ► Rare meson decays: Lepton Number Violating (LNV) e.g. $K^+ \to \ell^+ \ell^+ \pi^-$ Lepton Universality Violating (leptonic decays) e.g. R_{X_M} , R(D), R_{τ}
- Lepton Flavour Violation: 3 body decays among most stringent...

On going well motivated studies and questions

→ Cosmology and astroparticle (Jérémie Quévillon)

 \Rightarrow BAU from leptogenesis (oscillations): ARS mechanism

 \Rightarrow (Warm) dark matter candidates, astrophysical puzzles: pulsar kicks, ...

- Case of more than one sterile : interference effect to be deeply explored (flavour)
- New CPV phases appear to have huge impact regarding predictions
- Explore $\tau \mu$ sector