

Flavor physics and Lattice QCD

Antoine Gérardin

Atelier « Physique théorique des deux infinis » 6 Juin 2021

- ► Lattice QCD :
 - UV regulator $\Lambda_{\rm UV}=a^{-1}$
 - IR regulator $\Lambda_{\rm IR} = L^{-1}$
- ► Direct simulations using an heavy meson B :

$L^{-1} \ll m$	$_{\pi}, m_B \ll a^{-1}$
$\mathcal{O}\left(e^{-m_{\pi}L} ight)$	$am_B < 1$
$L \gg 6 \text{ fm}$	$a \ll 0.05 \text{ fm}$
Volume effect	Discretization effect

- \blacktriangleright Lattice resolution $L/a \gg 120$: not yet possible
- ► Methods used by the lattice community :
 - Effective field theories (Heavy Quark Effective Theory, Non-Relativistic QCD)
 - Step scaling method

2

• Highly-improved actions (to reduce discretization effects)

Simulate the b quark in Heavy Quark Effective Theory (HQET)

- ▶ Non perturbative matching of Heavy Quark Effective Theory (HQET) with QCD
- Strategy OK to pass quality criteria established by the Flavour Lattice Averaging Group.

- Determination of the b quark mass
 - \rightarrow systematic control of cut-off effects
 - \rightarrow Effective theory : static + O(1/m_b) corrections

 \blacktriangleright B and B_s decay constants

$$\mathcal{B}\left(B^{-} \to \tau^{-} \nu_{\tau}\right) \propto |V_{ub}|^{2} f_{B}^{2}$$

[B. Blossier, A. Gérardin et al : 2014]

▶ Series of (dynamical) heavy quark masses m_{h_i} to reach the *b* quark mass

$$\frac{m_{h_{i+1}}}{m_{h_i}} = \left(\frac{m_{B_q}}{m_{D_q}}\right)^{1/N}, \qquad i \in [1:N]$$

► Observable (decay constant, ...)

$$A(m_{B_q}) = A(m_{D_q}) \quad \Pi_{i=1}^N R'_i, \qquad R'_i = \frac{A(m_{h_{i+1}})}{A(m_{h_i})} \propto R_i^{\text{HQET}}$$
$$R_i^{\text{HQET}} = 1 + \frac{X_1}{m_{h_i}} + \frac{X_2}{(m_{h_i})^2}$$

► Each step : continuum extrapolation + chiral extrapolation to the physical pion mass

- \checkmark ratio are expected to have smaller discretization effects
- $\checkmark~$ smoother chiral extrapolation

4

X The statistical error accumulates at each step !

Preliminary study : charm physics

[B. Blossier, V. Morenas et al : 2018, 2020]

- \blacktriangleright A dynamical c quark can be simulated on the lattices
 - \rightarrow study of excited state contaminations
 - \rightarrow study of the size of discretization effects

▶ Next step : study transitions such as $B_s \to D_s^{(*)}$

- $m_{D_s^*} = 2.111(10)(13) \text{ GeV}$
 - \rightarrow Very good agreement with experiment
- $f_{D_s^*}/f_{D_s} = 1.14(2)$
 - \rightarrow Discretization effects < 10%

• Also some new results with charmonia : η_c (pseudoscalar) and J/Ψ (vector)

Results included in the on-going FLAG report

- ▶ Next step : study transitions such as $B_c \to J/\psi \ \ell \bar{\nu}$, $B_c \to \eta_c \ell \bar{\nu}$
- Method : step scaling functions to reach the physical b quark mass (ETMC strategy)

 $\blacktriangleright~N=5$ steps are used to reach the b quark mass

 \rightarrow discretization effects become important at large masses

 \rightarrow smooth chiral behavior (simulations at physical pion mass challenging)

▶ Difficulty : the statistical error accumulates with the number of iterations

$$\frac{f_{B_s}}{f_{D_s}} = 0.87(4)\binom{+1}{-4} \implies f_{B_s} = 212(10)(2)\binom{+2}{-10} \text{ MeV}$$

 \rightarrow Compatible with [ALPHA '14]) : $f_{B_s} = 224(14)$ MeV (same ensemble, using HQET)

• Advantage : One can directly study the $1/m_h$ corrections

Results

• Similar strategy in the vector channel : $B^*_{(s)}$

$$\frac{m_{B_s^*}}{m_{B_s}} = 1.0061(4)(5) , \quad \frac{f_{B_s^*}}{f_{B_s}} = 1.05(2)$$

 $\rightarrow \frac{f_{B_s^*}}{f_{B_s}} > 1$ quenching of the strange quark?

 \rightarrow similar observation on ETMC lattice [Becirevic et al '14]

► Conclusion : the method works (but challenging)

- Study of the form factors for $B_s \to D_s^{(*)} \ell \nu$ has started [B. Blossier, S. Zafeiropoulos et al, 2021]
- ► Future : plan to use another strategy (relativistic heavy quarks)

The anomalous magnetic moment of the muon

$$= -ie\,\overline{u}(p',\sigma')\left[\gamma_{\mu}F_{1}(q^{2}) + \frac{i\sigma_{\mu\nu}q_{\nu}}{2m}F_{2}(q^{2})\right]u(p,\sigma)$$

$$\mu(p')$$

 $a_{\mu} = \frac{g-2}{2} = F_2(0) =$ quantum corrections

Pheno.
$$a_{\mu} = (116\ 591\ 810 \pm 43) \times 10^{-11}$$

Exp. $a_{\mu} = (116\ 592\ 061 \pm 41) \times 10^{-11}$ [BNL + Fermilab 2021]

April 2021 : new experimental result from Fermilab

• Theory estimate from the White Paper (posted 10 June 2020) The anomalous magnetic moment of the muon in the Standard Model [Phys.Rept. 887 (2020) 1-166]

Why lattice QCD?

Contribution	$a_{\mu} \times 10^{11}$	
- QED (leptons, $5^{ m th}$ order)	$116\ 584\ 718.95 \pm 0.08$	[Aoyama et al. '12]
- Electroweak	153.6 ± 1.0	[Gnendiger et al. "13]
- Strong contributions		
HVP (LO)	6931 ± 40	[DHMZ 19, KNT 20]
HVP (NLO)	-98.3 ± 0.7	[Hagiwara et al. 11]
HVP (NNLO)	12.4 ± 0.1	[Kurtz et al. '14]
HLbL	94 ± 19	[See WP]
Total (theory)	116 591 810 ± 43	

- Theory error dominated by hadronic uncertainties
 - \rightarrow Dominated by low energy QCD
 - \rightarrow Require non-perturbative methods

10

Hadronic Vacuum Polarisation (LO-HVP, α^2)

Hadronic Light-by-Light scattering (HLbL, α^3)

• Contribution from unknown particles / interactions (?) $a_{\ell}^{\rm NP} = C \frac{m_{\ell}^2}{\Lambda^2}$

Hadronic Vacuum Polarisation : Recent BMW calculation (CPT - Marseille)

- First complete calculation [BMW Collaboration : Nature 593 (2021)]
 - \rightarrow first lattice calculation below 1% precision
 - \rightarrow include all isospin-braking and QED corrections

Antoine Gérardin

- The BMW result reduces the tension with SM
- ▶ The BMW result increases the tension with R-ratio data
- ▶ Future : s further reduction by a factor at least 3 is needed to reach the future exp. precision at Fermilab

Hadronic light-by-light contribution

• Main contribution from light pseudoscalar poles

• Pion transition form factor

N = 3BL _____

pQCD ----CLEO

CELLO -Dispersive

0.2

0.15

 $[{\rm GeS}]{\rm GeS}$ 0.1

0.05

0

0

[A. G et al, Phys.Rev. D94 (2016)]

1.5

 Q^2 [GeV²]

[A. G et al, Phys.Rev. D100 (2019)]

• First ab-initio calculation of the pion-pole contribution

0.5

$$a_{\mu}^{\text{HLbL};\pi^0} = (59.9 \pm 3.6) \times 10^{-11}$$

- ightarrow Compatible with the dispersive result $a_{\mu}^{\text{HLbL};\pi^0} = 62.6^{+3.0}_{-2.5} \times 10^{-11}$ [Hoferichter et al. '18]
- \rightarrow Contribution under control
- \rightarrow Next step : η and η' !

► Flavor physics in the quark sector

- \rightarrow Many results in the charm sector
- \rightarrow Test of the step-scaling method to simulate the b-quark
- \rightarrow Form factors $B_s \rightarrow D_s^{(*)} \ell \nu$ are under investigation
- ► Lepton sector : anomalous magnetic moment of the muon
 - \rightarrow strong expertise in the calculation of the hadronic vacuum polarization
 - \rightarrow first sub-percent result for the HVP (Marseille)
 - ightarrow on-going efforts on form factors for the hadronic light-by-light contribution

Computer ressources

ightarrow simulations with light pion masses, small lattice spacings are computationally expensive