

Flavor physics at high- p_{T}

Olcyr Sumensari

IJCLab (Orsay)

Atelier "Physique théorique des deux infinis", 07/06/21

Motivation

See talks by N. Mahmoudi, A. Gérardin and M. Frigerio

● **Flavor physics** observables **can probe** physics at very **high-energy scales. Combined effort** of **exp.** and **theory** (LQCD) to constantly **improve precision**.

e.g.,

$$
\Delta F = 2 \qquad \qquad \mathcal{L} \supset \frac{1}{\Lambda^2} (\bar{s}_L \gamma^\mu d_L)(\bar{s}_L \gamma_\mu d_L) \qquad \Longrightarrow \qquad \Lambda \gtrsim 10^3 \text{ TeV}
$$

- However, **flavor is not always** the **best probe** of a given 4-fermion operator; its **sensitivity depends** on the **flavor structure** of **New Physics (NP)** couplings – which is still uknown:
	- \Rightarrow e.g., flavor-conserving operators are poorly constrained at low-energies; LHC probes can be very useful in this case!
- It is **fundamental** to **combine** all **possible approaches** (flavor and LHC)!
	- \implies Main tools are Effective Field Theories (as long as they are valid) and concrete NP models.

This talk: Explore the **complementarity** of **low** and **high-energy probes**.

How to probe flavor at high- p_T ?

Low vs. high-p_r constraints

Flavorful New Physics?

High-p_T searches (CMS and ATLAS) can probe the same operators constrained by **flavor-physics experiments** (NA62, KOTO, BES-III, LHCb, Belle-II...).

see [Faroughy et al. '16], [Greljo et al. '17, '18], [Fuentes-Martin et al., '20], <mark>[Angelescu et al. '20]... 2</mark>

i) LHC is a flavorful experiment

3

ii) Energy helps precision

see e.g. [Farina et al., 16']

Dimension-6 operators:

$$
\mathcal{L}_{\text{eff}} \supset \frac{C_{\text{eff}}}{\Lambda^2} \, \mathcal{O}^{(6)} \qquad \Longrightarrow \qquad \hat{\sigma} \propto \frac{s}{\Lambda^4} |C_{\text{eff}}|^2 + \ldots
$$

Energy-growth can partially overcome heavy-flavor PDF suppression.

Strategy:

Recast LFV **di-lepton searches** and look for **NP effects** in the **tails** of the **invariant mass-distribution** (where S/B is large).

Caveat: EFT must be valid $(\sqrt{s} \ll \Lambda);$ Otherwise, use explicit UV model.

 $\frac{25}{5}$ 10⁶ **ATLAS** Data Multijet & W+jets \sqrt{s} = 13 TeV, 36.1 fb⁻¹ **Top Quarks** $Z/\nu^* \rightarrow$ II μτ channel Diboson FV 7' 1.5 TeV **RPV** \tilde{v} **, 1.5 TeV DRH RS 1.5 TeV** 10° ncertainty Data/SM Bkg $\frac{200}{200}$ $300, 400$ 1000 2000 $m_{\mu\tau}$ [GeV] [ATLAS. 1807.06573]

 $pp \rightarrow \mu\tau$

4

Concrete examples:

- **L**epton **F**lavor **V**iolation in meson decays
- Leptoquarks and **L**epton **F**lavor **U**niversality

Example: Lepton Flavor Violation (LFV)

$$
\mathcal{L}_{\text{eff}} = \sum \frac{C_{q_i q_j}^{\ell_k \ell_l}}{v^2} \left(\bar{q}_{Li} \gamma^\mu q_{Lj} \right) \left(\bar{\ell}_{Lk} \gamma_\mu \ell_{Ll} \right)
$$

SMEFT:
 $\mathcal{O}_{lq}^{(1)}$, $\mathcal{O}_{lq}^{(3)}$

5

*See back-up for other channels.

 $e.g.,$

Example: Lepton Flavor Violation (LFV)

*See back-up for other channels.

5

Example: Lepton **F**lavor **V**iolation (**LFV**)

*****See back-up for other channels.

Concrete examples:

- **L**epton **F**lavor **V**iolation in meson decays
- Leptoquarks and **L**epton **F**lavor **U**niversality

Example: Lepton **F**lavor **U**niversality **(LFU)** violation

Several **discrepancies** have been observed in *b***-hadron** decays $[\approx 4\sigma]$:

See talks by N. Mahmoudi and A. Gérardin **Example 2018** [LHCb, B-factories]

If confirmed with more data, it would imply **New Physics** at **O(few TeV)**!

6

Example: Lepton **F**lavor **U**niversality **(LFU)** violation

Several **discrepancies** have been observed in *b***-hadron** decays $[\approx 4\sigma]$:

If confirmed with more data, it would imply **New Physics** at **O(few TeV)**!

Which leptoquark?

Few viable scenarios!

[Angelescu, Becirevic Faroughy, Jaffredo, **OS**, '21]

NB. UV completion needed for vector leptoquarks (see back-up)!

Direct searches at the LHC i) LQ pair production

Production dominated by QCD:

see [Dorsner et al.. '18] for a recent review see also [Borschensky et al. '20]

ATLAS and CMS results for $\beta = 1$ (or 0.5)

[Angelescu, Becirevic Faroughy, Jaffredo, **OS**, '21]

Useful results, but with **limited reach** (few TeV); **not enough** to **fully probe** the mass scales suggested by **flavor anomalies**!

LHC constraints

ii) di-lepton production at high-p_r

Useful upper limits on **LQ couplings**: [ATLAS and CMS]

Example: $U_1 = (3, 1, 2/3)$

 $\mathcal{L}_{U_1} = x_L^{ij} \, \overline{Q}_i \gamma^\mu L_j U_1^\mu + \text{h.c.}$

First computed by [Eboli, '88]

[Angelescu, Becirevic Faroughy, Jaffredo, **OS**, '21]

Perspectives

Perspectives

EFTs at LHC

• If NP lies beyond the LHC reach, measuring the high-energy tails of dilepton distributions would offer the best opportunity to probe these scenarios.

Work in progress to combine LHC and flavor constraints in full generality.

• Assessing the validity of the EFT approach is needed (when LHC data is not precise enough). Ongoing activity e.g. at the EFT @ LHC working group.

B-physics

- Excellent example of the complementarity of low and high-energy observables!
- Many awaited exp. results can clarify the situation mostly LHCb and Belle-II, but also CMS and ATLAS:

$$
R_{K^{(*)}}, R_{\phi} \dots \qquad R_{D^{(*)}}, R_{\Lambda_c} \dots \qquad B \to K^{(*)} \mu \tau \qquad B \to K^{(*)} \nu \bar{\nu}
$$

• If anomalies are confirmed in the future, unique opportunity to use exp. data to build a model of New Physics!

Exchange between theory and experiment is fundamental!

Thank you!

Back-up

Our results: eμ, eτ, μτ

 $O_{V_{LL}}^{ijkl} = (\bar{q}_{Li}\gamma^{\mu}q_{Lj})(\bar{\ell}_{Lk}\gamma_{\mu}\ell_{Ll})$

LHC data is **more constraining** for **flavor-conserving** transitions (ss, cc and bb), as well as for the **charm sector** (cu).

EFT for
$$
b \rightarrow s\ell\ell
$$

$$
\mathcal{L}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[\sum_{i=1}^6 C_i(\mu) \mathcal{O}_i + \sum_{i=7,8,9,10, P,S} \left(C_i(\mu) \mathcal{O}_i + C_i'(\mu) \mathcal{O}_i' \right) \right] + \text{h.c.}
$$

● **Semileptonic operators**:

$$
\mathcal{O}_{9}^{(\prime)} = (\bar{s}\gamma_{\mu}P_{L(R)}b)(\bar{\ell}\gamma^{\mu}\ell) \qquad \qquad \mathcal{O}_{S}^{(\prime)} = (\bar{s}P_{R(L)}b)(\bar{\ell}\ell) \n\mathcal{O}_{10}^{(\prime)} = (\bar{s}\gamma_{\mu}P_{L(R)}b)(\bar{\ell}\gamma^{\mu}\gamma_5\ell) \qquad \qquad \mathcal{O}_{P}^{(\prime)} = (\bar{s}P_{R(L)}b)(\bar{\ell}\gamma_5\ell)
$$

• Dimension-6 **tensor** operators are **not allowed** by $SU(2)_L \times U(1)_Y$

[Buchmuller, Wyler. '85]

● **(Pseudo)scalar** operators are **tightly constrained** by

$$
\overline{B}(B_s \to \mu\mu)^{\text{exp}} = (2.85 \pm 0.22) \times 10^{-9}
$$
 [Our average, CMS, ATLAS, LHCb]
\n
$$
\overline{B}(B_s \to \mu\mu)^{\text{SM}} = (3.66 \pm 0.14) \times 10^{-9}
$$
 [Beneke et al. '19]

Latest LHCb results

$$
\overline{B}(B_s \to \mu\mu)^{\text{exp}} = (2.85 \pm 0.22) \times 10^{-9}
$$

$$
\overline{B}(B_s \to \mu\mu)^{\text{SM}} = (3.66 \pm 0.14) \times 10^{-9}
$$

[Our average, CMS, ATLAS, LHCb] [Beneke et al. '19]

Combined fit Clean quantities

[Angelescu, Becirevic, Faroughy, Jaffredo, **OS**. '21]

- Only vector(axial) coefficients can accommodate data.
- $C'_{9,10}$ disfavored by $R_{K^*}^{\text{exp}} < R_{K^*}^{\text{SM}}$
- Purely *left-handed* operator preferred $[4.6\sigma]$:

$$
\delta C_9^{\mu\mu} = -\delta C_{10}^{\mu\mu}
$$

$$
= -0.41 \pm 0.09
$$

Interesting: Conclusion corroborated by global by global $b \rightarrow s \ell \ell$ fit

Concrete models for $R_K \& R_{K^*}$

• Few $SU(2)_L \times U(1)_Y$ invariant operators predict $C_9^{\mu\mu} = -C_{10}^{\mu\mu}$:

$$
O_{lq}^{(1)} = (\overline{L}\gamma^{\mu}L)(\overline{Q}\gamma_{\mu}Q)
$$

$$
O_{lq}^{(3)} = (\overline{L}\gamma^{\mu}\tau^{I}L)(\overline{Q}\gamma_{\mu}\tau^{I}Q)
$$

NB. LFU breaking operators!

• Tree-level mediators:

 $(\mathbf{1},\mathbf{1},0)$ or $(\mathbf{1},\mathbf{3},0)$ $(\mathbf{3},X,Y)$ $(SU(3)_c, SU(2)_L, U(1)_Y)$

• Loop-level scenarios are **tightly constrained**: LHC, $Z \rightarrow \mu\mu$, Δm_{B_s} ...

see e.g. [Coy, Frigerio, Mescia, **OS**. '19]

Effective theory for $b \rightarrow c\tau\bar{\nu}$

$$
\mathcal{L}_{\text{eff}} = -2\sqrt{2}G_F V_{cb} \Big[(1+g_{V_L}) (\bar{c}_L \gamma_\mu b_L) (\bar{\ell}_L \gamma^\mu \nu_L) + g_{V_R} (\bar{c}_R \gamma_\mu b_R) (\bar{\ell}_L \gamma^\mu \nu_L) + g_{S_R} (\bar{c}_L b_R) (\bar{\ell}_R \nu_L) + g_{S_L} (\bar{c}_R b_L) (\bar{\ell}_R \nu_L) + g_T (\bar{c}_R \sigma_{\mu\nu} b_L) (\bar{\ell}_R \sigma^{\mu\nu} \nu_L) \Big] + \text{h.c.}
$$

General messages:

- $SU(3)_c \times SU(2)_L \times U(1)_Y$ gauge invariance:
	- \Rightarrow g_{V_R} is LFU at dimension 6.
	- \Rightarrow Four coefficients left: $g_{V_L}, g_{S_L}, g_{S_R}$ and g_T
- Several viable solutions to $R_{D^{(*)}}$:

 \Rightarrow e.g. $g_{V_L} \in (0.05, 0.09)$, **but not only!**

[Angelescu, Becirevic Faroughy, Jaffredo, **OS**, '21]

see also [Murgui et al. ' 19, Shi et al. '19, Blanke et al. '19]

Effective theory for $b \to c\tau\bar{\nu}$

Which operators to pick?

Viable solutions (at $\mu \approx 1 \text{ TeV}$): \Rightarrow gV_L and $gS_L = \pm 4 g_T$

More **exp. information** is **needed**: \Rightarrow e.g., angular observables:

 $B \to D \tau \bar{\nu}$ $B \to D^*(D \pi) \tau \bar{\nu}$

[Becirevic et al. '19], [Murgui et al. '19]... [Becirevic, Jaffredo, Peñuelas, **OS**. '20]

Electroweak observables can also be a useful handle!

[Feruglio et al. '17]

[Feruglio, Paradisi, **OS**. '18]

From EFTs to concrete models

EFT interpretations:

Challenges for New Physics:

- Flavor observables: e.g. Δm_{B_s} and $B \to K^{(*)} \nu \bar{\nu}$
- Radiative constraints: e.g. $\tau \to \mu \nu \bar{\nu}$ and $Z \to \ell \ell$
- LHC direct and indirect bounds.

See talk by N. Mahmoudi

[Feruglio et al. '16]

[Greljo et al. '15, Faroughy et al. '16, ...]

[Angelescu, Becirevic Faroughy, Jaffredo, **OS**, '21]

Scalar and vector **leptoquarks (LQ)** are the **best candidates** so far

Explaining $b \rightarrow c\tau\bar{\nu}$

- $R_{D^*}^{\text{exp}} > R_{D^*}^{\text{SM}}$ require new bosons at $\Lambda_{\text{NP}} \lesssim 5 \text{ TeV}$.
- Possible **tree-level mediators**:

- **Challenges** for **New Physics** explanations:
	- [Many papers...] \Rightarrow Flavor observables: $B \to K \nu \bar{\nu}$, Δm_{B_s} ,...
	- Electroweak constraints (one-loop): $\tau \to \mu \nu \bar{\nu}$, $Z \to \ell \ell$ [Feruglio et al. '16]
	- \Rightarrow LHC direct and indirect bounds.

Scalar and vector **leptoquarks** are the **only viable candidates**

[[]Eboli. '88, Greljo et al. '15, Faroughy et al. '16]

Example: $U_1 = (3, 1, 2/3)$ [Angelescu, Becirevic, Faroughy, OS. '18] $\mathcal{L} = x_i^{ij} \bar{Q}_i \gamma_\mu U_i^{\mu} L_i + x_{\scriptscriptstyle D}^{ij} \bar{d}_{\scriptscriptstyle R i} \gamma_\mu U_i^{\mu} \ell_{\scriptscriptstyle R i} + \text{h.c.}$ $\bullet~b\rightarrow c\tau\bar{\nu}$ $\mathcal{L}_{\text{eff}} \supset -\frac{\left(x_L^{b\tau}\right)^*\left(Vx_L\right)^{c\tau}}{m_{\tau\tau}^2}(\bar{c}_L\gamma^\mu b_L)(\bar{\tau}_L\gamma_\mu\nu_L)$ $x_L = \left(\begin{array}{ccc} 0 & 0 & 0 \ 0 & x_L^{s\mu} & x_L^{s\tau} \ \alpha & x_b^{b\mu} & x_c^{b\tau} \end{array} \right)$ $\bullet~b \rightarrow s \mu \mu$ $\mathcal{L}_{\text{eff}} \supset -\frac{\left(x_L\right)^{s\mu} \left(x_L^{b\,\mu}\right)^*}{m_{\tau\tau}^2} (\bar{s}_L \gamma^\mu b_L) (\bar{\mu}_L \gamma_\mu \mu_L)$

• Other observables: $\tau \to \mu \phi$, $B \to \tau \bar{\nu}$, $D_{(s)} \to \mu \bar{\nu}$, $D_s \to \tau \bar{\nu}$, $K \to \mu \bar{\nu}/K \to e \bar{\nu}, \tau \to K \bar{\nu}$ and $B \to D^{(*)} \mu \bar{\nu}/B \to D^{(*)} e \bar{\nu}$. UV completion: $U_1 = (3, 1, 2/3)$

Pati-salam unification:

[Pati, Salam. '74]

- $\mathcal{G}_{\text{PS}} = SU(4) \times SU(2)_L \times SU(2)_R$ contains U_1 as gauge boson.
- Main difficulty: flavor universal $\Rightarrow m_{U_1} \gtrsim 100$ TeV from FCNC.

Viable scenario for B-anomalies:

[Di Luzio et al. '17]

- \bullet $SU(4) \times SU(3)' \times SU(2)_L \times U(1)' \rightarrow \mathcal{G}_{\text{SM}} = SU(3)_c \times SU(2)_L \times U(1)_Y$
- Flavor violation from (ad-hoc) mixing with vector-like fermions.
- Main feature: $U_1+Z'+g'$ at the TeV scale.

Rich LHC pheno, cf. [Baker et al. '19], [Di Luzio et al. '18]

Step beyond: $[PS]^3 = [SU(4) \times SU(2)_L \times SU(2)_R]^3$

[Bordone et al. '17]

- \bullet Hierarchical LQ couplings fixed by symmetry breaking pattern.
- Explanation of fermion masses and mixing (flavor puzzle)!

B-decays with missing energy

● **Clean observable** in the SM:

$$
\mathcal{B}(B^+ \to K^+ \nu \bar{\nu})^{\rm SM} = 4.6(5) \times 10^{-6}
$$

[Blake et al. 1606.00916]

- Models for the **B-anomalies predict sizable deviations** from SM.
- **Unique access** to operators with T-leptons; i.e. $L_3 = (\nu_{\tau L}, \tau_L)^T$.

e.g. [Becirevic et al. '18]

Promising results from early **Belle-II data**!

Scalar LQs for $(g-2)_{\mu}$

• LQs should couple to $\bar{\mu}_L q_R S$ and $\bar{\mu}_R q_L S$:

[Cheung. '01], [Crivellin et al. '20], [Dorsner,Fajfer, **OS**. '19]

 \Rightarrow Two viable candidates $(R_2 \text{ and } S_1)$, but *not the ones needed for* $R_{K^{(*)}}$.

 \Rightarrow Connection to $R_{D^{(*)}}$ is difficult due to LFV bounds: $\tau \rightarrow \mu \gamma$.

See [Gherardi et al., '20] for the best attempt so far; tuning needed to avoid LFV bounds, tension with Δm_{B_s} (?).

Minimal solutions to **B-physics anomalies** and **muon g-2 do not point** to the **same interactions**. Possible in next-to-minimal scenarios (many papers...)