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Part I

The Tautochrone curve
There is a particularly interesting curve, first studied by Christian Huygens in 1673, on which a
material point of mass m subject to a uniform gravitational field of acceleration g, and moving
with no friction and no initial velocity, can arrive at a destination point in a time ∆t which is
independent of the initial position. It is called the Tautochrone curve from the ancient Greek
’tauto’ which means the same, and ’chronos’ which means the time.

In this problem, we propose to establish the form of this curve in a two dimensional frame-
work.

1 The Brachistochrone curve differential equation

As a first step, we propose to establish the differential equation and the solution for the curve
that minimizes the travel time in the set-up above-mentioned; it is called the Brachistochrone
curve, from ’brachi’ the least in ancient Greek.

xf

yi

Figure 1: Different curves connecting the initial point of altitude yi to the destination point xf .
The Brachistochrone curve in green minimizes the time travel.

1.1 [0.75 points] Define the infinitesimal distance noted ds as a function of the derivative
y′(x), with y and x the position variables; y corresponds to the height of the material point.

Solution: If one considers the infinitesimal quantities dx and dy respectively for the variable
of the plane x and y, via Pythagoras’s theorem, the infinitesimal element of distance is defined
as:

ds2 = dx2 + dy2.

Moreover, the definition of the derivative y′(x):

dy = y′(x)dx,

leads to:
ds =

√
1 + y′2(x)dx.

1.2 [1.25 points] Using the conservation of mechanical energy, express the travel time:

∆t =
∫ xf

xi

√
1 + y′2(x)

2g(yi − y(x))dx, (1)

with yi the initial vertical position of the point, xi its initial horizontal position and xf its final
final horizontal position.

Solution: The conservation of mechanical energy Em:

Ei
m − Ef

m = 0

↔ mgyi = 1
2mv

2
f +mgyf

↔ vf =
√

2g(yi − yf ),
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with vi and vf respectively the initial and final velocity of the material point of mass m subject
to the uniform gravitational acceleration g.

By definition, the velocity is:
v = ds

dt
, (2)

such that:

∆t =
∫ t

0
dt =

∫ t

0

ds

v
=
∫ xf

xi

√
1 + y′2(x)

2g(yi − y(x))dx (3)

1.3 [0.75 points] Let there be a functional:

S(y, y′) =
∫ xf

xi

F
(
y(x), y′(x), x

)
dx, (4)

show that extremalising this functional S, i.e. imposing that δS(y, δy) = 0, is equivalent to the
Euler-Lagrange formula:

∂F
∂y

− d
dx

∂F
∂y′ = 0, (5)

if the variation δy vanishes at xi and xf .
Solution: The variation principle is used:

δS = 0 ↔
∫
δF(y, y′, x)dx = 0 ↔

∫ (
∂F
∂y

δy + ∂F
∂y′ δy

′
)
dx = 0

Let us note that the term ∂F
∂x δx is not considered here because the variational principle by

definition considers variation of the function y, and not its variable x. It is usual to encounter
the Euler-Lagrange equations with the time variable t instead of x, including the term ∂F

∂x δx
would mean considering the time contracting or dilating.

One can write:
d

dx

(
∂F
∂y′ δy

)
= d

dx

∂F
∂y′ δy + ∂F

∂y′ δy
′,

therefore: ∫ [
∂F
∂y

δy + d

dx

(
∂F
∂y′ δy

)
− d

dx

∂F
∂y′ δy

]
dx

Considering a vanishing δy on the borders xi and xf :∫ xf

xi

d

dx

∂F
∂y′ δydx =

[
∂F
∂y′ δy

]xf

xi

= 0

↔ ∂F
∂y

− d

dx

∂F
∂y′ = 0

1.4 [0.75 points] Assuming that F does not depend explicitly on x, i.e. F = F(y, y′), show
that the Beltrami formula:

F − y′(x)∂F
∂y′ = C̃, (6)

with C̃ a constant, implies the Euler-Lagrange formula (5).
Solution: The constant in the Beltrami formula is equivalent to a null derivative of eq. (6):

d

dx

(
F − y′(x)∂F

∂y′

)
= dF(y, y′)

dx
− dy′(x)

dx

∂F
∂y′ − y′(x) d

dx

∂F
∂y′

= ∂F
∂y

y′(x) + ∂F
∂y′ y

′′(x) − y′′(x)∂F
∂y′ − y′(x) d

dx

∂F
∂y′

= y′(x)
(
∂F
∂y

− d

dx

∂F
∂y′

)
= 0,

the Euler-Lagrange formula appears in the last line.
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1.5 [1.5 points] Show that extremalising the travel time ∆t gives the differential equation for
the profile y(x):

(yi − y(x))(1 + y′2(x)) = C, (7)

with C a constant.
Solution: Let us minimise ∆t using the Beltrami formula, in which F =

√
1+y′2(x)

2g(yi−y(x)) . The
derivative with regards to y′ gives:

∂

∂y′

(√ 1 + y′2(x)
2g(yi − y(x))

)
= y′(x)√

2g(yi − y(x))
1√

1 + y′2(x)
. (8)

In the Beltrami formula:√
1 + y′2(x)
2g(yi − y) − y′(x)√

2g(yi − y)
y′(x)√

1 + y′2(x)
= C̃

↔ 1√
2g(yi − y)

= C̃
√

1 + y′2(x)

↔ C̃ = 1√
2g(yi − y)(1 + y′2(x))

↔ (yi − y(x))(1 + y′2(x)) = C,

with C and C̃ some constants.

2 Parametrized solution

The solution to eq. (7) is best established using the ’angular’ variable1 θ, with the parametriza-
tion:

y′(x) = 1
tan(θ/2) . (9)

2.1 [1.75 points] Establish that the differential equation eq. (7) has the cycloid solution:{
y(θ) = k

2
(
Cy − cos(θ)

)
x(θ) = k

2
(
θ − sin(θ) + Cx

) , (10)

with Cx, Cy and k constants.
Help: Some trigonometry formulas are needed, one of which is:

sin(x) = 2 tan(x/2)
1 + tan2(x/2)

(11)

Solution: Let us set yi = 0, such that the differential equation falls to:

C = (yi − y(x))
(
1 + 1

tan2(θ/2)

)
= (yi − y(x)) 1

tan2(θ/2)
sin2(θ/2) + cos2(θ/2)

cos2(θ/2) = yi − y(x)
sin2(θ/2)

.

We use the trigonometry formula:

sin2(x) = 1 − cos(2x)
2 , (12)

to write:

yi − y(x) = C

2
(
1 − cos(θ)

)
y(x) = −C

2
(2yi

C
+ 1 − cos(θ)

)
,

1The new variable θ has nothing to do with the angular variable of polar coordinates.
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We note the constant Cy = 2yi
C + 1 and k = −C such that:

y(θ) = k

2
(
Cy − cos(θ)

)
Now let us care for the variable x, by definition of the the derivation y′(x):

dx = tan(θ/2)dy = tan(θ/2)dy
dθ
dθ = k

2 tan(θ/2) sin(θ)dθ.

Using the trigonometry formula (11) and (12):

x(θ) = k

2

∫ (
1 − cos(θ)

)
dθ = k

2
(
θ − sin(θ) + Cx

)
2.2 [0.5 points] Explain why constants Cy and Cx can respectively be set to 1 and 0?

Solution: If one sets the following condition:

x(θ = 0) = y(θ) = 0,

then immediately Cx = 0 and Cy = 1.

3 The Tautochrone solution

Finally, let us prove that the cycloid solution to the Brachistochrone curve, is also Tautochrone.

3.1 [1.5 points] What is the differential equation the distance s must follow according to
conservation of mechanical energy ?
Help: The parametrisation with the variable θ should be used.

Solution: Let’s recall that ds2 = dx2 + dy2. With the θ parametrisation, one can write:

dx = k

2
(
1 + cos(θ)

)
dθ

dy = k

2 sin(θ)dθ

ds2 = 2
(
k

2

)2(
1 + cos(θ)

)
.

Another trigonometry formula is used

cos2(x) = 1 + cos(2x)
2 , (13)

such that the integration is simplified:

ds = k cos(θ/2)dθ
s(θ) = 2k

(
sin(θ/2) + Cs

)
,

with Cs easily set to 0. According to the conservation of mechanical energy:

dEm

dt
= d

dt

(
m

2

(
ds

dt

)2
+mgy

)
= d

dt

(1
2

(
ds

dt

)2
+ g

k

2
(
1 − cos(θ)

))
= 0

Using the definition of s(θ):

1 − cos(θ) = 2 sin2(θ/2) = s2(θ)
2k2 , (14)

one can write the differential equation of s:

d

dt

((
ds

dt

)2
+ g

s2

2k
))

= d2s

dt2
+ g

2ks = 0 (15)
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3.2 [0.75 points] Find the solution to this equation, assuming that x and y follow a cycloid.
Solution: The cycloid is exactly the parametrisation by the variable θ that leads to the values

of x(θ) and y(θ). Let us find a solution to the differential equation of s that has been established
with the cycloid parametrisation. Typical solution for such forms is:

s = A cos
(√

g

2k t+ ϕ

)
.

The initial (t = 0) distance is noted s0 and there is no initial velocity, such that:

s(t) = s0 cos
(√

g

2k t
)
.

3.3 [0.5 points] Conclude on the Tautochrone nature of the Brachistochrone curve.
Solution: A Tautochrone curve simply means that whatever the distance s you are on the

curve at a starting time t = 0, you will arrive at the destination point at the same time. If we
note s0 the original point and s = 0 the destination point, solving s(t) = 0 implies a travelling
time ∆t = π

√
k√

2g
. This travelling time is absolutely independent of the initial distance s0.
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Part II

Fluid mechanics at the scale of stars
1 Introduction

The theory of hydrodynamics is surprising for its wide range of applications from the behaviour
of most everyday fluids, water in a river or gas in a ventilation shaft for example, all the way to
fluids at astrophysical and cosmological scales, such as the flow of gas around a galaxy or the
distribution of dark matter along the cosmic web. Here we will study simple models for stars
and how they are believed to form within the context of ideal hydrodynamics. As such we recall
the continuity equation,

∂ρ

∂t
+ ∇ · (ρv) = 0, (16)

relating the density, ρ, to the velocity field, v. And the Euler equation

∂v

∂t
+ (v · ∇)v = −1

ρ
∇P − ∇ϕ, (17)

in the presence of pressure P and a gravitational potential ϕ, the latter being described by the
Poisson equation

∇2ϕ = 4πGρ (18)

with G Newton’s gravitational constant. This problem is structured in two separate and inde-
pendent parts.

2 Hydrostatic stars of the 19th century

An early model for stellar atmospheres considered the latter to be isotropic spheres of gas in
hydrostatic equilibrium. Here we will study the density profile produced by this model.

2.1 [0.5 points] Assuming hydrostatic equilibrium, show that the Euler equation can be
rewritten in the form

1
ρ

∇P = −∇ϕ (19)

Solution: Two assumptions are acceptable to arrive at the result. Either v = 0, from which
finding the result is trivial. Or more formally using the Lagrangian formulation of hydrostatic
equilibrium,

Dv

Dt = ∂tv + (v · ∇)v = 0,

then injecting into the Euler equation gives you the desired result.

2.2 [1 point] Assuming spherical symmetry, rewrite this expression as a relation between
P, ρ and r such that:

1
r2

∂

∂r

(
r2

ρ

∂P

∂r

)
= −4πGρ (20)

We recall the expression for the Laplacian in spherical coordinates:

∇2f = 1
r2

∂

∂r

(
r2∂f

∂r

)
+ 1
r2 sin θ

∂

∂θ

(
sin θ∂f

∂θ

)
+ 1
r2 sin2 θ

∂2f

∂φ2 (21)

Solution: This one is a bit of a trap. Indeed if you just take the divergence of Eq. (19)
you’ll be in for a rough time to find the answer. The simplest way is by explicitly writing the
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gradient. As we have assumed spherical symmetry the only non zero component is along r̂. The
solution can be found simply by constructing the expression for the Laplacian around it.

1
ρ
∂rP = −∂rϕ

r2

ρ
∂rP = −r2∂rϕ

∂r
r2

ρ
∂rP = −∂rr

2∂rϕ

1
r2∂r

r2

ρ
∂rP = − 1

r2∂rr
2∂rϕ = −∇2ϕ = −4πGρ

2.3 [2 points] Assuming a barotropic equation of state for the gas, P = Kργ and dimension-
less variables, ρ(r) = ρc(Dn(r))n and r = λnξ such that γ = 1 + 1

n . Show that Eq. (20) takes
the form of the dimensionless Lane-Emden equation,

1
ξ2

∂

∂ξ

(
ξ2∂Dn

∂ξ

)
= − (Dn(ξ))n , (22)

for a certain choice of λn.
Solution: We can rewrite Eq. (20) as:

1
r2

∂

∂r

(
r2

ρ

∂P

∂r

)
= −4πGρ

1
r2

∂

∂r

(
r2

ρ

∂Kργ

∂r

)
= −4πGρ

1
r2

∂

∂r

(
r2

ρ
Kγργ−1∂ρ

∂r

)
= −4πGρ

Kγ

r2
∂

∂r

(
r2ργ−2∂ρ

∂r

)
= −4πGρ

We now insert γ = 1 + 1
n = n+1

n(
n+ 1
n

)
K

r2
∂

∂r

(
r2ρ

1−n
n
∂ρ

∂r

)
= −4πGρ

We can then write this equation in terms of the dimensionless quantities.

ρ(r) = ρc(Dn(r))n and r = λnξ

This lead to the following(
n+ 1
n

)
K

λ2
nξ

2
1
λn

∂

∂ξ

(
λ2

nξ
2ρ

1−n
n

c (Dn(ξ))1−n ρcn (Dn(ξ))n−1 1
λn

∂Dn

∂ξ

)
= −4πGρc (Dn)n

Which can be simplified to Eq. (22)

(n+ 1)Kρ
1−n

n
c

4πGλ2
n

× 1
ξ2

∂

∂ξ

(
ξ2∂Dn

∂ξ

)
= − (Dn(ξ))n

We can choose λn such as:

(n+ 1)Kρ
1−n

n
c

4πGλ2
n

= 1 ⇐⇒ λn =

√√√√(n+ 1)Kρ
1−n

n
c

4πG

And so we obtain
1
ξ2

∂

∂ξ

(
ξ2∂Dn

∂ξ

)
= − (Dn(ξ))n

This is the dimensionless Lane-Emden equation.
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2.4 [1.5 points] Derive the solution for n = 0 imposing that D0(0) = 1 and ∂D0
∂ξ = 0 for

ξ = 0. Do not worry about the 1
n as this is simply a mathematical curiosity. Indeed this equation

admits only three known analytical solutions for n = 0, n = 1 and n = 5.
Solution: This equation only has 3 analytical solutions each corresponding to different values

of n, these solutions exist for n=0, n=1, n=5. We will derive the solution for n=0.

1
ξ2

∂

∂ξ

(
ξ2∂D0

∂ξ

)
= −1

∂

∂ξ

(
ξ2∂D0

∂ξ

)
= −ξ2

ξ2∂D0
∂ξ

= −1
3ξ

3 + C1

∂D0
∂ξ

= −1
3ξ + C1

ξ2

imposing that ∂Dn
∂ξ = 0 for ξ = 0 we deduce that C1 = 0 and so we can integrate to obtain the

solution.
D0 = C2 − 1

6ξ
2

and now imposing D0(0) = 1 we deduce C2 = 1 we obtain.

D0(ξ) = 1 − 1
6ξ

2

This is in fact one of only three analytical solution of the Lane-Emden equation. The other two
solutions are for n=1 and n=5.

D1(ξ) = sin(ξ)
ξ

D5(ξ) =
(

1 + ξ2

3

)−1/2

3 Stellar formation

In this second part of the problem we will study a simple model for the formation of stars. To
do so we will study the evolution of a small perturbation around the hydrostatic solution. As
such we will start by liniarizing Eq. (16) and (17). To do so introduce first order perturbation
terms such that,

ρ(x, t) = ρ0 + ρ1(x, t)
v(x, t) = v1(x, t)
P (x, t) = P1(x, t)
ϕ(x, t) = ϕ1(x, t)

with ∇2ϕ1 = 4πGρ1.

3.1 [1 point] Show that the linearized fluid equations take the form.

∂ρ1
∂t

+ ρ0∇ · v1 = 0 (23)

ρ0
∂v1
∂t

= −∇P1 − ρ0∇ϕ1 (24)

Solution: This simply a matter of plugging in and eliminating second order terms and
hydrostatic terms

∂t(��ρ0 + ρ1) + ∇ · ([ρ0 +��>
2nd

ρ1]v1) = 0
∂tρ1 + ∇ · (ρ0v1) = 0
∂tρ1 + ρ0∇ · (v1) = 0

9



for the first, and

∂tv1 +������:2nd
(v1 · ∇)v1 = − 1

ρ0 + ρ1∇P1 − ∇ϕ1

(ρ0 +��>
2nd

ρ1)∂tv1 = −∇P1 − (ρ0 +��>
2nd

ρ1)∇ϕ1

ρ0∂tv1 = −∇P1 − ρ0∇ϕ1

3.2 [2 points] Introducing the sound speed c2
s := dP

dρ such that P1 = c2
sρ1 show that the

previously derived result can be rewritten as.

∂2ρ1
∂t2

− c2
s∇2ρ1 − 4πGρ0ρ1 = 0 (25)

Solution: Starting from Eq. (24) we can write

ρ0
∂v1
∂t

= −∇P1 − ρ0∇ϕ1

ρ0
∂v1
∂t

= −c2
s∇ρ1 − ρ0∇ϕ1

then taking the divergence of this equation we obtain

ρ0∇ · ∂tv1 = −c2
s∇2ρ1 − ρ0∇2ϕ1

Taking the time derivative of Eq. (23)

∂2
t ρ1 + ρ0∂t∇ · v1 = 0

such that we can isolate
ρ0∇ · ∂tv1 = −∂2

t ρ1

and insert into the previous result to obtain

∂2
t ρ1 − c2

s∇2ρ1 − ρ0∇2ϕ1 = 0,

finally inserting the Poisson equation to obtain the final result

∂2
t ρ1 − c2

s∇2ρ1 − 4πGρ0ρ1 = 0.

3.3 [1.5 points] Using the Anzatz ρ1 = A exp[i(k · x − ωt)] recover a dispersion relation of
the form

ω2 = c2
s(k2 − k2

J) (26)

and give the expression of k2
J . What happens if k2 < k2

J?
Solution: The Anzatz allows to replace ∂2

t → −ω2 and ∇2 → −k2. From this obtaining the
relation is trivial. As a result one obtains,

k2
J = 4πGρ0

c2
s

.

What can be observed in the case where k2 < k2
J is that ω becomes imaginary this in turn means

that the perturbation is a linear combination of two modes one that decreases exponentially and
one that grows exponentially. With time the growing mode will always superseded the decreasing
mode.

3.4 [0.5 points] Defining λJ = 2π
kJ

, known as the Jeans length and MJ = 4π
3 ρ0λ

3
J , known as

the Jeans Mass. Give a physical interpretation as to the future of a perturbation with mass
M > MJ and M < MJ .

Solution: The result can be interpreted as follows if the perturbation is more massive that
the Jeans mass it will undergo gravitational collapse. On the other hand if the perturbation is
smaller the collapse will be halted by the internal pressure of the gas and the perturbation is
dissipated in the form of sound waves.
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Part III

The origin of cosmological structures
1 Introduction

Cosmology is an observational science rather than an experimental one. There is no way we can
run the history of the universe several times. In the end, all we can do is observe the universe
as it is today and infer its evolution. The astonishing beauty of modern cosmology is that the
large scale structures that we see around us – like galaxy clusters – are not randomly distributed
but exhibit specific patterns: we say they are correlated. This is all the more remarkable as one
can learn a lot from these correlations, and reconstruct the history of the universe, leading to
the ΛCDM Standard Model of Cosmology. However, there is still a legitimate question to ask:

Where do these correlations come from in the first place, and how were they generated?

In this problem, we will see that these correlations were generated during an earlier phase of
accelerated expansion just after the so-called Big Bang called inflation.

Knowledge of general relativity and quantum field theory is not required to solve the fol-
lowing problem.

2 Phase of accelerated expansion

A fundamental hypothesis of modern Cosmology is that the Universe is spatially homogeneous
and isotropic on large scales. In simple words, it means that there is no ”center of the universe”
nor a preferred direction in the sky. Mathematically, it means that the entire universe can be
described by a single function of time called the scale factor : a(t). One can see the scale factor
as the ”size of the universe”. If the scale factor is an increasing function of time ȧ > 0 (a dot
means derivative with respect to time), then the universe is expanding. The evolution of a(t) is
governed by the universe content through the Friedmann equations

H2 = 1
3M2

pl
ρ, Ḣ +H2 = − 1

6M2
pl

(ρ+ 3p), (27)

where H = ȧ/a is the Hubble parameter, Mpl = 1/
√

8πG is the Planck mass, ρ and p are the
energy density and pressure of some matter/energy content2. Let us assume now a phase of
accelerated expansion that we name inflation such that ä > 0.

Question 1. [1 point] Show that inflation is necessarily driven by a matter/energy content
with negative pressure.

Solution: Let us examine the time derivative of the Hubble parameter. We have

Ḣ = d
dt

(
ȧ

a

)
= äa− ȧ2

a2 = ä

a
−H2.

Substituting this expression in the second Friedmann equation, we obtain

ä

a
= − 1

6M2
pl

(ρ+ 3p).

Inflation occurs when ä > 1. Because the scale factor is always positive, we then have

ρ+ 3p < 0 ⇔ p

ρ
< −1/3.

The energy density being always positive, we see that successful inflation requires a negative
pressure.

2It can be baryons, dark energy, photons, neutrinos, etc.
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Let us now consider a scalar field ϕ(t) that we call the inflaton. Its evolution is described by
the Klein-Gordon equation

ϕ̈+ 3Hϕ̇+ V ′ = 0, (28)

where V (ϕ) is for now an arbitrary potential, and V ′ = dV
dϕ . The energy density and pressure of

this scalar field are

ρ = 1
2 ϕ̇+ V (ϕ), p = 1

2 ϕ̇− V (ϕ). (29)

Question 2. [0.5 point] Show that when the inflaton potential dominates over its kinetic
energy, the field ϕ can cause the universe acceleration.

Solution: Using the formulae for the energy density and the pressure of a scalar field, we
have

p

ρ
=

1
2 ϕ̇

2 − V (ϕ)
1
2 ϕ̇

2 + V (ϕ)
. (30)

When the potential dominates over the kinetic energy of the inflaton V (ϕ) ≫ 1
2 ϕ̇

2, we have
p/ρ ≈ −1 < −1/3. Thus in a universe filled with a scalar field ϕ, inflation occurs when
the field’s energy is almost entirely contained in its potential. As a consequence, it has low
velocity. The picture is that the inflaton then slowly rolls down its potential, hence the slow-roll
approximation.

This limit is called the slow-roll approximation because the inflaton field then slowly rolls
down its potential. In the following, we define the slow-roll parameter ε = −Ḣ/H2 that mea-
sures the time variation of the Hubble parameter.

Question 3. [2 points] Show that inflation occurs when ε < 1. Under the slow-roll
approximation, show that one can write

ε ≈
M2

pl
2

(
V ′

V

)2
. (31)

Solution: By definition and using Eq. (2), we have

ε = − Ḣ

H2 = 1 − ä

aH
. (32)

Because inflation occurs when ä > 0, and both a and H are positive3, we then obtain ε < 1. In
order to prove Eq. (31), let us first start from the first Friedmann equation

H2 = 1
3M2

pl
ρ = 1

3M2
pl

[1
2 ϕ̇

2 + V (ϕ)
]
. (33)

We then derive this equation with respect to time, yielding

2ḢH = 1
3M2

pl
ϕ̇
[
ϕ̈+ V ′

]
. (34)

Using now the Klein-Gordon equation (28), we obtain

Ḣ = −1
2
ϕ̇2

M2
pl
. (35)

Under the slow-roll approximation V (ϕ) ≫ 1
2 ϕ̇

2, Eq. (33) can be written

H2 ≈ V (ϕ)
3M2

pl
. (36)

3During inflation the scale factor increases as a function of time so the Hubble parameter is positive.
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We note as well that for the slow-roll condition to hold, we need the acceleration of the scalar
field to be small. This simplifies the Klein-Gordon equation (28)

3Hϕ̇ ≈ −V ′. (37)

In the end using all the previous equations, we obtain

ε = − Ḣ

H2
(35)= ϕ̇2

2M2
plH

2
(36)
≈ 3

2
ϕ̇2

V

(37)
≈ 1

6
(V ′)2

V

1
H2

(36)
≈

M2
pl

2

(
V ′

V

)2
(38)

Question 4. [3 points] For a quadratic potential V (ϕ) = 1
2m

2ϕ2 and according to CMB
observations, show that we need to consider super-Planckian values for the inflation ϕCMB > Mpl.

Hint: Express the number of e-folds as an integral over the inflation field ϕ using the slow-
roll approximation.

Solution: It is useful to express the number of e-folds during inflation as an integral over
time

Ninflation = ln(af/ai) =
∫ af

ai

da
a

=
∫ tf

ti

H(t)dt. (39)

Under the slow-roll approximation, we have

Hdt = H

ϕ̇
dϕ

(37)
≈ −3H

V ′ Hdϕ
(36)
≈ − 1

M2
pl

(
V

V ′

)
dϕ ≈ − 1√

2ε
dϕ
Mpl

. (40)

So we then have
Ninflation ≈ −

∫ ϕf

ϕi

1√
2ε

dϕ
Mpl

> −
∫ ϕf

ϕCMB

1√
2ε

dϕ
Mpl

∼ 60 (41)

For a quadratic potential V (ϕ) = 1
2m

2ϕ2, ε ≈ M2
pl

2

(
V ′

V

)
= 2M2

pl
ϕ2 , so

Ninflation > −
∫ ϕf

ϕCMB

1√
2ε

dϕ
Mpl

= − 1
2M2

pl

∫ ϕf

ϕCMB
ϕ2dϕ = 1

4M2
pl

[
ϕ2

CMB − ϕ2
f

]
. (42)

At the end of inflation, the field reaches the minimum of its potential and we can neglect its
value ϕf ≈ 0 so that

Ninflation >
ϕ2

CMB
4Mpl2

∼ 60, (43)

and hence
ϕCMB ∼

√
4 × 60Mpl ∼ 15Mpl > Mpl, (44)

so that the inflaton has super-Planckian values.
This means that with cosmological observations, we can probe the laws of physics at the

highest possible energy, i.e. close to the Planck mass, which is far above the energies involved
in ground-based experiments such as that in the Large Hadron Collider!

3 Fluctuations during inflation

In the first part of the problem, we considered that the universe is perfectly homogeneous.
However, this is not exactly the case. When looking around us, we see for example galaxy
clusters. This means that we have to improve our previous description of the Universe by
considering small perturbations on top of a homogeneous background. This can be done by
writing:

ϕ(t) = ϕ̄(t) + δϕ(x, t), with δϕ ≪ ϕ̄, (45)

where ϕ̄ is the background homogeneous part of the inflation and δϕ is a space-varying small
perturbation. We are then interested in understanding the behaviour of δϕ. One can show –
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after tedious calculations that we are not going to do – that δϕ satisfies the Mukhanov-Sasaki
equation:

v′′
k +

(
k2 − z′′

z

)
vk = 0, where v = zH

δϕ

ϕ̇
and z = a

√
2εM2

pl; (46)

the prime denotes a derivative with respect to conformal time4 τ defined by dτ = dt/a, and we
have decomposed v(x, t) into Fourier modes:

vk(τ) =
∫

d3x e−ik.xv(τ,x). (47)

Question 5. [1 point] Show that when the Universe is expanding exponentially a(t) =
a0e

Ht with an approximately constant Hubble parameter H, we get z′′/z = 2/τ2.
Solution: Question 5. Let us assume a(t) = a0e

Ht with H approximately constant.
We first look for the scale factor as a function of conformal time a(τ). This can be done by
integrating the definition of conformal time

τ =
∫ dt
a0eHt

= − 1
aH

, (48)

after what we find a(τ) = −1/(Hτ). We note that in the strict H = constant limit, ε is zero
and that z′′/z is undefined. However, we H is approximately constant and so we will consider
that ε is in a good approximation constant but very small. In this case, we obtain that

z′′

z
= a′′

a
= 2
τ2 . (49)

Question 6. [0.5 point] Show that

vk(τ) = e−ikτ

√
2k

(
1 + i

kτ

)
, (50)

is a solution of the Mukhanov-Sasaki equation and that it satisfies5

Solution: One just needs to replace vk(τ) in the Mukhanov-Sasaki equation. The initial
condition is straighforwardly satisfied.

lim
τ→−∞

vk(τ) = e−ikτ

√
2k

. (51)

In actual measurements, the quantity δϕ is not directly observable. However, we can measure
the power spectrum of δϕ that we denote Pδϕ(k) such that

Pδϕ(k) = lim
kτ→0

δϕ δϕ⋆. (52)

Question 7. [2 points] Compute the primordial power spectrum Pδϕ(k).

Solution: Using the definition of the power spectrum, we have

Pδϕ(k) = lim
kτ→0

δϕ δϕ⋆

= ϕ̇2

z2H2 lim
kτ→0

vk(τ)vk(τ)⋆

= ϕ̇2

z2H2
1
2k lim

kτ→0

(
1 + 1

k2τ2

)
= ϕ̇2

4k3εMpl2

(53)

where in the last line we have used the definition of z and the fact that τ = −1/aH.
This power spectrum matches exactly with the CMB observations. In the end, we have

shown that all the large-scale structures – like galaxy clusters – come from fluctuations that
were generated during inflation – a phase of accelerated expansion in the early universe.

4The conformal time τ runs from −∞ to the end of inflation when τ = 0.
5This initial condition is called the Bunch-Davis vacuum.
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Figure 2: Reconstruction of the dimensionless primordial power spectrum PR(k) = k3

2π2PR(k)
where R = H δϕ

ϕ̇
using the Cosmic Microwave Background data by Planck 2018. This Figure

essentially tells us that the primordial power spectrum is almost scale-invariant PR ∼ constant
meaning that the primordial power is equally distributed over the various scales in the sky. This
fact is far from being trivial.

Part IV

Introduction to a quantum Szilárd engine
In 1929, Leo Szilárd, a Hungarian physicist, proposed an imaginary device now known as a
Szilárd engine, based on the concept of Maxwell’s demon. The engine consisted of a box coupled
to a thermal bath containing a single classical particle. A demon, knowing the position of the
particle, could insert a moveable barrier (which can move without friction like a piston) in the
box, separating the box into two smaller volumes, and keep the particle on one side of the
barrier. The isothermal expansion of the ideal gas composed of the single particle could then
result in the displacement of the barrier and be extracted as useful work (see Fig. 3). Thus it
was apparently possible using this machine to transform heat from an isothermal environment
into useful work, seemingly violating the Second law of Thermodynamics.

In this problem, we focus on a quantum model of a Szilárd engine, in which the particle is
described using quantum mechanics. In the following, we will focus on the description of the
different steps of a cycle of the engine.

1 Description of the initial state

The particle of mass m is prepared in a thermal state of a harmonic well. The Hamiltonian of
the initial state is:

Ĥi = p̂2

2m + 1
2mω

2q̂2, (54)

with q̂ and p̂ the position and momentum operators. We introduce |ψn⟩ the eigenstates of
an usual harmonic oscillator, and we recall the expression of the corresponding energies En =
(n + 1/2)ℏω, with n ∈ N. In the following, we introduce β = 1

kBT , with kB the Boltzmann
constant and T the temperature of the thermal bath.

1.1 [0.75 point] We recall that the partition function of a system can be calculated using
Z = Tr(e−βĤ), where Tr corresponds to the Trace operation. In our case, for an operator Â,
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Figure 3: Schematic diagram of Szilard’s heat engine. (a) Initially, the position of the molecule
is unknown. (b) Maxwell’s demon inserts a partition at the center and observes the molecule to
determine whether it is in the right- or the left-hand side of the partition. (c) Depending on the
outcome of the measurement, the demon connects a load to the partition. (d) The isothermal
expansion of the gas does work upon the load. Adapted from Maruyama et al., Rev. Mod.
Phys., 81, 2009.

the trace of this operator is given by:

Tr(Â) =
∞∑

n=0
⟨ψn|Â|ψn⟩. (55)

Show that the partition function Zi of the system can be expressed as:

Zi = 1
2 sinh(βℏω/2) (56)

Solution: Using the definition of the trace :

Zi = Tr(e−βĤi)

=
∞∑

n=0
⟨ψn|e−βĤi |ψn⟩

=
∞∑

n=0
e−βEn⟨ψn|ψn⟩

=
∞∑

n=0
e−βℏω(n+1/2)

= e−βℏω/2 1
1 − e−βℏω

After factorizing the denominator, we obtain the desired expression of Zi.

1.2 [1.5 points] Express the Helmholtz free energy Fi and the average energy Ei of the system.
Interpret the low-temperature limit and the high-temperature limit of the expression of Ei.

We indicate that these quantities can be calculated using the following expressions:

F = − 1
β

lnZ, (57a)

E = − 1
Z

dZ
dβ . (57b)
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Solution: Using the given formulae:

Fi = 1
β

ln
[
2 sinh

(
βℏω

2

)]
,

Ei = 1
2ℏω

1
tanh(βℏω/2) .

In the low-temperature limit (x = βℏω ≫ 1), 1
tanh x/2 = ex/2+e−x/2

ex/2−e−x/2 ≈ ex/2

ex/2 ≈ 1, thus Ei ≈ ℏω/2.
The particle settles in the ground state when we tend towards zero temperature.
In the high-temperature limit (x ≪ 1), 1

tanh x/2 ≈ 1+x/2+1−x/2
1+x/2−1+x/2 = 2

x , thus Ei ≈ 1/β = kBT . This
result is consistent with the equipartition theorem, since there are 2 degrees of freedom, which
each contribute an energy of kBT/2 in the classic high-temperature limit.

1.3 [1.5 points] Calculate the entropy Si of the system, using the following expression:

S = −dF
dT . (58)

Check that the entropy vanishes in the low-temperature limit and that in the high-temperature
limit, one obtains Si = kBln(kBT/ℏω).

Solution: Using the given formula:

Si = kB

[
βℏω

2
1

tanh(βℏω/2) − ln
(

2 sinh
(
βℏω

2

))]
.

We have studied in the previous question the behaviour of the first term of the expression of Si.
For the second term:

For x ≫ 1 ln(2 sinh(x/2)) ≈ ln(ex/2) = x/2
For x ≪ 1 ln(2 sinh(x/2)) ≈ ln(1 + x/2 − (1 − x/2)) = ln(x).

Thus in the low-temperature limit, Si → 0, and in the high-temperature limit,

Si ≈ kB(1 + ln(βℏω)) ≈ kBln(βℏω).

2 Insertion of the barrier

An infinitely thin potential barrier is inserted at q = 0. The Hamiltonian thus becomes:

Ĥbar(t) = p̂2

2m + 1
2mω

2q̂2 + α(t)δ(q̂), (59)

where α(t) gives the time-dependent strength of the barrier (modelled by a delta function),
which satisfies α(−∞) = 0 and α(+∞) = ∞.
We use an adiabatic approximation (|α̇/α| ≪ ω), ensuring that the system is in thermal equi-
librium with the thermal bath at every instant. Let |ψn(t)⟩ be the eigenstates of the system at
instant t, and En(t) be the corresponding energy.

2.1 [0.75 point] What should be the value of ⟨ψn|q̂|ψn⟩|t=+∞ (i.e. the probability density) for
q = 0? Comment on the effect of the barrier on the odd and the even eigenvectors (using Fig. 4).

Solution: Since the potential barrier will have a magnitude of ∞ for t = +∞, the wave-
funtions will drop to 0 for q = 0, thus ⟨ψn|q̂|ψn⟩(q = 0, t = +∞) = 0.
In a harmonic well, the odd-numbered eigenvectors have antisymetric associated wave functions,
and thus vanish for q = 0. Therefore the addition of the delta-function barrier does not affect the
eigenvectors, nor their associated energies. On the other hand, even-numbered eigenvectors will
be sensitive to the amplitude of the barrier, and so will their energy (as can be seen in Figure 4).
The presence of an infinite barrier forces the associated wavefunction to drop to 0, thus adding
a node in the wave function, just like the odd-numbered eigenvectors. We can understand then
why for t = +∞ the energies of the even-numbered eigenvectors tend towards the energies of the
odd-numbered eigenvectors.
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Figure 4: Evolution of the eigenenergies En(t) with α(t) for n odd (dashed lines) and even (solid
lines).

2.2 [1.5 points] In the end, for t = +∞, the spectrum of the system is that of a harmonic
oscillator of frequency 2ω, with the bottom of the well shifted up by ℏω/2 and with each energy
level with a degeneracy of 2. Show that

Z∞ = e−βℏω/2 1
sinh(βℏω) , (60)

where Z∞ is the partition function of the system at t = +∞, and compute the quantities F∞
and S∞, the Helmholtz free energy and the entropy of the system at t = +∞.
Solution: Using the definition of the trace :

Z∞ = Tr(e−βĤbar(∞))

=
∞∑

n=0
⟨ψn|e−βĤbar(∞)|ψn⟩(t = +∞)

=
∞∑

n=0
e−βEn(t=+∞)⟨ψn|ψn⟩(t = +∞)

=
∞∑

n=0
e−β(2ℏω(n+1/2)+ℏω/2) × 2

= 2e− 3
2 βℏω 1

1 − e−2βℏω

After factorizing the denominator, we obtain the desired expression of Z∞.
Using the formulae, we derive:

F∞ = 1
β

ln [sinh(βℏω)] + ℏω
2 ,

S∞ = kB

[
βℏω

1
tanh(βℏω) − ln(sinh(βℏω))

]
.
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2.3 [0.75 point] Show that F∞ − Fi > 0, i.e. that the demon has to provide energy to the
system with the insertion of the barrier. Solution: We compute

F∞ − Fi = 1
β

ln [sinh(βℏω)] + ℏω
2 − 1

β
ln
[
2 sinh

(
βℏω

2

)]
= ℏω

2 + 1
β

ln
[

1
2

eβℏω − e−βℏω

eβℏω/2 − eβℏω/2

]

= ℏω
2 + 1

β
ln
[1

2(eβℏω/2 + eβℏω/2)
]

= ℏω
2 + 1

β
ln(cosh(βℏω/2)).

Since ∀x ∈ R cosh(x) > 1, F∞ − Fi > 0.

3 Quantum measurement by the demon

Let us introduce the left and right eigenstates of the system:

|Ln⟩ = 1√
2

(|ψ2n⟩(∞) − |ψ2n+1⟩(∞)), (61a)

|Rn⟩ = 1√
2

(|ψ2n⟩(∞) + |ψ2n+1⟩(∞)), (61b)

and the projectors:

P̂L =
∞∑

n=0
|Ln⟩⟨Ln|, (62a)

P̂R =
∞∑

n=0
|Rn⟩⟨Rn|. (62b)

3.1 [0.75 point] Justify that states {|Ln⟩, |Rn⟩} correspond to eigenstates of the Hamiltonian
Hbar and give the energies associated to these states. Explain the denomination left and right
eigenstates.

Solution: We find that:

Ĥbar|Ln⟩ = Ĥbar
1√
2

(|ψ2n⟩(∞) − |ψ2n+1⟩(∞))

= 1√
2

(Ĥbar|ψ2n⟩(∞) − Ĥbar|ψ2n+1⟩(∞))

= 1√
2

(E2n(∞)|ψ2n⟩(∞) − E2n+1(∞)|ψ2n+1⟩(∞))

= E2n(∞) 1√
2

(|ψ2n⟩(∞) − |ψ2n+1⟩(∞)).

So |Ln⟩ is an eigenstate of Ĥbar with energy E2n = 2ℏω(2n+1/2)+ℏω/2. A similar justification
can be given for |Rn⟩.
|Ln⟩ and |Rn⟩ correspond to states where the particle is exclusively on the left or right side of
the barrier.

When the demon determines the position of the particle, it acts as a projective measurement
of P̂L and P̂R on the state of the particle. We recall that the partition function ZP after pro-
jection by projector P̂ can be calculated as ZP = Tr(P̂ e−βĤ).
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3.2 [1.5 points] Calculate the partition function ZL and ZR of the system after the particle
has been measured on the left or on the right side of the barrier and show that:

ZL = e−βℏω/2 1
2 sinh(βℏω) (63)

and compute FL, FR, SL and SR the associated free energy and entropy.

Solution: Using the definition of the trace :

ZL = Tr(P̂Le−βĤbar(∞))

=
∞∑

n=0
⟨ψn|P̂Le−βĤbar(∞)|ψn⟩(∞)

=
∞∑

n=0
⟨ψn|

∞∑
m=0

|Lm⟩⟨Lm|e−βĤbar(∞)|ψn⟩(∞)

=
∞∑

n=0
⟨ψ2n|

∞∑
m=0

|Lm⟩⟨Lm|e−βĤbar(∞)|ψ2n⟩(∞) +
∞∑

n=0
⟨ψ2n+1|

∞∑
m=0

|Lm⟩⟨Lm|e−βĤbar(∞)|ψ2n+1⟩(∞)

=
∞∑

n=0
e−βE2n(∞)⟨ψ2n|Ln⟩⟨Ln|ψ2n⟩(∞) +

∞∑
n=0

e−βE2n+1(∞)⟨ψ2n+1|Ln⟩⟨Ln|ψ2n+1⟩(∞)

= 1
2

∞∑
n=0

e−βE2n(∞) + 1
2

∞∑
n=0

e−βE2n+1(∞)

= 1
2

∞∑
n=0

e−βEn(∞)

= Z∞
2

= e− 3
2 βℏω 1

1 − e−2βℏω

We could save some time by realizing that in the basis {|Ln⟩, |Rn⟩}, the matrix e−βĤbar(∞) can
be written in the same way as in the basis {|ψn⟩(∞)} (given the degeneracy of levels |ψ2n⟩(∞)
and |ψ2n+1⟩(∞)). Therefore the trace of P̂Le−βĤbar(∞) corresponds to the sum of the matrix
elements corresponding to |Ln⟩ states which account for exactly half of the eigenstates. In the
end, ZL = ZR = Z∞/2.
We obtain directly from the results of the previous section:

FL = FR = 1
β

ln [sinh(βℏω)] + ℏω
2 − 1

β
ln(2),

SL = SR = kB

[
βℏω

1
tanh(βℏω) − ln(sinh(βℏω))

]
− kBln(2).

3.3 [1 point] Show that the entropy of the system decreases exactly by |∆S| = kBln(2) after
the collapse of the wave function, and that the free energy of the system increased by a quantity
kBT ln(2). Interpret the value of ∆S given Boltzmann’s formula S = kBln(Ω), where Ω can be
interpreted as the number of microstates (i.e. possible configurations of the system) associated
to a macrostate of the system.

Solution: We obtain directly that SL −S∞ = −kBln(2). This corresponds to the decrease
of the entropy of the system by 1 bit of information. Using Boltzmann’s formula, one sees that
the number of possible states has been divided by 2 (before measurement, the particle was either
in the left of the right side, while after measurement, the particle can only be in one of the sides),
giving the value of ∆S obtained.
Calculating FL − F∞ gives directly the awaited result. This surplus of energy can be extracted
as useful work by the demon. After the projection of the quantum system onto one of the sides,
one can prove that the barrier is subject to a force oriented towards the opposite side, which
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can be extracted as useful work. The demon seems to extract work from the heat bath, the
Szilárd machine thus acting as a monothermal heat machine (forbidden by the Second law of
thermodynamics)!

In order to solve this problem, we would have to actually take into account the demon in the
description of the system. One can show that a demon cannot operate the machine for more
than one cycle, unless the demon is “reset” (which would then require at least as much free
energy as the amount extracted during one cycle of the machine).
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