Icecube

and the emergence of high-energy neutrino astronomy

Christian Spiering, Marseille, June 6, 2021

1. Scientific motivation

The cosmic ray spectrum

The cosmic ray spectrum

10^{20/21} eV

blazar

Charged cosmic rays vs. gamma rays vs. neutrinos

Gamma-Ray Generation

$p + target \rightarrow \pi^0 + \dots$ $\rightarrow \gamma + \gamma$ but also $e^{-} + \gamma_{low energy} \rightarrow e^{-} + \gamma_{high energy}$

(inverse Compton process)

Neutrino Generation

$p + target \rightarrow \pi^{+} +$ $\rightarrow \mu^{+} + \nu_{\mu}$ $\rightarrow e^{+} + \nu_{e} + \overline{\nu}_{\mu}$

This is the water-tight way to identify hadron accelerators !

Physics with neutrino telescopes

- Search for the sources of high-energy cosmic rays
- Dark Matter and Exotic Physics
 - WIMPs
 - Magnetic Monopoles and other superheavies
 - Violation of Lorentz invariance
- Neutrino and Particle Physics
 - Neutrino oscillations
 - Charm physics
 - Cross sections at highest energies
- Supernova Collapse Physics
 - MeV neutrinos in bursts → early SN phase, neutrino hierarchy, ...
- Cosmic Ray Physics
 - Spectrum, composition and anisotropies

2. Operational principles

Detection deep under-ground/-water/-ice

Detection deep underwater

Moisej Markov, **1960**:

"We propose to install detectors deep in a lake or in the sea and to determine the direction of charged particles with the help of Cherenkov radiation" Proc. 1960 ICHEP, Rochester, p. 578.

v_{μ} charged current event

 V_{μ}

μ

Two Detection Modes: tracks and cascades

$$\mathbf{v}_{\mu} + \mathbf{A} \rightarrow \mu + \dots$$

- Angular resolution < 1°</p>
- Energy resolution ~ factor 3

$$v_{e,\tau} \rightarrow e, \tau + ...$$

- $\nu_{\rm X} \rightarrow \nu_{\rm X} + \dots$
 - Angular resolution 2° 10°
 - Energy resolution ~ 15%

Two Detection Modes

$$\mathbf{v}_{\mu} + \mathbf{A} \rightarrow \mu + \dots$$

- Angular resolution < 1°</p>
- Energy resolution ~ factor 3

- $v_{e,\tau} \rightarrow e, \tau + \dots$
- $\nu_{\rm X} \rightarrow \nu_{\rm X} + \dots$
 - Angular resolution 2° 10°
 - Energy resolution ~ 15%

Some history

FIG. 9. The first DUMAND array: DUMAND G, the 1978 model. See text for details (Roberts and Wilkins, 1978).

Lake Baikal

A first textbook underwater neutrino event

DUMAND-II Terminated 1995

ANTARES

- 885 PMTs12 strings
- Operating in final configuration since 2008

450 m

70 m

CCL.

~ 9000 neutrino track events /10 years

2.5

4. IceCube Neutrino Observatory

The IceCube Collaboration

AUSTRALIA University of Adelaide

BELGIUM

Université libre de Bruxelles Universiteit Gent Vrije Universiteit Brussel

CANADA

SNOLAB University of Alberta-Edmonton

DENMARK

University of Copenhagen

GERMANY

Deutsches Elektronen-Synchrotron ECAP, Universität Erlangen-Nürnberg Humboldt-Universität zu Berlin Karlsruhe Institute of Technology Ruhr-Universität Bochum **RWTH Aachen University** Technische Universität Dortmund Technische Universität München Universität Mainz Universität Wuppertal Westfälische Wilhelms-Universität Münster

JAPAN Chiba University

NEW ZEALAND University of Canterbury

REPUBLIC OF KOREA Sungkyunkwan University

SWEDEN Stockholms universitet **Uppsala** universitet

SWITZERLAND Université de Genève

THE ICECUBE COLLABORATION

UNITED KINGDOM University of Oxford

UNITED STATES

Clark Atlanta University **Drexel University** Georgia Institute of Technology Harvard University Lawrence Berkeley National Lab Loyola University Chicago Marguette University Massachusetts Institute of Technology Mercer University Michigan State University **Ohio State University** Pennsylvania State University

South Dakota School of Mines and Technology Southern University and A&M College Stony Brook University University of Alabama University of Alaska Anchorage University of California, Berkeley University of California, Irvine University of California, Los Angeles University of Delaware University of Kansas

University of Maryland University of Rochester University of Texas at Arlington University of Wisconsin–Madison University of Wisconsin–River Falls **Yale University**

FUNDING AGENCIES

Fonds de la Recherche Scientifique (FRS-FNRS) Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Vlaanderen)

German Research Foundation (DFG) Deutsches Elektronen-Synchrotron (DESY)

Federal Ministry of Education and Research (BMBF) Japan Society for the Promotion of Science (JSPS) Knut and Alice Wallenberg Foundation Swedish Polar Research Secretariat

The Swedish Research Council (VR) University of Wisconsin Alumni Research Foundation (WARF) US National Science Foundation (NSF)

IceCube Neutrino Observatory

PHOTO BY CHARLIE KAMINSKI

IN ALL DRIVES

SOUTH POLE DEC 2, 2000

The Digital Optical Module (DOM)

Failure rate ~1 DOM/year

(out of 5160 !)

The IceCube Drilling Camp

- 5 MW Power - 16 m³ Kerosin per hole

18.Dec. 2010: the last string

 \bigcirc

0

IceCube Laboratory and Data Center

Generation-1 devices (0.002-0.02 km³)

Generation-2 devices (km³ scale)

5. Atmospheric neutrinos
Atmospheric neutrinos in IceCube (2 years)

Atmospheric neutrinos, IceCube + ANTARES

6. Cosmic neutrinos

The Discovery of a Diffuse Cosmic Neutrino Flux

Special search for neutrinos with $E_v > 500 \text{ TeV}$

IC79/IC86

2.8 σ

Follow-up Analysis: HESE (High Energy Starting Event)

4.1σ

5.9σ

~7σ

First evidence for an extra-terrestrial h.e. neutrino flux

Follow-up Analysis: HESE (High Energy Starting Event)

First evidence for an extra-terrestrial h.e. neutrino flux

Through-going muons, IC-79/86

The Astrophysical Neutrino Flux

Limits on the diffuse flux (2003)

Limits on the diffuse flux (2007)

Limits on the diffuse flux (2008)

Size of the diffuse flux (2013-18)

Galactic Neutrino Emission (quasi-diffuse)

Contribution of Galactic diffuse emission at 10TeV-PeV is subdominant.

Individual Sources and Source Classes

Skymap: significance map of v (North) and μ (South)

Skymap: significance map of v (North) and μ (South)

IceCube, 10 years

IceCube, 10 years

Some evidence for non-uniform skymap in 10 years of IceCube data (3.3σ) . Mostly resulting from 4 extragalactic source candidates.

No indications for galactic sources.

IceCube, 10 years

Some evidence for non-uniform skymap in 10 years of IceCube data (3.3σ) . Mostly resulting from 4 extragalactic source candidates.

No indications for galactic sources.

galaxy NGC 1068 (cross)

Source Classes: stacking searches

Source Classes: stacking searches

Source Classes: stacking searches

- Blazars → Cannot contribute with more than ~15 % to the diffuse flux (but: 3 promising candidates!)
- Radio-loud Blazars \rightarrow some (controversial) indications
- Gamma-loud Blazars \rightarrow upper limits
- Flat spectrum radio quasars (FSRQs) \rightarrow upper limits
- X-ray Active Galaxies \rightarrow upper limits
- Gamma Ray Bursts \rightarrow upper limits strongly constraining models

Multi-Messenger Results

Alerts to optical, radio and gamma-ray telescopes and to x-ray detectors on satellites

The first point source candidate

22. September 2017, 20:54 UTC

The first point source candidate

- 43 seconds later: first alarm with preliminary direction
- Sequence of refined reconstruction algorithms
- ~ 4 hours later: GCN Circular issued
- Only 0.1° off the position of the known γ-ray blazar
 TXS 0506+056.

Most probable energy of the neutrino ~290 TeV.

Broad multi-wavelength campaign

28. 9. Fermi-Satellite:
Source: Active Galaxy TXS 0505+056, which is in a flaring state

From 29.8. on MAGIC looks longer than the initial hour to TXS 05060+056 and observes it flaring with high significance

Follow-up Observations of IceCube Alert IC170922

Looking back to archival data

Science 361 (2018) 147

Strong evidence (but not yet an undisputable discovery, i.e. an effect of 5 standard deviations), that blazars, especially TXS 0506+056, belong to the sites of very-high-energy cosmic ray acceleration.

Impressive demonstration of the potential of multi-messenger observations

A Tidal Disruption Event

Stars are pulled apart by tidal forces in the vicinity of supermassive black holes. Accretion of stellar remnants powers plasma outflows.

stellar debris

black hole

High-energy IceCube alert in 2019 associated to radio-emitting TDE recorded by Zwicky Transient Facility and SWIFT.

Chance for random correlation: ~ 0.5%

(relativistic) plasma outflow

[Credit: DESY, Science Communication Lab]

7. Where do we stand and where do we go?

Summary of where we stand

Cosmic high-energy ν discovered

- Remaining uncertainties on spectrum and flavor composition
- Opened new window, but landscape not yet charted: no undisputable steady point sources identified up to now.
- Several interesting associations between IceCube neutrinos and astronomical sources. Need more data to turn "evidences" to "discoveries".
Summary of where we go

Cosmic high-energy ν discovered

- Remaining uncertainties on spectrum and flavor composition
- Opened new window, but landscape not yet charted: no undisputable steady point sources identified up to now.
- Several interesting associations between IceCube neutrinos and astronomical sources. Need more data to turn "evidences" to "discoveries".
- Need detectors on the northern hemisphere (galactic center!)
 with better angular resolution
 with different systematics
 of larger size

Summary of where we go

Cosmic high-energy ν discovered

- Remaining uncertainties on spectrum and flavor composition
- Opened new window, but landscape not yet charted: no undisputable steady point sources identified up to now.
- Several interesting associations between IceCube neutrinos and astronomical sources. Need more data to turn "evidences" to "discoveries".
- Work together:

GIGATON VOLUME DETECTOR BAIKAL GVD

$0.5 - 1.0 \text{ km}^3$

KN3NET

ARCA: 2 × 0.6 km³ ORCA: 3.7 Mtons

~ 8 km³ + 100 km² radio array

arXiv:2008.04323

IceCube Gen2: from GeV to EeV

10 PeV to >10 EeV

10 TeV – 50 PeV

100 GeV – 5 PeV

improves DeepCore
performance at < 10 GeV</pre>

IceCube Gen2: from GeV to EeV

Conclusions

- High-energy neutrino window is opened
- Extremely dynamical field
- Northern hemisphere: towards cubic kilometer detectors.
 Baikal-GVD, KM3NeT-ARCA,
- Soon later: IceCube towards 10 km³
- Mid 2020s and later: fill landscape of v sources with more and more entries. Close-in on cosmic ray sources ! (?)

VLVvT May 2021: A bet

4.How many Galactic and Extra-Galactic sources will have been detected by VLVnT 2031?

Mid 2020s and later:

fill landscape of v sources with more and more entries. Close-in on cosmic ray sources ! (?)

4.How many Galactic and Extra-Galactic sources will have been detected by VLVnT 2031?

Thank you for your attention!

Backups

DeepCore: Oscillations for atmopheric neutrinos (E < 30-40 GeV)

DeepCore: Oscillations for atmopheric neutrinos (E < 30-40 GeV)

The first candidate for the Glashow resonance

The first candidate for the Glashow resonance

Partially contained event with E = 6.3 PeV

Flavor composition

$$p + \text{target} \rightarrow \pi^{+} + \dots$$

$$\rightarrow \mu^{+} + \nu_{\mu}$$

$$\rightarrow e^{+} + \nu_{e} + \bar{\nu}_{\mu}$$

$$p + \text{target} \rightarrow \pi^+ + \dots \qquad \mathbf{0} : \mathbf{1} : \mathbf{0}$$
$$\rightarrow \mu^+ + \nu_{\mu}$$

$$n \rightarrow p + e^- + \bar{\nu}_e$$
 L:**U**:**U**

1

 v_e : v_μ : v_τ

1:2:0

Flavor composition

90

Flavor composition

Fraction of Ve

Double bang events from tau decays

First tau-neutrino candidate

Two candidate events in 7.5 years of data

Using neutrinos to measure σ_v at > TeV

IceCube Coll.: Measurement of the multi-TeV neutrino cross section with IceCube using Earth absorption Nature 551 (2017) 596 and arXiv:1711.08119

Using atmospheric neutrinos to measure σ_v at > TeV

IceCube Coll.: Measurement of the multi-TeV neutrino cross section with IceCube using Earth absorption Nature 551 (2017) 596 and arXiv:1711.08119

