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1 Preface

The 34th International Colloquium on Group Theoretical Methods in Physics (“Group 34” in
short) took place in Strasbourg, France, from June 18 to June 22, 2022. The ICGTMP Series,
which started in Marseille (France) in 1972, organized by H. Bacry and A. Janner, has devel-
oped since then to a regular meeting that reunites mathematicians and physicists sharing the
same research interests. In this context, Group 34 was a milestone, as the 50th anniversary
of the conference series was commemorated. In addition to the regular schedule, two special
ceremonies and some lectures on group theory for PhD students were included in the pro-
gram. After a four year interruption, the ICGTMP has been reactivated, with the novelty of
being organised in a hybrid modality, with both the plenary lectures and the parallel sessions
being accessible online.

The ICGTMP brings together physicists, mathematicians and other scientists working on
related disciplines, but primarily using techniques associated to “group theoretical and geo-
metric methods”. This Colloquium has been shown to be an optimal forum for researchers to
acquire knowledge on current developments as well as to be informed about applications to
other domains. Historical information about the Series and its evolution are at the disposal of
the public at the homepage of ICGTMP: https://icgtmp.blogs.uva.es/.

The conference was hosted by the University of Strasbourg, involving in the organisation
the various research institutes devoted to mathematics and physics, such as the Institut de
Physique et Chimie des Matériaux de Strasbourg (IPCMS), Institut Pluridisciplinaire Hubert
Curien (IPHC), Institut Charles Sadron (ICS) and Institut de Recherche Mathématique Avancée
(IRMA). The Group 34 Colloquium was located in different areas of Strasbourg University.
The plenary sessions and the In Memoriam ceremonies took place at the Faculté de droit (Law
School), while the parallel sessions, the two special ceremonies and the group theory lectures
took place at the Faculté de physique et ingénierie. In the first special ceremony, a conference
in French targeted to the general public was offered, while the second special ceremony, for
the participants of the conference, was held in the evening, just before the Award ceremony.
The conference in French, intended for a broad audience, was recorded, with the video being
publicly accessible on the conference’s website. The Wigner-Weyl and Hermann Weyl Prize
Award Ceremonies were organised by the Strasbourg City Hall in its historical location.

The Strasbourg University, located in the central European city of Strasbourg, has a long
tradition and experience in the organisation of scientific conferences. It should be mentioned
that both the sanitary and geopolitical situation prevented some of the regular participants
to attend this year, in spite of which the colloquium can be considered to have been very
successful, with more than one hundred and forty participants coming from twenty-four dif-
ferent countries from Europe, Asia, Australia, North and South America, as well as Africa. All
the inhabited continents were thus represented, which shows the importance of the scientific
topics covered and the worldwide reputation that this series has gained among specialists.
It should not remain unmentioned that the success of the colloquium was made possible by
the grants offered by various international institutions, that we acknowledge in the following:
International Association of Mathematical Physics (IAMP); International Union of Pure and
Applied Physics (IUPAP); Multidisciplinary Digital Publishing Institute (Open Access Journal
Symmetry); Theoretical Physics Institute, University of Alberta, Canada, as well as by grants
of French Institutions: Doctoral School of Physics and Chemical Physics (ED182, Unistra);
Quantum Science and Nanomaterials (QMat, Unistra); Institut de Physique et de Chimie des
Matériaux de Strasbourg (IPCMS, Unistra); Institut Pluridisciplinaire Hubert Curien (IPHC,
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Unistra); Institut de Recherche Mathématique Avancée (IRMA, Unistra); Institut National de
Physique Nucléaire et de Physique des Particules (IN2P3, CNRS); Mathématiques, Interactions
et Applications (IRMIA++, Unistra), the University of Strasbourg (Unistra) and the Mairie de
Strasbourg.

The scientific program of the conference was quite dense, consisting of twelve plenary
talks, eighty parallel sessions, three poster sessions, three special ceremony lectures (two in
English and one in French), twelve group theory lectures, two laudatory speeches in honor of
the Wigner-Weyl Awardee and the Weyl Prize winner, respectively, as well as five In Memoriam
talks. These honored our reputed colleagues David J. Rowe, Tchavdar Palev, Jiri Patera, Pavel
Winternitz and Kurt Bernardo Wolf, who have recently passed away.

The Inauguration session of the Colloquium consisted of the welcome speeches, given by
the Chairman of the ICGTMP Standing Committee, Mariano del Olmo, and Sandrine Courtin,
head of the Institut Pluridisciplinaire Hubert Curien.

A remarkable innovation of Group 34, in contrast to the previous Colloquia, was the organ-
isation of group theory lectures for Master and Ph.D. students, with the intention of promoting
the active involvement of the new generation. It was also the first time where the conference
combined both in-person and remote participation. Both the plenary and parallel sessions
were offered online, with about 20 participants attending virtually. Two of the plenary lec-
tures and seventeen of the parallel sessions were presented online.

The nowadays traditional Wigner-Weyl Award and Weyl Prize were held in the historically
relevant building of the Strasbourg City Hall. The Wigner-Weyl Award recognises and awards
outstanding contributions based on group theoretical and representation methods. The Se-
lection Committee, chaired by Efim Zelmanov, awarded the seminal contributions of Nikolai
Reshetikhin to Quantum Field Theory, as well as quantum groups and integrable systems ap-
plied to problems of statistical mechanics with the 2022 Wigner-Weyl Award. On the other
hand, the Weyl Prize is conceived as a recognition for young scientists who have contributed
significant scientific work to the area of physical phenomena through the use of symmetries.
The Selection Committee, chaired by María Antonia Lledó, awarded the Hermann Weyl prize
for 2020/22 to Erik Panzer for his outstanding achievements in the calculation of amplitudes in
gauge theories and for the development of new mathematical techniques based on the notion
of symmetry, as well as his description of relevant physical phenomena observed in Nature.

Michel Rausch de Traubenberg
Chairman of the Local Organising Committee
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2 Description of the Proceedings

In this volume, we present most of the contributions that were presented as the 34th Inter-
national Colloquium on Group Theoretical Methods in Physics, held on June 18–22, 2022 in
Strasbourg, France.

Maintaining the multidisciplinary spirit of previous editions, a wide range of subjects of
current research interest in mathematical and theoretical physics, as well as adjacent natural
sciences, were covered in the conference. This variety is adequately reflected by the contents
of the plenary sessions, whose objective was to provide a glimpse into the various disciplines
and research lines considered in the conference.

During the colloquium, the two traditional ‘Wigner-Weyl” and “Hermann Weyl” prizes were
awarded. Nicolai Reshetikhin was awarded with the “Wigner-Weyl” medal, while Erik Panzer
received the “Hermann Weyl prize”. This volume opens with a short summary of the Laudatios
and the research of the awardees.

In the first section, we present a selected number of the plenary talks. Contributions to
this volume, which were limited to 15 printed pages, are organised alphabetically. All submis-
sions, plenary and regular, were subjected to an independent refereeing process and editorial
decisions.

The In Memoriam talks held to honor renowned colleagues can be found in the following
section.

As for the regular talks, these can be found in the last section. Despite the fact that these
talks were organised into subject-specific sessions during the conference, as well as into the
various parallel sessions, we judged it convenient to organise these contributions alphabeti-
cally to simplify the localisation. As a general rule, these contributions were restricted to a
maximum of 8 pages. However, some of the articles are longer, as they combine the contents
of two different talks. In addition, a contribution to the Group 32 Conference, that had been
omitted in those proceedings, has also been included in this volume.

The Editors
Rutwig Campamor-Stursberg, Marc de Montigny,

Michel Rausch de Traubenberg and Mauricio Valenzuela
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Erik Panzer, from the University of Oxford, has been awarded the 2020 Hermann Weyl
Prize of the International Colloquium on Group Theoretical Methods in Physics, for “his
pioneering achievements in the calculation of amplitudes in gauge theories, for devel-
oping new mathematical structures that exploit the language of symmetries, and for his
contribution to the description of important physical phenomena present in nature.”
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Dear Colleagues,

It is a pleasure and an honor for me to introduce here today to Dr. Erik Panzer, who has
been awarded de 2020 Hermann Weyl Prize for his “pioneering achievements in the calcula-
tions of amplitudes in gauge theories, for developing new mathematical structures that exploit
the language of symmetries, and for his contribution to the description of important physical
phenomena present in nature”.

Erik is a brilliant mathematical physicist, working in the area of “Feynman amplitudes”,
which include quantum field theory, phenomenology related with the LHC experiments, string
perturbation theory, algebraic geometry and number theory. It is only recently that the commu-
nity started to realize that well posed mathematical questions are at the heart of the calculation
of Feynman amplitudes. The area has been growing enormously in the last years and Erik, in
spite of his youth, has become an indispensable reference in it.

His research is highly original and of exceptional quality. Besides, it is truly interdisci-
plinary, since he has made important contributions to both, mathematics and physics. He has
generated entirely new problems in abstract mathematics which are of fundamental interest.
On the other hand, he has succeeded in applying the most powerful tools in algebraic geometry
to the solution of long standing problems in quantum field theory. These comprehend poly-
logarithms, iterated elliptic integrals, modular forms, K3 surfaces, Calabi-Yau manifolds etc.
He has the rare skill of becoming a bridge between the two sectors of researchers interested
in Feynman amplitudes, physicists and mathematicians.
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I will talk only about a part of his work; perhaps the more representative.
Erik’s earliest work, his doctoral thesis (2015), was groundbreaking and had a significant

impact in the physics community. He brought the technique of parametric integration to a new
level, showing rigorously how a certain class of Feynman integrals (previously inaccessible) are
indeed multiple polylogarithms. This was a great progress in the analytic evaluation of Feyn-
man periods, work that required a very careful study of the divergences of those functions.
Moreover, his work has direct relevance in generating experimental predictions for the LHC.
He even developed a versatile and efficient software for parametric integration, called “Hy-
perInt”, which is nowadays widely used in many applications. A large literature has emerged
in this topic, and many claims on how to evaluate certain integrals are based in computa-
tional experimentation using Erik’s software. In further work, he revealed Galois symmetries
among the Feynman periods, in particular, he conjectured (with Schnetz) the possibility that
the motivic periods of the Φ4 theory are a comodule under the coaction of the Galois group.
Multiple zeta values play an important role in the theory of periods and motives. This is one of
the clearest examples of the “understanding physics through symmetries” principle, specially
valued in the Weyl Prize.

In 1997 Kontsevich solved the long standing problem of the deformation quantization of
Poisson manifolds. His formula is an expansion on polydifferential operators. Each operator is
expressed in terms of a graph, weighted with certain universal coefficients, that is, coefficients
that do not depend on the Poisson bracket. These are defined as integrals over configurations
of points in the upper half-plane. The underlying techniques make heavy use of the theory of
multiple polylogarithms on the moduli space of marked, genus 0 curves. Cataneo and Felder
showed that these integrals correspond to the Feynman amplitudes of a topological string the-
ory. Kontsevich conjectured that these integrals correspond indeed to integer linear combina-
tions of multiple zeta values. Erik and collaborators (Banks and Pym) remarkably showed that
this is indeed the case and that, appropriately normalized, they are integer numbers. More-
over, their proof included an algorithm to compute them and they created the first software
for their symbolic calculation. This made, finally, Kontsevich’s formula tractable, problem that
had been standing for about 20 years. New avenues are opened for future research in this
direction.

Erik’s more recent work on tropical quantum field theory is the completely new study of
the Feynman integral in terms of the Hep bound. The Hep bound is a simplified field theory
that shares many symmetry properties with the original Feynmann integral, so it contains
qualitative information about it. For example, it has the same asymptotic behavior than the
original series. Another remarkable property of the perturbation series of the Hep bound is
that it can actually be evaluated by numerical methods at large loop orders (Φ4 theory). Being
a bound, it is not the best approximation (it may be two orders of magnitude difference), but it
correlates with the Feynmann integral in such a way that one can use it to predict numerically
its value to a great degree of accuracy. In this way one can study properties of the summation
of the original perturbation series, of which very few terms are exactly known. Moreover, Erik
has advanced the radical conjecture that two Feynman integrals are equal if and only if their
Hep bounds are equal. This has received numerical evidence to a large order of loops and then
used to make interesting predictions at larger order. It implies the existence of a symmetry of
the Feynman integrals that has eluded us so far.

Another of Erik’s achievements was on the noncommutative Φ4 theory in two dimensions,
were he was able to resum a perturbation series and solve the nonlinear Dyson-Schwinger
equation analytically, in terms of the Lambert W function. This is a remarkable achievement,
which makes us hope to solve it in four dimensions.

Together with Bitoun, Bogner and Klaussen he studied the master integrals, that is, the
Feynmann integrals that remain after applying the integration by parts procedure to reduce
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them. In this work, the number of such integrals is defined unambiguously as the dimension
of a certain vector space. The amazing result of this study is that the number of master inte-
grals is the Euler characteristic of the complement of a hypersurface, defined by a polynomial
associated to each graph. This was proven using the theory of algebraic D-modules, and it is
of central importance in its application to phenomenology problems.

Since he received the award, he has been very active and each new paper of his has been re-
ceived with great expectation. In all his works, Erik reveals himself as a truly original and out-
standing researcher, operating in the boundary between mathematical and theoretical physics.
He works in different collaborations rather easily and he has made of the symmetries under-
lying Feynman integrals the leitmotiv of his work. This is particularly in accordance with the
spirit of the Weyl Prize. As you have seen he is also an extraordinary speaker, of extreme
clarity. This shows also in the big amount of seminars and conferences that he has given all
around the world.

This year we had very competitive candidates for the Prize, but at the end he was elected
unanimously by the Committee, who considered him as the most deserving recipient of the
Prize. It is for all this that I invite you now to join me in recognizing the effort, intelligence
and achievements of this young researcher by receiving him with a big applause.

Thank you very much.
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Two books greatly influenced me in my early student years: the book by Herman Weyl
“Symmetry” (1952, Princeton University Press) and the book by E. Wigner “Symmetry and
Reflections” (1967, Indiana University Press). The notion of symmetry became the guideline
in my studies and research. It adds greatly to the pleasure of receiving the 2022 Wigner-Weyl
award.

When I learned that I was selected as a recipient of the Wigner-Weyl award, my first reac-
tion was “Wow, it happened!”. Finding myself continuing the list of imminent scientists who
were awarded the Wigner medal was extremely rewarding.

To those who nominated me, who supported the nomination : thank you for your trust
and confidence. To all my teachers: thank you!

This is a good time to reflect on my research career and on wonderful people whom I met,
from whom I learned and with whom I worked with during all these years.

I was very lucky to meet many outstanding physicists and mathematicians. My studies at
the Leningrad Polytechnic Institute in the nuclear engineering group. During the first year I
realized that designing anti-radiation shields is infinitely far away from my interests in mathe-
matics and physics. But this is where I met an outstanding teacher who became life long friend,
Prof. S.P. Preobrazhensky. By the stroke of luck, as a sophomore, I came to a graduate course
on path integrals given by V.N. Popov. This is how I got to Steklov mathematical institute and
to Faddev’s seminar. This seminar was an intellectual haven.

My first research success was the hierarchical algebraic Bethe ansatz construction that
came out from a suggestion of P. Kulish to construct an algebraic version of Bethe ansatz vec-
tors found in the work of C.N.Yang about for non-identical particles with δ-interaction in one
dimensional space. The use of Schul-Weyl duality was essential. This work was my official
arrival to the world of symmetries and integrable systems.
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Abstract

The ΛCDM standard model of cosmology involves two dark components of the universe,
dark energy and dark matter. Whereas dark energy is usually associated with the (posi-
tive) cosmological constant Λ associated with a de Sitter geometry, we propose to explain
dark matter as a pure QCD effect, namely a gluonic Bose Einstein condensate with the sta-
tus of a Cosmic Gluonic Background (CGB). This effect is due to the trace anomaly viewed
as an effective negative cosmological constant determining an Anti de Sitter geometry
and accompanying baryonic matter at the hadronization transition from the quark gluon
plasma phase to the colorless hadronic phase. Our approach also allows to assume a ra-
tio Dark/Visible equal to 11/2.
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1 Introduction

Let us start out this group theoretical oriented contribution with three motivating quotes. The
first one from Newton and Wigner (1949) [1] is about the concept of elementary system.

The concept of an “elementary system” requires that all states of the system be obtain-
able from the relativistic transforms of any state by superpositions. In other words,
there must be no relativistically invariant distinction between the various states of the
system which would allow for the principle of superposition. This condition is often
referred to as irreducibility condition ...
The concept of an elementary system (...) is a description of a set of states which
forms, in mathematical language, an irreducible representation space for the inho-
mogeneous Lorentz (≃ Poincaré) group

The second one from Fronsdal (1965) [2] is about curvature versus flatness of space-time.

A physical theory that treats spacetime as Minkowskian flat must be obtainable as
a well-defined limit of a more general physical theory, for which the assumption of
flatness is not essential.

The third one from Sakharov [3], quoted by Adler in [4].

The presence of the action

Sgrav =
1

16πG

∫

d4 x
p

−g(R− 2Λ) , (1)

leads to a metrical elasticity of space, i.e., to generalized forces which oppose the
curving of space. Here we consider the hypothesis which identifies the action (1) with
the change in the action of quantum fluctuations of the vacuum if space is curved.

These statements are the leitmotiv guiding our interpretation of dark matter, as it will be
exposed in the sequel. Section 2 is devoted to the description of three fundamental space-time
symmetries, Poincaré group and its two deformations, de Sitter (dS) and Anti de Sitter (AdS)
groups, and their respective significance in terms of invariants, spin, mass, and “energy at rest”.
Cosmology chronology is put in perspective in Section 3 with regard to our interpretation [5,6]
of the dark matter as a gluonic Bose-Einstein condensate emerging at the end of the so-called
quark period (see also [7–9] about the genesis of our common work). Following the short
conclusion (Section 4), we give in Appendix A some insight in relation with theΛCDM standard
model.
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2 Three maximal symmetries, Poincaré, dS, AdS

2.1 The place of the cosmological constant

Firstly let us observe that there exist two standpoints about the Einstein equation of general
relativity [10]:

• Standpoint 1

Rµν −
1
2
R gµν

︸ ︷︷ ︸

geometrical content

= −κ Tµν −Λ gµν
︸ ︷︷ ︸

matter content

, κ=
8πG

c4
. (2)

Here, the fundamental state that contains the maximum number of symmetries is the
Minkowskian geometry, and the cosmological term Λgµν may be interpreted as an extra
pressure, named world matter by de Sitter in his debate with Einstein:

Λ> 0∼ “dark energy” , Λ< 0∼ “dark matter” ?

• Standpoint 2

Rµν −
1
2
R gµν +Λ gµν

︸ ︷︷ ︸

geometrical content

= −κ Tµν
︸ ︷︷ ︸

matter content

. (3)

Here, the fundamental states that contain the maximum number of symmetries are the
de-Sitter (dS) (Λ≡ ΛdS > 0) and the Anti-de-Sitter (AdS) (Λ≡ ΛAdS < 0) geometries.

Note that the split between these two standpoints should not be considered as absolute, since
we could as well model situations in a mixed way:

• Standpoint 3

Rµν −
1
2
R gµν +ΛL gµν

︸ ︷︷ ︸

geometrical content

= −κ Tµν −ΛR gµν
︸ ︷︷ ︸

matter content

. (4)

2.2 Two unique deformations of Poincaré symmetry

From the above di-or tri-lemna let us give present some points in favor of dS/AdS studies

• dS and AdS are maximally symmetric (remind that in a metric space of dimension n, the
maximum number of metric preserving symmetries is n(n+ 1)/2, here 10 since n= 4).

• Their symmetries are one-parameter deformations of Minkowskian symmetry with

– negative curvature −cdS = −
p

ΛdS/3 (= −H/c, H: Hubble parameter)

– positive curvature cAdS =
p

|ΛAdS|/3

respectively

• As soon as a constant curvature is present, we lose some of our so familiar conservation
laws like energy-momentum conservation!

• Then what is the physical meaning of a scattering experiment (“space” in dS is like the
sphere S3, let alone the fact that time is ambiguous)?

004.3

https://scipost.org
https://scipost.org/SciPostPhysProc.14.004


SciPost Phys. Proc. 14, 004 (2023)

Figure 1: The eleven kinematics (Bacry & Levy-Leblond, JMP (1968)). From [12].

• Which relevant “physical” quantities are going to be considered as (asymptotically? con-
tractively?) experimentally available?

In addition to the previous observations, we should insist on the fact that dS and AdS sym-
metries are the two unique deformations of the Poincaré symmetry. They occupy the extreme
vertex of the cubic diagram in Figure 1 showing the eleven kinematics classified by Bacry &
Levy-Leblond (1968) [11]. More precisely, under the assumptions that space is isotropic (ro-
tation invariance), parity and time-reversal are automorphisms of the kinematical groups, and
inertial transformations in any given direction form a noncompact subgroup, then there are
eight types of Lie algebras for kinematical groups corresponding to eleven possible kinematics.
These algebras are [11]:

R1 The two de Sitter Lie algebras isomorphic, respectively, to the Lie algebras of SO(4,1)
and SO(3,2);

R2 The Poincaré Lie algebra;

R3 Two “para-Poincaré” Lie algebras, of which one is isomorphic to the ordinary Poincaré
Lie algebra but physically different and the other is the Lie algebra of an inhomogeneous
SO(4) group;

R4 The Carroll Lie algebra;

A1 The two “nonrelativistic cosmological” Lie algebras;

A2 The Galilei Lie algebra;

A3 The “para-Galilei” Lie algebra;

A4 The “static” Lie algebra.

While the Lie algebras of class R have no nontrivial central extensions by a one-parameter Lie
algebra, those of class A each have one class of such extensions. Hence, with the requirements
of kinematical rotation, parity, and time-reversal invariance, there exists only one way to de-
form the proper orthochronous Poincaré group R1,3 ⋊ SO0(1,3) (or R1,3 ⋊ SL(2,C)), namely,
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Figure 2: Left: the one-sheeted de Sitter hyperboloid as a manifold embedded in the
1+4 Minkowski space-time. x0 might be chosen as a time parameter, but there is no
global time-like Killing vector. Right: the one-sheeted Anti de Sitter hyperboloid as
a manifold embedded in the 2+3 ambient space. Angular position along the central
belt can be chosen as a local time coordinate, and it is in one-to-one correspondence
with a global time-like Killing vector.

in endowing space-time with a certain curvature. This leads to the two simple Lie groups,
namely the ten-parameter de Sitter group SO0(1,4) (or its universal covering Sp(2,2)) and
the ten-parameter Anti de Sitter group SO0(2, 3) (or its two-fold covering Sp(4,R)).

2.3 de Sitter and anti-de-Sitter Geometries

The de Sitter space may be viewed (on the left in Fig. 2) as a one-sheeted hyperboloid em-
bedded in a five-dimensional Minkowski space with metric ηαβ = diag(1,−1,−1,−1,−1) (but
keep in mind that all points are physically equivalent):

MdS ≡
§

x ∈ R5; x2 = ηαβ xαxβ = −
3
ΛdS

ª

, α,β = 0, 1,2, 3,4 . (5)

The Anti de Sitter space may as well be viewed (on the right in Fig. 2) as
a one-sheeted hyperboloid embedded in another five-dimensional space with metric
ηαβ = diag(1,−1,−1,−1,1) (here too all points are physically equivalent):

MAdS ≡
§

x ∈ R5; x2 = ηαβ xαxβ =
3
|ΛAdS|

ª

, α,β = 0, 1,2, 3,5 . (6)

Note that the fifth dimension is space-like in dS whereas it is time-like in AdS.

2.4 Compared classifications of Poincaré, dS and AdS UIR’s for quantum ele-
mentary systems

In a given unitary irreducible representation (UIR) of dS and AdS groups, (∼ elementary
system in Wigner’s sense) their respective generators map to self-adjoint operators in Hilbert
spaces of spinor-tensor valued fields on dS and AdS respectively:

Kαβ 7→ Lαβ =Mαβ + Sαβ , (7)

with orbital part Mαβ = −i(xα∂β−xβ∂α) and spinorial part Sαβ acting on the field components.
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The physically relevant UIR’s of the Poincaré, dS and AdS groups are denoted by P>(m, s)
(“>” for positive energies), UdS(ςdS

, s), and UAdS(ςAdS, s), respectively. These UIR’s are spec-
ified by the spectral values 〈·〉 of their quadratic and quartic Casimir operators. The latter
define two invariants, the most basic ones being predicted by the relativity principle, namely
proper mass m for Poincaré and ς

dS
, ςAdS for dS and AdS respectively, and spin s for the three

cases (see [12] and references therein).

Poincaré

For Poincaré the Casimir operators are fixed as

Q(1)Poincaré = Pµ Pµ = P02 − P2 = m2 c2 ,

Q(2)Poincaré =WµWµ = −m2 c2 s(s+ 1)ħh2 , Wµ :=
1
2
εµνρσJνρPσ .

(8)

de Sitter

For de Sitter,

Q(1)dS = −
1
2

LαβLαβ = ς2
dS
−
�

s−
1
2

�2

+ 2≡ 〈Q(1)dS 〉 ,

Q(2)dS = −WαWα =
�

ς2
dS
+

1
4

�

s(s+ 1) , Wα := −
1
8
εαβγδηLβγLδη .

(9)

Anti-de-Sitter

For anti-de Sitter,

Q(1)AdS = −
1
2

LαβLαβ = ςAdS(ςAdS− 3) + s(s+ 1)≡ 〈Q(1)AdS〉 ,

Q(2)AdS = −WαWα = −(ςAdS− 1)(ςAdS− 2)s(s+ 1) , Wα := −
1
8
εαβγδηLβγLδη .

(10)

2.5 Proper mass versus “at rest” energy in de Sitter and anti-de-Sitter

While the proper mass is identified as the at rest energy, which means the energy spectrum
infimum in Minkowski, these two quantities come apart in de Sitterian/anti-de Sitterian geom-
etry. They have to be devised from a flat-limit viewpoint, i.e., from the study of the contraction
limit Λ→ 0 of these representations

Proper mass versus at rest energy in de Sitter: Garidi mass

In this respect, a mass formula for dS has been established by Garidi (2003) [13]:

m2
dS :=
ħh2ΛdS

3c2
(〈Q(1)dS 〉 − 2) =

ħh2ΛdS

3c2

�

ς2
dS+
�

s−
1
2

�2
�

. (11)

This definition should be understood through the contraction limit of representations:

dSUIR−→ PoincaréUIR.

More precisely, with

ΛdS→ 0 , ςdS→∞ , while fixing ςdSħh
p

ΛdS/
p

3c = mPoincaré ≡ m , (12)

004.6

https://scipost.org
https://scipost.org/SciPostPhysProc.14.004


SciPost Phys. Proc. 14, 004 (2023)

we have
UdS(ςdS, s) −→

ΛdS→0 , |ςdS|→∞
|ςdS|
p
ΛdS/
p

3=mc
ħh

c>P>(m, s)⊕ c<P<(m, s) . (13)

This result was proved in [14] and discussed in [15]. Note the breaking of dS irreducibility
into a direct sum of two Poincaré UIR’s with positive and negative energy respectively. To
some extent the choice of the factors c<, c>, is left to a local tangent observer. The latter will
naturally fix one of these factors to 1 and so the other one is forced to vanish. This crucial
dS feature originates from the dS group symmetry mapping any point (x0,P) ∈ HdS into its
mirror image (x0,−P) ∈ HdS with respect to the x0-axis. Under such a symmetry the four
dS generators La0, a = 1, 2,3, 4, (and particularly L40 which contracts to energy operator!)
transform into their respective opposite −La0, whereas the six Lab ’s remain unchanged. We
think that the mathematical fact (13) should be carefully revisited with regard to the inflation
scenario and the breaking of the matter-antimatter symmetry [16].

Proper mass versus at rest energy in Anti de Sitter

Concerning AdS a mass formula similar to that one for dS exists
[10,17]:

m2
AdS =

ħh2|ΛAdS|
3c2

�

〈Q(1)AdS〉 − 〈Q
(1)
AdS|ςAdS=s+1〉
�

=
ħh2|ΛAdS|

3c2

�

�

ςAdS−
3
2

�2

−
�

s−
1
2

�2
�

.
(14)

One here deals with the AdS group representations UAdS(ςAdS, s) with ςAdS ≥ s + 1 (discrete
series and its lowest limit), and their contraction limit holds with no ambiguity:

UAdS(ςAdS, s) −→
ΛAdS→0 ,ςAdS→∞
ςAdS

p
|ΛAdS|/3=

mc
ħh

P>(m, s) . (15)

Proper mass as an absolute invariant

Now, contraction formulae for both dS and AdS give us the freedom to write

mdS = mAdS = m .

This agrees with the Einstein position that the proper mass of an elementary system should be
independent of the geometry of space-time, or equivalently it should not exist any difference
between inertial and gravitational mass.

Rest energy of a free particle in AdS versus dS and Poincaré

Each Anti-deSitterian quantum elementary system (in the Wigner sense) has a discrete energy
spectrum bounded below by its rest energy [18–20]

Erest
AdS =

�

m2c4 +ħh2c2 |ΛAdS|
3

�

s−
1
2

�2
�1/2

+
3
2
ħh

√

√ |ΛAdS|
3

c . (16)

Hence, to the order of ħh, a “massive” AdS elementary system is a deformation of both a rela-
tivistic free particle with rest energy mc2 and a 3d isotropic quantum harmonic oscillator with
ground state energy 3/2ħh

p

|ΛAdS|/3 c ≡ 3/2ħhωAdS [21,22].
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In contrast to AdS, energy is ill-defined for dS. However a local tangent observer will
naturally choose the invariant with positive sign:

Erest
dS =

�

m2c4 −ħh2c2ΛdS

3

�

s−
1
2

�2
�1/2

. (17)

Noticeable simplification in both AdS and dS for fermions s = 1/2:

for dS : Erest
dS = mc2 , (18)

for AdS: Erest
AdS = mc2 +

3
2
ħhωAdS . (19)

In the massless case and spin s, we have

for dS : Erest
dS = ±iħh

√

√ΛdS

3
c
�

s−
1
2

�

, (20)

for AdS: Erest
AdS = ħh

√

√ |ΛAdS|
3

c(s+ 1) . (21)

Therefore, while for dS the energy at rest makes sense only for massless fermionic systems and
is just zero, for AdS the energy at rest makes sense for any spin, and in particular for spin 1
massless bosons we get

Erest
AdS = 2ħhωAdS , (22)

and for scalar massless bosons
Erest

AdS = ħhωAdS . (23)

3 Dark matter from QCD: A relic of quark period

We now explain the rôle of the above material in our interpretation of Dark Matter.

3.1 Cosmology chronology: The salient stages

Let us start out with the cosmology chronology depicted in Figures 3 and 4 (see for instance
[25] for a comprehensive account of early cosmology versus particle physics). In Figure 4,
the cosmic evolution is schematized on the thick line, on which the cosmic time, that is pro-
portional to the logarithm of the scale factor, is made implicit, by replacing all dimensioned
quantities depending on the local time t, by “effective co-moving densities” that are scaled by
the scale factor depending on a global time.

In Figure 4 Greek letters represent noticeable events, to be understood as phase transitions
for γ (electroweak symmetry breaking), δ (hadronization or color confinement), ε (domi-
nance of matter over radiation), as Universe temperature (∼ thermal time) is decreasing from
the “Planck epoch” to ours. Futhermore, one should not omit the neutrino decoupling, lying
between δ and ε, at a temperature T ≈ 1 MeV, as shown in Figure 3 (electroweak phase tran-
sition). Now, the cosmic microwave background (CMB) is the relic of the photon decoupling,
i.e., when photons started to travel freely through space rather than constantly being scat-
tered by electrons and protons in plasma. This represents a pure QED effect, and one of its
outcome is precisely that we see or experience those photons. Similarly, the cosmic neutrino
background (CNB) is the relic of the neutrino decoupling when the rate of weak interactions
between neutrinos and other forms of matter dropped below the rate of expansion of the Uni-
verse, which produced a cosmic neutrino background of freely streaming neutrinos. In turn,
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Figure 3: Cosmology chronology (from http://zebu.uoregon.edu/images/bb_
history.gif).

this represents a pure electroweak effect. Our interpretation of Dark Matter is based on a
similar scenario: gluonic component of the quark epoch (quark-gluon plasma) freely subsists
after hadronization within an effective AdS environment. This represents a pure QCD effect,
and we do not observe those gluons but we observe their gravitational effects. Hence, dark
matter could be as well named cosmic gluonic background (CGB)... But let us tell more about
dark matter.

According to the Planck 2018 analysis [26] of the CMB power spectrum, our Universe
is spatially flat, accelerating, and composed of 5% baryonic matter, 27% cold dark matter
(CDM, non baryonic) and 68% dark energy (Λ) [27]. (Cold) dark matter is observed by its
gravitational influence on luminous, baryonic matter The dark matter mass halo and the total
stellar mass are coupled through a function that varies smoothly with mass (with controversial
exception(s)). One can notice that, up to now, all hypothetical particle models (WIMP, Axions,
Neutrinos ...) failed direct or indirect detection tests. Similarly, alternative theories (e.g.
MOND) for dark matter have failed to explain clusters and the observed pattern in the CMB,
despite recurrent propitious announcements...

3.2 Quark-gluon plasma: Experimental evidence

The main physical ingredient of our interpretation [5] is the specific state of matter Quark-
Gluon Plasma (QGP), e.g., see Figure 5, characteristic of the Quark Epoch quark, i.e. from
10−12s to 10−6s, with temperature T > 1012K (point δ in Figure 4). Theories predicting the
existence of quark-gluon plasma were developed in the late 1970s and early 1980s (Satz,
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Figure 4: Cosmology chronology: Hubble radius L(a) ≡ H−1(a) (c = 1) is plotted
versus the scale factor a(t)≡ R(t) in logarithmic scale (from [7]).

Figure 5: From Strong interactions News: Protons probe quark-gluon plasma at CMS,
13 January 2017.

Rafelsky, Kapusta, Müller, Letessier...), and the quark-gluon plasma was detected for the first
time at CERN (2000). Lead and gold nuclei have been used for collisions yielding QGP at CERN
SPS and BNL RHIC, respectively. The current estimate of the hadronization temperature for
light quarks is Tc f = 156.5±1.5 MeV ≈ 1.8×1012 K (“chemical freeze-out temperature”). See
for instance [28–30].

3.3 Quark-gluon plasma and effective AdS geometry

Our scenario [5] is that the colorless gluonic component (e.g., digluons) of the quark epoch
which freely subsists after hadronization within an effective AdS environment (QCD effect) is
the dark matter. As a matter of fact the contribution of the so-called di-gluons through what
is called by Adler [4] the gluon pairing amplitude to the QCD trace anomaly reads as

¬

Tµµ
¶

0
= −

1
8

�

11Nc − 2N f

�

Dαs

π

�

F a
µνF aµν
�rE

0
, (24)

where Nc is the number (=3) of colors, and N f the effective number of quark flavors which
was put at 3 as a first guess, but will rather be considered as an adjustable parameter in [16],
with the purpose of matching the two standard models, the one of particle phyics and the one
of comology.. As asserted by G. Cohen-Tannoudji [8]

The minus sign in the right hand side shows that when the factor
�

11Nc − 2N f

�

is
positive, all the QCD condensates contribute negatively to the energy density, which
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means that the QCD world-matter is globally an AdS world-matter (dominance of an
AdS world-matter over a smaller dS world-matter),

and so

• the bosonic (gluon) loops, proportional to Nc , contribute to the AdS world matter,

• the fermionic (quark) loops, proportional to N f , contribute to the normal dS world mat-
ter.

Compare the ratio
11
2

Nc

N f
∼ 5.5 with the estimate [dark matter]/[visible matter]∼ 27/5= 5.4.

3.4 Cold dark matter: Bose-Einstein condensation of (di-)gluons in effective
anti-de Sitter geometry

We now explain the mechanism which makes the remaining gluonic component the dark mat-
ter or CGB. First we remind that in an AdS geometry:

Erest
AdS =

�

m2c4 +ħh2c2 |ΛAdS|
3

�

s−
1
2

�2
�1/2

+
3
2
ħh

√

√ |ΛAdS|
3

c . (25)

As an assembly of NG non-interacting (i.e., colorless) scalar bosonic di-gluons with individ-
ual energies En = Erest

AdS + nħhωAdS with Erest
AdS is mc2 (m = mG can be zero or negligible) and

degeneracy gn = (n + 1)(n + 3)/2, those remnant components, analogous to isotropic har-
monic oscillators in 3-space, are assumed to form a grand canonical Bose-Einstein ensemble
whose chemical potential µ is, at temperature T , fixed by the requirement that the sum over
all occupation probabilities at temperature T yields

NG =
∞
∑

n=0

gn

exp
�

ħhωAdS
kB T (n+ ν0 −µ)

�

− 1
, ν0 :=

Erest
AdS

ħhωAdS
. (26)

The number NG is very large and so the gas condensates at temperature

Tc ≈
ħhωAdS

kB

�

NG

ζ(3)

�1/3

, ζ(3)≈ 1.2 (Riemann zeta function) , (27)

to become the currently observed dark matter. The above formula involving the value
ζ(3) ≈ 1.2 of the Riemann function is standard for all isotropic harmonic traps (see for in-
stance [31]). Actually there is no harmonic trap here, it is the AdS geometry due to QCD trace
anomaly which originates the harmonic spectrum on the quantum level. To support this sce-
nario it is known from ultra-cold atoms physics that Bose Einstein condensation can occur in
non-condensed matter but also in gas, and that this phenomenon is not linked to interactions
but rather to the correlations implied by quantum statistics.

Although we do not precisely know at which stage beyond the hadronization phase tran-
sition does take place the gluonic Bose Einstein condensation, let us see if our estimate on
Tc yields reasonable orders of magnitude. Take Tc equal to the current CMB temperature,
Tc = 2.78K, and |ΛAdS| ≈

5.5
6.5 ×

11
24 ×ΛdS = 0.39×ΛdS (an estimate based on the ΛCDM model,

see complements), with ΛdS ≡ present Λ = 1.1× 10−52m−2. We then get the estimate on the
number of di-gluons in the condensate:

NG ≈ 5× 1088 . (28)

This seems reasonable since the gluons are around 109 times the number of baryons, and the
latter is estimated to be around 1080.
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4 Conclusion

We have tentatively explained dark matter by actually asking a simple question (!): what
becomes the huge amount of gluons after the transition from QGP period to hadronization?
Similarly to the emergence of the two validated CMB (QED effect) and CNB (electroweak
effect), we propose to consider Dark Matter, observed through its gravitational effects, as a
pure QCD effect. From our viewpoint it would legitimate to replace the puzzling expression
“Dark Matter” with the realistic “Cosmic Gluonic Background”.

A Complements: Facts of ΛCDM standard model

Let us recall the cosmological formalism (c = 1) based on the Robertson metric. In an isotropic
and homogeneous cosmology, the Einstein’s equation reads as

Rµν −
1
2

gµνR= 8πGTµν +Λgµν , (A.1)

where the stress energy momentum stands for a perfect fluid with density ρ and isotropic
pressure P, i.e.,

Tµν = −P gµν + (P +ρ)uµuν . (A.2)

Its solution is the Robertson metric:

ds2 = dt2 − R2(t)

�

dr2

1− kr2
+ r2
�

dθ2 + sin2 θ dφ2
�

�

, (A.3)

where k is the curvature index, and R(t) is the time-dependent radius of the universe. It is the
cosmological scale factor (also noted a(t)) which determines proper distances in terms of the
comoving coordinates. The radial variable r is dimensionless.

The radius R, the density ρ, and the pressure P obey the Friedmann-Lemaître (FL) equa-
tions of a perfect fluid modelling the material content of the universe.

H2 ≡
�

Ṙ
R

�2

=
8πGρ

3
−

k
R2
+
Λ

3
, (A.4)

R̈
R
=
Λ

3
−

4πG
3
(ρ + 3P) , (A.5)

ρ̇ = −3H (ρ + P) (Conservation of the energy) . (A.6)

Note that the cosmological term Λgµν is taken to the right-hand side of the Einstein’s equation
and may be interpreted as an extra pressure, named world matter by de Sitter in his debate
with Einstein:

Rµν −
1
2

gµνR= 8πG (P +ρ)uµuν + (Λ− 8πGP)gµν . (A.7)

According to the sign of this extra pressure one talks of a de Sitter world matter (Λ positive,
pressure negative) or an anti-de Sitter world matter (Λ negative, pressure positive). From the
first FL equation at Λ≈ 0 one derives

k
R2
=

8πG
3
ρ −H2 ≡

8πG
3
ρ −

8πG
3
ρc , ρc :=

3H2

8πGN
, (A.8)

where ρc is the so-called critical density. Since the (∼ observed) flatness rule k = 0 expresses
the vanishing of the spatial curvature one can write

ρ −ρc ≡ ρvis +ρDM +ρDE −ρc = 0 , (A.9)
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Figure 6: From [32]: 68.3 %, 95.4 % and 99.7% Confidence level contours on
ΩΛ ≡ ΩDE and Ωm obtained from CMB, BAO and the Union SN set (P/ρ ≡ w= −1).
This is “Concordance Cosmology”: The contributions of the cosmological constant
ΩΛ and of the (ordinary + dark) matter Ωm to the ratio total density/critical density,
i.e., the density for which the Universe is spatially flat, are yielded (modulo their un-
certainty ranges) through Supernovae (SNe), Baryonic Acoustic Oscillations (BAO),
and Cosmic Microwave Radiation (CMB). One sees that alternative models to Big
Bang (No Nig Bang) are excluded. The straight line ΩΛ +Ωm = 1 which is marked
“flat” corresponds to a spatially flat Universe.

with
ρvis = ρbar +ρrad , ρDE =

Λ

8πGN
. (A.10)

Hence ρc is the energy density at the boundaries in the far past and in the far future of
the Hubble horizon in the absence of any “integration constant” Λ and any spatial curvature
(k = 0). Next, from the second FL equation

R̈
R
=
Λ

3
−

4πGN

3
(ρ + 3P)≡ −

4πGN

3
(ρ − 2ρDE + 3P)≡ −

4πGN

3
(ρeffective + 3P) , (A.11)

one infers that at the inflection points R̈= 0 one has the “equation of state” (EoS)

winflexion ≡ P/ρeffective = −1/3 .

Inside the “confidence area” of the figure 6 in which ΩΛ = ρDE/ρc is expressed versus
ΩM = ρm/ρc one finds the points

• (ΩDM,ΩDE +Ωvis) ,

• (Ωm = 1/3,ΩDE = 2/3) .
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The value ΩDE = 2/3 results from our assumption completing the flatness sum rule as which
the total energy vanishes (from the Robertson metric):

ρvis +ρDM +ρDE = ρc =
3
2
ρDE . (A.12)
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Abstract

Prediction of “anyons,” often attributed exclusively to Wilczek, came first from Leinaas
& Myrheim in 1977, and independently from Goldin, Menikoff, & Sharp in 1980-81. In
2020, experimentalists successfully created anyonic excitations. This paper discusses
why the possibility of quantum particles in two-dimensional space with intermediate
exchange statistics eluded physicists for so long after bosons and fermions were under-
stood. The history suggests ideas for the preparation of future researchers. I conclude by
addressing failures to attribute scientific achievements accurately, both inadvertent and
intentional. Such practices disproportionately hurt women and minorities in physics.
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1 Introduction

“Anyons” are quantum particles or excitations, theoretically possible in two space dimensions,
with exchange statistics intermediate between bosons and fermions. They are associated with
surface phenomena in the presence of magnetic flux. Theoretical applications include explain-
ing the quantum Hall effect, describing quantum vortices in superfluids, and their relevance
to quantum computing. In 2020, more than forty years after they were first suggested [1],
experimentalists succeeded in creating anyonic excitations. The experimental confirmation of
their prediction attracted considerable new attention to these fascinating possibilities.

Predicting the anyon required basic changes in our understanding of quantum statistics.
The prediction is often attributed exclusively (and incorrectly) to Frank Wilczek, while the
first clear predictions were by Leinaas and Myrheim in 1977 [1] and by Menikoff, Sharp, and
myself in 1980-1981 [2,3], from different theoretical perspectives. Wilczek’s 1982 work [4,5]
took still a third path to the prediction. He also coined the name “anyons” to describe such
particles. This article describes the early history of intermediate quantum statistics, including
the predecessor ideas that led to those predictions. Some immediately subsequent insights,
often overlooked in citing early published results, are also described [6–8].

One may ask why the possibility of intermediate statistics took physicists so long to discern,
from the time when bosons and fermions were well understood. And why, after fifty years, did
three independent predictions occur within such a relatively short time interval? Examining
these questions suggests some interesting implications for the teaching of mathematics and
physics, relevant to the preparation of future researchers.

Finally, I discuss the systemic failure of scientists’ and journalists’ to attribute scientific
achievements accurately. With respect to anyons, breaches of integrity are current as I write
this article, though there is no dispute as to the history. But the “anyon” case is not unique. It
provides a case study illustrating a far wider problem. Acknowledgment failure, and its tacit
acceptance by the scientific community, does damage far beyond disappointing or hurting
a few individuals. Non-recognition disproportionately creates career obstacles for women,
Black and other minorities, and scientists in developing countries. Young scientists experience
disillusion, even intimidation, and have much to lose by speaking out. And potentially fruitful
directions of investigation cannot be pursued when researchers are unaware of their existence.

2 The idea of the anyon: Why so long?

2.1 Anyons and nonabelian anyons

The idea behind intermediate quantum statistics in two-dimensional space (three-dimensional
spacetime) is extraordinarily easy. Let us imagine a pair of indistinguishable particles moving
on a two-dimensional surface – constrained, for instance, to the surface of some material. Sup-
pose they exchange positions, but without actually passing “through” each other. They must
have done so by moving either clockwise or counterclockwise. One can characterize any ex-
hange, then, by a winding number: the net number (positive or negative) of counterclockwise
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windings occurring during the exchange. This feature is specific to two-dimensional space.
If the system is described by a complex-valued wave function ψ, one wants |ψ|2 to be in-

variant under any such exchange. For a single clockwise exchange,ψmight then be multiplied
by a complex number of modulus one: ψ 7→ [exp iθ]ψ. With θ = π we obtain fermions, and
with θ = 2πwe have bosons. But in two-space, two counterclockwise exchanges in succession
are inequivalent to no exchange. Hence we need not require exp 2iθ = 1. For “any” value of
θ , the predicted outcomes of all physical measurements remain invariant under the exchange.

For three or more indistinguishable particles in two-space, path-dependent exchanges per-
formed in succession no longer commute. Then nonabelian representations of the group de-
scribing exchanges, acting by unitary operators on multicomponent wave functions, become
possible. Therefore quantum mechanics also allows “nonabelian anyons”.

With these ideas so simple to describe in an elementary way, why did so many brilliant
physicists overlook them for so long? Bosons and fermions were understood in 1924-25; the
intermediate statistics of anyons was not explicitly proposed until 1977-82. What led to this
idea, so long deferred, becoming one “whose time had come”?

2.2 Historical and psychological barriers in physics

The concept of an epistemological obstacle, introduced by Bachelard in 1938 [9] and discussed
by Schneider [10], is well-known in science and mathematics education research. It refers to
prior conceptions that impede the understanding necessary for a breakthrough. As elaborated
by Brousseau such obstacles are not a “result of ignorance [. . . ] or chance”, but an “effect of
prior knowledge that was relevant and had its success, but which now proves to be false, or
simply inadequate” [11]. The term suggests inevitable barriers in historical paths of discovery,
evolution of conceptual schemes, and ascribing meanings to mathematical representations.

In the psychology of an individual thinker or learner, the parallel notion of a cognitive
obstacle refers to prior knowledge limiting the person’s development of new conceptions. As
students overcome cognitive obstacles, their stages of learning often recapitulate historical
processes. There is an analogy with biology, where the “ontogeny” of developing organisms
seems to recapitulate the “phylogeny” of the species’ evolution.

Examples abound of epistemological obstacles in physics and mathematics. To understand
that objects without applied forces continue in rectilinear motion; to see space and time as
not absolute; to embrace wave-particle duality and the uncertainty principle – each required
physicists to overcome universal categories of experience and abandon previously-successful
explanations of observed phenomena. Seeing axioms and propositions as “self-evident truths”
impeded mathematicians’ taking them as arbitrary assumptions characterizing abstract struc-
tures. Acceptance of negative numbers, “imaginary” numbers, non-Euclidean geometries, and
transfinite cardinals, all required overcoming beliefs that these did not “really exist”.

In physics an empirical source of epistemological obstacle can be the inaccesibility of rele-
vant domains of experiment. Thus frictionless dynamical systems, high velocities approaching
light-speed, and observability at the subatomic level, remained difficult or impossible to access
for centuries; no driving force from experiment yet demanded conceptual change.

With these ideas in mind, I think it is possible to identify five major epistemologi-
cal/cognitive obstacles that impeded the prediction of anyon statistics, and all that followed.
We can also see how antecedent ideas gradually dismantled those obstacles.

2.3 Epistemological obstacles to the prediction of anyons

Index vs. value permutations. The first obstacle was the use of index permutations to de-
scribe particle exchange. In a configuration of N indistinguishable particles, their positions
were labeled with subscripts (indices) 1, ..., N ; with the wave function written ψ(x1, ..., xN ).
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A permutation σ(i j) exchanged “particle i” with “particle j” – an index permutation. With this
meaning of exchange, there is conceptually no physical path of exchange – the particles are
relabeled abstractly. Writing |ψ(x1, ..., xN )|2 = |ψ(xσ(1), ..., xσ(N))|2 asserts invariance under
index exchange – reintroducing indistinguishability after labeling the particles distinguishably.

Value permutations, in contrast, make reference to the coordinates locating the particles
being exchanged; i.e., their positions in the physical space. The permutation σ(i j) exchanges
the particle in the i-th location with the one in the j-th location. This description requires an
ordering of points in physical space. The arbitrariness of that (which is actually no stronger
objection than the arbitrariness of indexing) is one reason for conceptual difficulty in letting
permutations act on coordinate values rather than indices. Nevertheless, exchanging actual
particle positions allows one to focus on possible paths of exchange.

Note that introducing labels or adopting a coordinate system is always arbitrary. By itself,
it leaves the physics invariant. A symmetry property of coordinates is not a physical symmetry,
and in principle provides no new physical information. Physical insight comes when the sym-
metry group is understood to act on the system itself, with some system properties identified
as invariant under the symmetry. This distinction, while essential and obvious, is often easily
overlooked in the language we use to discuss group theoretical applications in physics.

Coordinate space vs. configuration space. A second obstacle inheres in considering or-
dered N -tuples at all. A configuration of indistinguishable particles is actually an unordered
N -point subset of the physical space. To see statistics as arising from paths of exchange re-
quires a focus on configuration space topology. But an unordered set allows no description
of particle exchange – hence the introduction of indices and imposition of invariance un-
der exchange, obscuring that focus. A different idea was needed. Note that the expression
∆
(d)
N = [(Rd)×N−D]modSN for N -particle configuration space inRd , where D is the “diagonal”

consisting of N -tuples for which x i = x j for some i ̸= j, and SN is the symmetric group, seems

to reflect the historical conception. It is much simpler to write ∆(d)N = {γ ⊂ Rd | card(γ) = N}.
Continuous single-valued wave functions. A third obstacle was the assumption over many
years that wave functions on coordinate space must be continuous and single-valued. This
perhaps reaches as far back as the Bohr atom, where electrons were posited to occupy fixed
circular “orbits”. A continuous wave describing this would have an appropriate period, for-
bidding self-interference and leading naturally to quantization. In subsequent models based
on the Schrödinger equation, single-valuedness and continuity provide a natural framework
for quantization of energy and momentum. The conception of ψ as a kind of physical field
modeled on points in physical space (albeit configurations of such points) also seemed to de-
mand single-valuedness. Thus if ψ 7→ [exp iθ]ψ under a single exchange, of necessity we
need exp2iθ = 1. The “simple” idea provided above is then easily dismissed as fallacious.

Established empirical knowledge: fermions and bosons. The dramatic achievements of
quantum theory with just two types of particles posed a fourth obstacle. Successes included
the Pauli exclusion principle for fermions, standing behind the periodic table of elements and
explaining in principle chemical reactions. They included the phenomenon of Bose-Einstein
condensation; also local quantum field theories where bosons are the quanta carrying funda-
mental forces of nature. No experiments compelled inquiry into more exotic possibilities.

Axiomatic quantum theory. Finally, a fifth obstacle inhered in the understanding, achieved
through axiomatic relativistic quantum field theory, of how some fundamental physical laws
follow from basic assumptions. The Wightman axioms [12] included the proposition that
space-like separated fields either commute or anticommute. These axioms led to rigorous
proofs of PC T -invariance and the spin-statistics connection. Of course, the axioms encoded
widely-shared beliefs about the properties quantum fields should have. But working from fixed
axioms does create an intellectual context where they are no longer questioned; only their
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implications are explored. Bose and Fermi statistics exclusively were thus firmly embedded in
the foundations of physics.

3 Ideas antecedent to the prediction of anyons

Important antecedent ideas, developed over several decades, eventually overcame these ob-
stacles to intermediate statistics.

Intermediate occupation number statistics. As early as 1940-1942, Gentile [13,14] explored
the possibility of hypothetical occupation number statistics other than those of fermions or
bosons, where an intermediate, finite number of particles could be permitted to occupy the
same quantum state. He drew some possible consequences for the theory of superfluidity.

Topology in quantum mechanics. In 1959 Aharonov and Bohm [15] considered charged
particles excluded by an infinite potential barrier from a cylindrical region, behind which a
current in a tightly-wound infinitely-long solenoid sustains a magnetic flux. Quantum theory
then predicts shifts in the energy and kinetic angular momentum spectrum of the particles,
despite the absence of a physical magnetic field in the accessible region. Their paper, conceived
as a Gedanken experiment, evoked much controversy as to its meaning. Though known as the
“Aharonov-Bohm effect”, a similar but much less noticed proposal had actually been published
in 1949 by Ehrenberg and Siday [16], as Hiley describes in a historical article [17]. The
earlier work is highlighted in the Wikipedia entry on the subject [18], which is how I learned
of it just last year. The (Ehhrenberg-Siday)-Aharonov-Bohm effect pointed to the role of the
topology of the space in which quantum particles move – particularly, but not exclusively, when
charged particles circle excluded regions of magnetic flux. The possibility of multivalued wave
functions needed to be entertained – though challenged, it began to achieve legitimacy.

Following on these ideas, in the context of the Feynman path-integral fomulation, physicists
considered homotopy classes of trajectories from initial to final particle configurations. Here
one moves from the topology of physical space to that of configuration space. Schulman [19]
in 1968 proposed a model for the topological origin of particle spin. In 1971, Laidlaw and
(Cécile) DeWitt [20] deduced the topological origin of Fermi and Bose exchange statistics. In
a footnote to their result, they remarked that in two space dimensions there seemed to be
additional possibilites for quantum statistics, but they did not pursue this. In 1972, Dowker
[21] provided a more general discussion of quantum theory on multiply-connected spaces.

Parastatistics, kinks, etc. During the 1950s and 1960s, other paths led to some generaliza-
tions of exchange statistics. In 1953, Green [22] obtained parastatistics from trilinear brackets
of quantum fields (combining canonical commutation and anticommutation relations). This
work, with resulting investigations of symmetrization in 1964-1965 by Messiah and Green-
berg [23] and Girardeau [24], brought in higher-dimensional, nonabelian representations of
SN . As concrete alternatives to Bose and Fermi statistics, parastatistics evoked unfulfilled con-
jectures that fundamental particles such as quarks might satisfy them. In 1968 Finkelstein and
Rubinstein [25] suggested more general possibilities for the spin/statistics relation for ”kinks”
in the context of quantized nonlinear fields, by admitting double-valued state functionals.

Braid groups and Yang-Baxter relations. As different models in quantum field theory were
invented and studied, braid groups began to enter into consideration in the late 1960s and
1970s. In two-dimesional models with soliton fields they found a place through the Yang-
Baxter equation in articles by Streater and Wilde [26] and Fröhlich [27, 28]. Related work
was published by Klaiber [29], Souriau [30], Kadanoff and Ceva [31], and Wegner [32].

Group representations and current algebras. In parallel with these developments, unitary
group representations came into their own as pillars of quantum theory. Wigner, Mackey, and
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numerous others established their fundamental role [33, 34]. In strong interaction physics
and the theory of fundamental particles, dramatic findings confirmed the predictive power
of SU(3) [35]. This led eventually to unification of the electroweak and strong forces via
SU(2)× U(1)× SU(3) gauge theory in the “Standard Model”.

Moving from Lie groups to Lie algebras, Adler and Dashen [36] made a strong case in the
1960s for current algebras in fundamental particle physics. In 1968 Dashen and Sharp [37]
proposed a certain highly singular, local current algebra describing nonrelativistic quantum
field theory. Their goal was to describe hadrons by gauge-invariant quantities such as densities
and currents, rather than gauge-dependent quantum fields. Behind this work stood earlier
ideas of Haag and Kastler [38] and others on algebras of local observables.

In the late 1960s, I was able to regularize and exponentiate Dashen and Sharp’s algebra
to obtain an infinite-dimensional group, and establish a framework for studying its unitary
representations [39]. The group is the natural semidirect product of a diffeomorphism group
Diff0(R3) of the physical space (describing flows generated by momentum density operators),
with an additive group of scalar functions on M (describing exponentiated mass density op-
erators). Then in collaboration with Grodnik, Powers, and Menikoff [40–44], Sharp and I
found applications confirming the fundamental role of this group and its Lie algebra. Across
the 1970s, Menikoff, Sharp, and I successfully extended Mackey’s method of induced repre-
sentations of locally compact Lie groups, to obtain a class of unitary representations of dif-
feomorphism groups [2]. It followed from our work that Bose and Fermi exchange statistics
could be understood as inequivalent unitary representations of our semidirect group, induced
by representations of SN . And SN entered naturally as the fundamental group of N -particle
configuration space. This provided a new, wholly kinematical perspective on the earlier work
of Laidlaw and DeWitt [20], which had been based on Feynmann paths; and it led to interme-
diate quantum statistics in two-space.

The roles of SO(3) and SU(2) in describing orbital and spin angular momentum were of
course long known at the time of all this work. A 1976 paper by Martin [45] proposed a model
for the Aharonov-Bohm effect based on rotation generators in two-dimensinal space. Here she
presaged group-theoretically the fractional statistics subsequently predicted for anyons.

4 Intermediate statistics: Three independent predictions

By the mid- to late 1970s requisite ideas were in place, the obstacles mostly removed.
In 1977, Leinaas and Myrheim [1] presented the first clear prediction of quantum exchange

statistics interpolating Bose and Fermi statistics in two space dimensions. They based their
analysis on Schrödinger quantization of particle dynamics, using the topology of Feynman
paths. They drew a connection with electromagnetism, noting the singularity in configuration-
space associated with the coincidence points of particles. In 1978 Leinaas [46] suggested a
model based on charged-particle/monopole composites.

This picture did leave open the issue of whether Feynman paths might “cross” – i.e., can
two particles “pass through” each other as the quantum configuration evolves? One might then
need a hard-core, singular repulsive potential for intermediate statistics. In the Aharonov-
Bohm setup, the nontrivial topology was established by introducing an infinite barrier to ex-
clude the charged particles from a region of space; would such exclusion be necessary here?

Menikoff, Sharp, and I published our prediction of intermediate statistics in 1980-81, not
yet aware of the Leinaas-Myrheim papers. Our findings confirmed theirs but assumed less,
being kinematical rather than dynamical [2,3]. Studying the Aharonov-Bohm setup with our
local current algebra meant representing the group of diffeomorphisms of a non-simply con-
nected space. We had already established a foundational role for unitary representations of
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Diff0(R3) in classifying quantum systems; now we found – to our surprise at the time – that the
unitary representations of Diff0(R2) included intermediate exchange statistics. Thus we did
not obtain our results by quantizing a classical system, but by rigorously pursuing fundamental
group-theoretic methods. Discovering intermediate statistics culminated 15 years of research.

A number of things became clear from our work. One obtains directly the shifted spectrum
of self-adjoint kinetic angular momentum operators associated with anyons. Wave functions
are single-valued on the true configuration space for indistinguishable particles; the exchange
statistics is established by the operators describing local observables. Coincidence points are
excluded necessarily and not arbitrarily; no repulsive potential is necessary. The (illusory)
multi-valuedness of wave functions reflects an equivalent representation on the Hllbert space
of equivariant wave functions on the universal covering space of configuration space. Equiv-
ariance is with respect to its fundamental group (first homotopy group). The inner product is
defined by integration on configuration space, not on the covering space – an essential idea,
because there are in general infinitely many sheets to the covering space.

In 1982 Wilczek, who by his second article that year knew of the earlier articles, published
his own, independent prediction [4, 5]. His systematic investigation of fractional quantum
numbers suggested fractional-spin particles in two dimensions. He modeled this with charged
particles bound to units of magnetic flux orthogonal to the surface confining the particles – like
miniature “Aharonov-Bohm solenoids” with net charge. Wave functions describing such par-
ticle/flux tube composites pick up the intermediate phase exp iθ in a single counterclockwise
exchange. His name “anyons” expresses that θ can take “any” value between 0 and 2π.

Wilczek recognized and advocated for anyons’ theoretical importance, especially as ap-
plications were found to understanding the quantum Hall effect. Twenty-three of the most
impactful articles from 1983 to 1990, including seven by Wilczek and his collaborators, are
reprinted in his 1990 book, Fractional Statistics and Anyon Superconductivity [47]. Space here
does not permit my citing them; the reader is referred to [47]. This influential volume provided
a valuable resource for researchers and reviewers of the field across the next decades.

Some immediate, fundamental consequences of my work with Menikoff and Sharp at Los
Alamos were also published during the 1980s. In 1983, we presented a rigorous kinematical
framework for the fractional spin of anyons, including the first (as far as I can determine) ex-
plicit identification of the braid group BN as the homotopy group whose unitary representations
govern N -anyon exchange statistics [6,7]. In 1985 we first predicted nonabelian anyons [8],
described by wave functions equivariant under higher-dimensional unitary representations
of BN . This parallels the earlier idea of parastatistics for particles in R3, where the homotopy
group is SN . We also pointed out in 1985 that systems of distinguishable particles in two-space
are described by wave functions equivariant for the group of colored braids. These wave func-
tions can pick up intermediate phases as particles fully circle each other, without exchange.
Our conclusion about nonabelian anyons was contrary to the expectation expressed by Wu in
1984 [48] that a “general theory” would include only one-dimensional representations of the
braid group; we published it as a response to Wu’s paper.

Many further applications of anyon theory followed across the decades; not only in physics
(e.g., to the quantum Hall effect and to quantum vortices), but also in the burgeoning field
of quantum computing. Two years ago, more than four decades after their first prediction,
two groups of experimental physicists announced success in creating and observing anyonic
excitations [49,50], stimulating wide interest.
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5 Implications for the education of future physicists

This retrospective on the first predictions of anyons, the historical obstacles that delayed them
and the antecedent research that removed those obstacles, suggests some more general con-
siderations for future (or current) physicists. I would like to offer a few thoughts on the topic
of education, before turning to the issue of citation integrity in physics. Epistemological and
cognitive obstacles are most likely present now, though we may be unaware of them. In teach-
ing university-level theory – classical mechanics, electricity and magnetism, optics, quantum
mechanics, relativity, thermodynamics – one goal should be to facilitate scientifically sound
exploration that can penetrate or even overturn prevailing conceptions.

How can we foster students’ questioning of established constructs and encourage genera-
tion of new ones? What best enables a student to identify tacit assumptions and make them
explicit? What tools help sudents overcome personal cognitive obstacles? I think that answers
consist, in part, in exploring what it means for a student (or researcher) to “really understand”
a newly-studied concept in physics or mathematics.

Consider the skills normally emphasized (or not) in teaching theory to physics students:

Textbook problems. Solving progressively more complex problems based in established the-
ory, using standard techniques, is central to most physics courses. Students develop their
understanding of theoretical constructs by applying them to situations where they fit directly.

Nonroutine problems. Many physics courses incorporate some problems that are less routine.
Valuable heuristic methods and general strategies typically apply in such contexts. The best
students gradually acquire them, though they may or may not be discussed explicitly. Exam-
ples include examining special cases, testing limiting cases or idealized cases, creating multiple
representations, establishing and using insightful notation, choosing a helpful coordinate sys-
tem, finding hidden symmetry, exploiting units of measurement, carefully distinguishing what
is happening physically from its mathematical description, and so forth. Most such strategies
pertain to mathematics as well as to physics.

But sometimes we bypass the thinking process: presenting students with notation, sug-
gesting the desired representation, providing the coordinate system, and pointing the way to
insight rather than allowing the experience of discovery. If we consistently dismantle obstacles,
we may limit students’ development of powerful methods for breaking through them.

History of discoveries. Physics teaching typically includes stories about discoveries and break-
throughs, how historic experiments forced reconsideration of previously accepted theories. I
think there is much more we can do. We can explore the thinking process that led to a new
theory. We can identify critical epistemological/cognitive obstacles delaying its invention. We
can ask what philosophical or metaphysical assumptions may have impeded the idea, and how
one might have noticed these earlier. We can explore alternative theories that did not pan out.

Students as inventive theorists. In introducing the foundational ideas behind a new concept,
we might seek to engage students in thinking as original theorists. Before presenting estab-
lished theory, students can offer their own conjectures and explore their consequences. The
goal is not to see who is “right” and who is “wrong”, but to foster students’ creative theorizing.
We can study rival theories and abandoned theories, to consider how one evaluates a scientific
idea as valid or worth pursuing. I favor posing the following question to students and to our-
selves: “If no one had ever seen this idea before, or if you had never previously encountered
it, can you imagine how you personally might have invented it?”
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6 A sequel to discovery: Citation omission and its consequences

Scientific research is an intimate activity. Disappointments and frustrations are interspersed
with occasions of insight and satisfaction. One rarely achieves in full what one aspires to, but
strives to fulfill the ideals of one’s teachers and mentors. One values their words of encour-
agement, their belief in one’s ability to contribute to understanding the natural world. One
develops friendships and shared memories of collaborative success. One does what one loves.

A young mathematical physicist might realistically hope to create some interesting new
models, to place some well-established physics on a more rigorous foundation, to unify pre-
viously disparate phenomena, or to show how some physical effects result from more funda-
mental laws. But perhaps the highest aspiration of the young theorist might be to predict a
wholly new, unsuspected phenomenon – and to see that prediction confirmed.

Four decades after their prediction, anyonic excitations were observed by two experimental
groups [49, 50]. This should be a deep source of satisfaction to all of us who put forth the
prediction. Developing the theory that led to my own group’s prediction took 15 years, during
difficult times professionally. But both groups of experimentalists, apparently unaware of our
early published work, cited only the articles by others. Shortly thereafter, widely circulated
science magazines repeatedly attributed the prediction of anyons exclusively to Wilczek [51–
54], who had shared the Nobel Prize in 2004 for his earlier work on quark confinement and
asymptotic freedom. And the related fundamental insights about anyons that we were first to
publish remain wholly unacknowledged.

How this came about, and how it continues today, are also part of the history of anyons.
We have learned that the problem is systemic, stemming from omissions inadvertent and in-
tentional, and magnified in impact by open journalistic dishonesty. But citation inequity does
more than disappoint a few individual researchers. It has far wider implications for science.

It should not be necessary for me to emphasize that in describing this history, there is no
intent whatsoever to diminish the fact or importance of Wilczek’s substantial contributions to
the physics of anyons. I am aware of no dispute among any of us regarding the authorship,
the priority, the content, or the originality of the published results.

6.1 Anyons: A case study in systematic citation omission

Between 1982 and 1989, omission of proper reference to our articles was widespread. Most
of these omissions were inadvertent, as researchers relied in their bibliographic research on
the citations in earlier papers. But some, beginning with the most often-cited article [5], were
intentional and consistently maintained. The effects were immediate and enduring. Among all
the numerous citations in the 23 articles from 1983 to 1990 reprinted in Wilczek’s influential
1990 book [47], there is just one citation of an article of ours. In the period that followed, this
greatly limited awareness of our work by those for whom the book served as a major resource.

Acknowledgment as it relates to one’s own research is a highly personal and difficult sub-
ject to address. It is a remarkable experience to be written out of history before one’s eyes,
year after year. Our work appeared in leading refereed journals. Our approach to intermediate
statistics was novel – wholly group-theoretical in its foundation – and independently devel-
oped. Some findings that became widely known we were first to publish. As the omissions
persisted, my colleagues and I made every effort to acquaint others with our published arti-
cles. At the time, internet and email did not exist. Correspondence was through letters – slow,
difficult to write, always polite, and frequently unanswered. It made no difference.

In retrospect, our efforts in the 1980s were not sufficiently aggresssive. We relied on the
good will and integrity of the research community. We sought to be scrupulous in acknowledg-
ing the work of others, and expected proper reference to our findings. But we saw how fame
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and power relationships influenced acknowledgment. The absence of information availabil-
ity closed off interest in some research directions. Theoretical methods pursued were those
people knew of – which sometimes led to insights we had already obtained by other means.

Then in 1989, Physics Today published an extensive article about anyons [55] attributing
their discovery to Wilczek, mentioning Leinaas and Myrheim’s article briefly, and omitting all
reference to our work. My colleagues and I requested a correction. Somewhat to our surprise,
there ensued an extraordinary battle – at heavy personal cost – before we achieved publication
of the proper attributions. Eventually, the error was corrected. A detailed letter, authored
by Biedenharn, Lieb, Simon, and Wilczek [56], described our contributions accurately and
succinctly. Wilczek included a sentence in his book [47] (p. 105) citing our three earliest
papers. He invited our contribution to a special issue of International Journal of Modern Physics
B he was then editing [57]. There had never been an actual dispute regarding the sequence
of discoveries, and it seemed that after eight years the acknowledgment issue was resolved.

But in 1991, an article about anyons in Scientific American, authored by Wilczek, credited
him with the discovery without reference to any prior predictions [58]. This was corrected by
letter from Sharp and me, after some struggle [59].

Over the next thirty years, citations appeared only sporadically. During this period, I came
to believe that had the internet existed back in the 1980s, such consistent failures of attribution
could never have occurred. Since 2020, Sharp and I have learned how untrue that is.

With the recent experimental findings, fame triumphed decisively over journalistic integrity
in science reporting. Omissions, no longer inadvertent, are openly deliberate. Efforts at cor-
rection are ignored or refused. In two successive articles, Discover Magazine credited only
Wilczek with the prediction [51,53]. They disregarded detailed communications, refusing to
post a simple update to their featured on-line articles [60, 61]. The editors chose to violate
explicit canons of ethics in journalism. For example, the policy of the Washington Post states:

“Fairness results from a few simple practices: No story is fair if it omits facts of
major importance or significance. Fairness includes completeness. ... No story is
fair if it consciously or unconsciously misleads or even deceives the reader. Fairness
includes honesty — leveling with the reader.” [62]

Quanta Magazine also published two features, crediting only Wilczek with the prediction of
intermediate statistics [52,54]. Its editors simply disregarded repeated efforts to communicate
our request for a correction. Thus in major journalistic outlets, it is as if neither Leinaas and
Myrheim nor our group had participated at all in the research.

Researchers identifying appropriate citations in a specialized domain of physics often con-
sult the relevant Wikipedia entry, and follow up with academic sources. I do so myself. Though
not always 100% accurate or complete in describing the physics, Wikipedia is important.

At Wikipedia, the “anyon” entry [63] (discussing anyons, nonabelian anyons, topology,
the braid group, and fractional spin) omits all indication of my colleagues’ and my correct
predictions about these topics. An anonymous editor (screen name “HouseofChange”) has ex-
punged every correct citation entered by at least two independent experts. This editor claims
that the absence of earlier citations proves our work to be irrelevant. It is the opposite stance to
Wikipedia’s informative entry about the “Aharonov-Bohm effect” mentioned above, acquaint-
ing readers with the prior work of Ehrenberg and Siday. When removing the citations by other
editors, “HouseofChange” leveled false and malicious accusations against them, and asserted
untruths about Sharp and myself. Most or all exchanges are on Wikipedia’s “talk” feature. One
unknown person ensures that those interested in the physics of anyons should never know of
our prediction, or of the group-theoretical and current-algebraic methods that led to it.

To sum up, in the nearly two years since the experimental confirmation of anyonic statistics,
the most strenuous efforts possible have produced not one additional correction or footnote
in the information generally available to the public.
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6.2 Citation inequity in physics: Untruth and its consequences

Why does this matter? If one is not directly affected, one might be a little amused by the
importance accorded here to brief mention and a few footnotes, and the fierce resistance to
it. But there is a wider perspective. Denial of information slows research and its attendant
benefits – an intangible loss to the entire scientific community. But this is far from the only
damage. Acknowledgment failure profoundly undermines fairness and equity.

Egregious examples of overlooking women in physics for top honors are well-known:
Chien-Shiung Wu’s pioneering work on parity conservation violation, disregarded in the 1957
Nobel Prize award to Lee and Yang; Jocelyn Bell’s crucial role in discovering pulsars, unrec-
ognized in the 1974 Nobel to Hewish and Ryle. But for every such inequity at the highest
levels, countless examples occur in less dramatic contexts. Substantial citation inequity to-
ward women in phyiscs occurs [64] while our field remains overwhelimingly male.

Unfairness toward women is not the only form of discrimination citation inequity takes.
It hurts Black and other minority scientists, those in developing countries, and early career
researchers who have much to lose by speaking out – all who lack influential connections. In
his 2021 book Fear of a Black Universe [66], physicist Stephon Alexander highlights the expe-
riences of Black physicists who are marginalized. Interviewing with the The Guardian [65],
he notes how citation inequity affected his mentor, physicist Jim Gates, whose contribution to
supersymmetry together with Nishino was disregarded for at least ten years:

“I was there when Jim realized that the work was not cited and he wrote one of the
authors directly. Then they cited it, but it was kind of too late. That’s why I wrote
about it in this book, to celebrate that it was [Gates and Nishino’s] discovery. ...
That is exactly the phenomenon that Black people experience in other fields where
we’re not supposed to occupy these spaces.”

Non-recognition of scientific achievement and the resulting career obstacles may be affect-
ing younger readers of this article, even as I write. Success in pursuing a long-term, original
project is never assured. Less-traveled paths may mean more limited opportunites. To predict
a new, unsuspected phenomenon in one’s early career risks evoking skepticism, particularly if
the time for the prediction is not yet ripe. When the best results go unrecognized and unac-
knowledged, consequences can be serious. Disillusionment, alienation, and discouragement
about risk-taking set in, and may call young physicists’ love of science into question. And
citations matter greatly in university tenure and promotion decisions.

Most important of all is the issue of our community’s commitment to scientific integrity. Does
the physics community (or more generally, the wider scientific community) recognize excel-
lent research through quiet hard work, or do we value fame and promotional ability more?
Honest and thorough acknowledgment of prior research should be a standard for every scien-
tific publication, taken as seriously as we now take other standards of integrity such as truthful
representation of data and authenticity of authorship. Genuinely inadvertent omissions, while
probably inevitable, are easily corrected with on-line updates. When untruth is deemed to be
minor and correcting it unimportant, or when intentional dishonesty of any kind goes unchal-
lenged, the slope is slippery. In science reporting, dishonesty must be denounced. Tolerance
for it endangers the very value we place as scientists on truthfulness.

6.3 A personal note

Sharp and I have been extremely privileged. Encouraged to pursue science, we received superb
educations and graduate fellowships at elite U.S. universities. We had successful careers in
research. We received honors and awards in physics. Research risks taken led to challenging
obstacles in the 1970s, but we were able to see these through and continue as active scientists.
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In retrospect it is distressingly clear that only our status and connections in 1989-91 al-
lowed us to achieve the corrections published in Physics Today and Scientific American. Less
connected researchers would have had no chance. And today the obstacles to correcting un-
truths seem vastly greater! With all our credentials and refereed publications, we cannot
achieve passing mention by journalists drawn to a more famous person, or a few footnotes in
Wikipedia for undisputedly original findings. What can others with fewer resources do?

Thus Sharp and I came to feel it is our obligation to speak out, not just for ourselves but
for science. The outcome will not benefit us materially, nor will continued disregard harm us
furher. A public stand is necessary to address a systemic problem of integrity in physics.

7 Conclusion

We have reviewed the history of ideas leading to the prediction of anyons. Epistemological ob-
stacles stood in the way; research across decades helped break through them, leading to three
independent predictions. Close study suggests the value of educating future theorists in the
history of discoveries, encouraging them to question assumptions and invent alternate expla-
nations. We have also described systemic citation inequity, and ongoing dishonest journalism.
Such practices have adverse consequences not only for individuals but for science.

My faith is that the physics community fundamentally values truth and integrity in scholar-
ship, and that inequitable practices contrary to these values will become unacceptable. Hope-
fully this article contributes meaningfully toward that goal.

Acknowledgments

Jürg Fröhlich (ETH Zürich) and Douglas Lundholm (Uppsala University) suggested valuable
references antecedent to the prediction of anyons. I am grateful to the organizers of the
Group34 Colloquium for the opportunity to speak in the 50th Anniversary Special Session.
Finally, I would like to acknowledge David H. Sharp for his seminal contributions to the re-
search reviewed here, and for our life-long collaboration.

References

[1] J. M. Leinaas and J. Myrheim, On the theory of identical particles, Nuovo Cimento B 37,
1 (1977), doi:10.1007/BF02727953.

[2] G. A. Goldin, R. Menikoff and D. H. Sharp, Particle statistics from induced representations
of a local current group, J. Math. Phys. 21, 650 (1980), doi:10.1063/1.524510.

[3] G. A. Goldin, R. Menikoff and D. H. Sharp, Representations of a local current algebra in
nonsimply connected space and the Aharonov-Bohm effect, J. Math. Phys. 22, 1664 (1981),
doi:10.1063/1.525110.

[4] F. Wilczek, Magnetic flux, angular momentum, and statistics, Phys. Rev. Lett. 48, 1144
(1982), doi:10.1103/PhysRevLett.48.1144.

[5] F. Wilczek, Quantum mechanics of fractional-spin particles, Phys. Rev. Lett. 49, 957 (1982),
doi:10.1103/PhysRevLett.49.957.

005.12

https://scipost.org
https://scipost.org/SciPostPhysProc.14.005
https://doi.org/10.1007/BF02727953
https://doi.org/10.1063/1.524510
https://doi.org/10.1063/1.525110
https://doi.org/10.1103/PhysRevLett.48.1144
https://doi.org/10.1103/PhysRevLett.49.957


SciPost Phys. Proc. 14, 005 (2023)

[6] G. A. Goldin and D. H. Sharp, Rotation generators in two-dimensional space and particles
obeying unusual statistics, Phys. Rev. D 28, 830 (1983), doi:10.1103/PhysRevD.28.830.

[7] G. A. Goldin, R. Menikoff and D. H. Sharp, Diffeomorphism groups, gauge groups, and
quantum theory, Phys. Rev. Lett. 51, 2246 (1983), doi:10.1103/PhysRevLett.51.2246.

[8] G. A. Goldin, R. Menikoff and D. H. Sharp, Comments on “general theory
for quantum statistics in two dimensions”, Phys. Rev. Lett. 54, 603 (1985),
doi:10.1103/PhysRevLett.54.603.

[9] G. Bachelard La formation de l’esprit scientifique, Vrin, Paris, France, ISBN
9782711611508 (1938).

[10] M. Schneider, Epistemological obstacles in mathematics education, in Encyclopedia of math-
ematics education, Springer, Dordrecht, Netherlands, ISBN 9789400749788 (2014),
doi:10.1007/978-94-007-4978-8_57.

[11] G. Brousseau, Les obstacles épistémologiques et les problèmes en mathéma-
tique, Rech. Didact. Math. 4, 165 (1983), https://revue-rdm.com/1983/
les-obstacles-epistemologiques-et/.

[12] R. F. Streater, A. S. Wightman, PCT, spin and statistics and all that, Princeton Univer-
sity Press, Princeton, USA, ISBN 978140088420 (1984), http://www.jstor.org/stable/j.
ctt1cx3vcq.

[13] G. Gentile, Osservazioni sopra le statistiche intermedie, Nuovo Cimento 17, 493 (1940),
doi:10.1007/BF02960187.

[14] G. Gentile, Le statistiche intermedie e le proprietà dell’elio liquido, Nuovo Cimento 19, 109
(1942), doi:10.1007/BF02960192.

[15] Y. Aharonov and D. Bohm, Significance of electromagnetic potentials in the quantum theory,
Phys. Rev. 115, 485 (1959), doi:10.1103/PhysRev.115.485.

[16] W. Ehrenberg and R. E. Siday, The refractive index in electron optics and the principles of
dynamics, Proc. Phys. Soc. B 62, 8 (1949), doi:10.1088/0370-1301/62/1/303.

[17] B. J. Hiley, The early history of the Aharonov-Bohm effect, (arXiv preprint)
doi:10.48550/arXiv.1304.4736.

[18] Aharonov-Bohm effect, Wikipedia, https://en.wikipedia.org/wiki/Aharonov-Bohm_
effect.

[19] L. Schulman, A path integral for spin, Phys. Rev. 176, 1558 (1968),
doi:10.1103/PhysRev.176.1558.

[20] M. G. G. Laidlaw and C. M. DeWitt, Feynman functional integrals for systems of indistin-
guishable particles, Phys. Rev. D 3, 1375 (1971), doi:10.1103/PhysRevD.3.1375.

[21] J. S. Dowker, Quantum mechanics and field theory on multiply connected and on homoge-
neous spaces, J. Phys. A: Gen. Phys. 5, 936 (1972), doi:10.1088/0305-4470/5/7/004.

[22] H. S. Green, A generalized method of field quantization, Phys. Rev. 90, 270 (1953),
doi:10.1103/PhysRev.90.270.

[23] A. M. L. Messiah and O. W. Greenberg, Symmetrization postulate and its experimental
foundation, Phys. Rev. 136, B248 (1964), doi:10.1103/PhysRev.136.B248.

005.13

https://scipost.org
https://scipost.org/SciPostPhysProc.14.005
https://doi.org/10.1103/PhysRevD.28.830
https://doi.org/10.1103/PhysRevLett.51.2246
https://doi.org/10.1103/PhysRevLett.54.603
https://doi.org/10.1007/978-94-007-4978-8_57
https://revue-rdm.com/1983/les-obstacles-epistemologiques-et/
https://revue-rdm.com/1983/les-obstacles-epistemologiques-et/
http://www.jstor.org/stable/j.ctt1cx3vcq
http://www.jstor.org/stable/j.ctt1cx3vcq
https://doi.org/10.1007/BF02960187
https://doi.org/10.1007/BF02960192
https://doi.org/10.1103/PhysRev.115.485
https://doi.org/10.1088/0370-1301/62/1/303
https://doi.org/10.48550/arXiv.1304.4736
https://en.wikipedia.org/wiki/Aharonov-Bohm_effect
https://en.wikipedia.org/wiki/Aharonov-Bohm_effect
https://doi.org/10.1103/PhysRev.176.1558
https://doi.org/10.1103/PhysRevD.3.1375
https://doi.org/10.1088/0305-4470/5/7/004
https://doi.org/10.1103/PhysRev.90.270
https://doi.org/10.1103/PhysRev.136.B248


SciPost Phys. Proc. 14, 005 (2023)

[24] M. D. Girardeau, Permutation symmetry of many-particle wave functions, Phys. Rev. 139,
B500 (1965), doi:10.1103/PhysRev.139.B500.

[25] D. Finkelstein and J. Rubinstein, Connection between spin, statistics, and kinks, J. Math.
Phys. 9, 1762 (1968), doi:10.1063/1.1664510.

[26] R. F. Streater and I. F. Wilde, Fermion states of a boson field, Nucl. Phys. B 24, 561 (1970),
doi:10.1016/0550-3213(70)90445-1.

[27] J. Fröhlich, New super-selection sectors (“soliton-states”) in two dimensional Bose quantum
field models, Commun. Math. Phys. 47, 269 (1976), doi:10.1007/BF01609844.

[28] J. Fröhlich, Quantum sine-Gordon equation and quantum solitons in two space-
time dimensions, in Renormalization theory, Springer, Dordrecht, Netherlands, ISBN
9789401014922 (1976), doi:10.1007/978-94-010-1490-8_12.

[29] B. Klaiber, The Thirring model, Lect. Theor. Phys. A 10, 141 (1968).

[30] J.-M. Souriau, Structure des systèmes dynamiques. Maîtrises de mathématiques, Dunod,
Paris, France (1970).

[31] L. P. Kadanoff and H. Ceva, Determination of an operator algebra for the two-dimensional
Ising model, Phys. Rev. B 3, 3918 (1971), doi:10.1103/PhysRevB.3.3918.

[32] F. J. Wegner, Duality in generalized Ising models and phase transitions without local order
parameters, J. Math. Phys. 12, 2259 (1971), doi:10.1063/1.1665530.

[33] E. Wigner, On unitary representations of the inhomogeneous Lorentz group, Ann. Math.
40, 149 (1939), doi:10.2307/1968551.

[34] V. S. Varadarajan, George Mackey and his work on representation theory and foundations
of physics, Contemp. Math. 449, 417 (2008), doi:10.1090/conm/449/08722.

[35] M. Gell-Mann, The eightfold way: A theory of strong interaction symmetry, Synchrotron
lab, Pasadena, USA (1961), doi:10.2172/4008239.

[36] S. L. Adler, R. F. Dashen, Current algebras and applications to particle physics, W. A. Ben-
jamin, New York, USA (1968).

[37] R. F. Dashen and D. H. Sharp, Currents as coordinates for hadrons, Phys. Rev. 165, 1857
(1968), doi:10.1103/PhysRev.165.1857.

[38] R. Haag and D. Kastler, An algebraic approach to quantum field theory, J. Math. Phys. 5,
848 (1964), doi:10.1063/1.1704187.

[39] G. A. Goldin, Nonrelativistic current algebras as unitary representations of groups, J. Math.
Phys. 12, 462 (1971), doi:10.1063/1.1665610.

[40] G. A. Goldin and D. H. Sharp, Lie algebras of local currents and their representations, in
Group representations in mathematics and physics, Springer, Berlin, Heidelberg, Germany,
ISBN 9783540053101 (1970), doi:10.1007/3-540-05310-7_31.

[41] G. A. Goldin, J. Grodnik, R. T. Powers and D. H. Sharp, Non-relativistic current algebra in
the ‘N/V’ limit, J. Math. Phys. 15, 88 (1974), doi:10.1063/1.1666513.

[42] R. Menikoff, The Hamiltonian and generating functional for a nonrelativistic local current
algebra, J. Math. Phys. 15, 1138 (1974), doi:10.1063/1.1666764.

005.14

https://scipost.org
https://scipost.org/SciPostPhysProc.14.005
https://doi.org/10.1103/PhysRev.139.B500
https://doi.org/10.1063/1.1664510
https://doi.org/10.1016/0550-3213(70)90445-1
https://doi.org/10.1007/BF01609844
https://doi.org/10.1007/978-94-010-1490-8_12
https://doi.org/10.1103/PhysRevB.3.3918
https://doi.org/10.1063/1.1665530
https://doi.org/10.2307/1968551
https://doi.org/10.1090/conm/449/08722
https://doi.org/10.2172/4008239
https://doi.org/10.1103/PhysRev.165.1857
https://doi.org/10.1063/1.1704187
https://doi.org/10.1063/1.1665610
https://doi.org/10.1007/3-540-05310-7_31
https://doi.org/10.1063/1.1666513
https://doi.org/10.1063/1.1666764


SciPost Phys. Proc. 14, 005 (2023)

[43] R. Menikoff and D. H. Sharp, Representations of a local current algebra: Their dynamical
determination, J. Math. Phys. 16, 2341 (1975), doi:10.1063/1.522495.

[44] R. Menikoff and D. H. Sharp, A gauge invariant formulation of quantum electrodynamics
using local currents, J. Math. Phys. 18, 471 (1977), doi:10.1063/1.523291.

[45] C. Martin, A mathematical model for the Aharonov-Bohm effect, Lett. Math. Phys. 1, 155
(1976), doi:10.1007/BF00398379.

[46] J. M. Leinaas, Statistics of charge-monopole composites, Nuovo Cimento A 47, 19 (1978),
doi:10.1007/BF02896224.

[47] F. Wilczek, Fractional statistics and anyon superconductivity, World Scientific, Singapore,
ISBN 9789810200480 (1990), doi:10.1142/0961.

[48] Y.-S. Wu, General theory for quantum statistics in two dimensions, Phys. Rev. Lett. 52, 2103
(1984), doi:10.1103/PhysRevLett.52.2103.

[49] H. Bartolomei et al., Fractional statistics in anyon collisions, Science 368, 173 (2020),
doi:10.1126/science.aaz5601.

[50] J. Nakamura, S. Liang, G. C. Gardner and M. J. Manfra, Direct observation of anyonic
braiding statistics, Nat. Phys. 16, 931 (2020), doi:10.1038/s41567-020-1019-1.

[51] S. Ornes, Physicists prove anyons exist, a third type of particle in the Uni-
verse, Discov. Mag. (2020), https://www.discovermagazine.com/the-sciences/
physicists-prove-anyons-exist-a-third-type-of-particle-in-the-universe.

[52] D. Najjar, ‘Milestone’ evidence for anyons, a third kingdom of par-
ticles, Quanta Mag. (2020), https://www.quantamagazine.org/
milestone-evidence-for-anyons-a-third-kingdom-of-particles-20200512/.

[53] C. Cottier, Bosons, fermions and anyons: What are the three particle kingdoms in the quan-
tum world?, Discov. Mag. (2021), https://www.discovermagazine.com/the-sciences/
bosons-fermions-and-anyons-what-are-the-three-particle-kingdoms-in-the.

[54] C. Dreifus, A prodigy who cracked open the cosmos, Quanta Mag. (2021), https://www.
quantamagazine.org/frank-wilczek-cracked-open-the-cosmos-20210112/.

[55] A. Khurana, Bosons condense and fermions ‘exclude’, but anyons. . . ?, Phys. Today 42, 17
(1989), doi:10.1063/1.2811205.

[56] L. Biedenharn, E. Lieb, B. Simon and F. Wilczek, The ancestry of the ‘anyon’, Phys. Today
43, 90 (1990), doi:10.1063/1.2810672.

[57] G. A. Goldin and D. H. Sharp, The diffeomorphism group approach to anyons, Int. J. Mod.
Phys. B 05, 2625 (1991), doi:10.1142/S0217979291001048.

[58] F. Wilczek, Anyons, Sci. Am. 264, 58 (1991), https://www.jstor.org/stable/e24936887.

[59] G. A. Goldin, D. H. Sharp, Anyons, Sci. Am. 265, 12 (1991), https://www.jstor.org/
stable/24938702.

[60] G. A. Goldin, D. H. Sharp, Acknowledging the physicists who first predicted “anyons”
(2021), https://wgmp.uwb.edu.pl/wgmp39/slides/Goldin/.

005.15

https://scipost.org
https://scipost.org/SciPostPhysProc.14.005
https://doi.org/10.1063/1.522495
https://doi.org/10.1063/1.523291
https://doi.org/10.1007/BF00398379
https://doi.org/10.1007/BF02896224
https://doi.org/10.1142/0961
https://doi.org/10.1103/PhysRevLett.52.2103
https://doi.org/10.1126/science.aaz5601
https://doi.org/10.1038/s41567-020-1019-1
https://www.discovermagazine.com/the-sciences/physicists-prove-anyons-exist-a-third-type-of-particle-in-the-universe
https://www.discovermagazine.com/the-sciences/physicists-prove-anyons-exist-a-third-type-of-particle-in-the-universe
https://www.quantamagazine.org/milestone-evidence-for-anyons-a-third-kingdom-of-particles-20200512/
https://www.quantamagazine.org/milestone-evidence-for-anyons-a-third-kingdom-of-particles-20200512/
https://www.discovermagazine.com/the-sciences/bosons-fermions-and-anyons-what-are-the-three-particle-kingdoms-in-the
https://www.discovermagazine.com/the-sciences/bosons-fermions-and-anyons-what-are-the-three-particle-kingdoms-in-the
https://www.quantamagazine.org/frank-wilczek-cracked-open-the-cosmos-20210112/
https://www.quantamagazine.org/frank-wilczek-cracked-open-the-cosmos-20210112/
https://doi.org/10.1063/1.2811205
https://doi.org/10.1063/1.2810672
https://doi.org/10.1142/S0217979291001048
https://www.jstor.org/stable/e24936887
https://www.jstor.org/stable/24938702
https://www.jstor.org/stable/24938702
https://wgmp.uwb.edu.pl/wgmp39/slides/Goldin/


SciPost Phys. Proc. 14, 005 (2023)

[61] G. A. Goldin, D. H. Sharp, Certified mail to discover magazine editorial director Steve
George (2021), https://wgmp.uwb.edu.pl/wgmp39/slides/Goldin/.

[62] Policies and standards, The Washington Post (2021), https://www.washingtonpost.com/
policies-and-standards/.

[63] Anyon, Wikipedia, https://en.wikipedia.org/wiki/Anyon.

[64] E. G. Teich et al., Citation inequity and gendered citation practices in contemporary physics,
Nat. Phys. 18, 1161 (2022), doi:10.1038/s41567-022-01770-1.

[65] S. Sewell, ‘Discomfort can break ground’: Physicist Stephon Alexander on the value of dif-
ference, The Guardian (2021), https://www.theguardian.com/us-news/2021/sep/01/
stephon-alexander-physics-science-brown-university.

[66] S. Alexander, Fear of a black universe, Basic Books, New York, USA, ISBN 9781541699632
(2021).

A. Ananthaswamy, Who is allowed to have wild ideas in physics?, Nature 597, 471 (2021),
doi:10.1038/d41586-021-02526-2.

005.16

https://scipost.org
https://scipost.org/SciPostPhysProc.14.005
https://wgmp.uwb.edu.pl/wgmp39/slides/Goldin/
https://www.washingtonpost.com/policies-and-standards/
https://www.washingtonpost.com/policies-and-standards/
https://en.wikipedia.org/wiki/Anyon
https://doi.org/10.1038/s41567-022-01770-1
https://www.theguardian.com/us-news/2021/sep/01/stephon-alexander-physics-science-brown-university
https://www.theguardian.com/us-news/2021/sep/01/stephon-alexander-physics-science-brown-university
https://doi.org/10.1038/d41586-021-02526-2


SciPost Phys. Proc. 14, 006 (2023)

On the unexpected fate of scientific ideas:
An archeology of the Carroll group

Jean-Marc Lévy-Leblond⋆

Université de Nice, France

⋆ jmll@unice.fr

34th International Colloquium on Group Theoretical Methods in Physics
Strasbourg, 18-22 July 2022

doi:10.21468/SciPostPhysProc.14

Abstract

In 1965, I published a paper, exhibiting a hitherto unknown limit of the Lorentz group,
which I christened “Carroll group” due to its seemingly paradoxical physical contents.
Since I saw it as more curious than relevant, I published it in French in a journal some-
what afar from the mainstream of theoretical physics at that time. It was most gratifying
to witness the quite unexpected favour this paper started to enjoy half a century later,
so much that a so-called “Carrollian physics” is now developing, with applications in
various domains of forefront theoretical physics, such as quantum gravitation, super-
symmetry, string theory, etc. I offer this narrative as an example of the very diverse time
scales with which scientific ideas may develop — or not.
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. . . notwithstanding the sagacious advice
by Lewis Carroll himself, who wrote:
«It’s no use going back to yesterday,
because I was a different person then.» [1]

1 Paying tributes

Let me start by diving in a more remote time than my own in order to acknowledge my debt to
some of our predecessors who stressed the importance of group structure as one of the pillars
of theoretical physics. A prominent figure in my personal Pantheon is Paul Langevin (1872-
1946), whose 150th birthday we recently celebrated. Not only did he contribute to crucial
developments of Einsteinian relativity, but in his most resolute and successful endeavour for
clarifying and popularizing it, he insisted as early as 1911, on the group theoretical perspective,
writing

“It is an experimental fact that the equations between physical quantities by which we
translate the laws of the outside world, must have exactly the same form for different groups
of observers, for various systems of reference in uniform translation relative to each other.
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Figure 1: Paul Langevin and Albert Einstein in 1922.

This requires, in the language of mathematics, that these equations admit of a group of trans-
formations corresponding to a change of reference system to another moving relative to it.
The equations of physics must be preserved for all transformations of this group. In such a
transformation, when one moves from one reference system to another, measures of various
magnitudes, especially those that are related to space and time, are changed in a manner that
corresponds to the structure of these notions.” [2]

It is worthwhile recalling here what Einstein, who maintained a lifelong friendly relation-
ship with Langevin (Figure 1), wrote in his funeral tribute:

“It appears to me as a foregone conclusion that he would have developed the special rela-
tivity theory, had not that been done elsewhere.” [3]

One may well admire the elegance of the last words. . . On a more private level, I wish to
salute the memory of my group-theoretical masters Louis Michel (1923-1999) and François
Lurçat (1927-2012), as well as of my friend and collaborator Henri Bacry (1928-2010).

2 Siring the Carroll group

After my PhD, dedicated to the Galilei group and its representations in the line of Wigner’s
epochal paper on the Lorentz group [4], I soon started to teach Einsteinian relativity, stressing
both its analogies and its differences with Galilean relativity. While preparing my lectures, I
stumbled upon an unexpected difficulty, concerning the validity of the Galilean approximation
to the Lorentz transformations. Choosing the natural system of units where the limit velocity
c is taken as unity, the Lorentz transformations relating spacetime intervals in two equivalent
reference frames with relative velocity v take the form:

¨

∆x ′ = γ(∆x − v∆t) ,

∆t ′ = γ(∆t − v∆x) , where γ=
p

1− v2 .
(1)

If we now wish to obtain approximate formulas in the situation where v ≪ 1, the Galilean
group law transformations

∆x ′ =∆x − v∆t , (2)

∆t ′ =∆t , (3)

do not arise obviously unless we require the additional condition ∆x ≪ ∆t. It thus appears
that the validity of the Galilean approximation requires not only velocities small with respect
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Figure 2

to the limit velocity, but also large time-like intervals, a condition which has stood implicit in
most (not to say all) treatments of the subject. It is then natural to inquire what happens in the
opposite case of large space-like intervals, that is for ∆t ≪ ∆x , yielding the transformation
laws

∆x ′ =∆x , (4)

∆t ′ =∆t − v∆x . (5)

These transformations obviously form a group, which, as well as the Galilei group, is a con-
traction of the Lorentz group [5] and thus seemed as well worth of recognition [6]. In a
world governed by such an invariance group, causality almost completely disappears, since
time-ordering is only preserved along the timelines at given space points. For this reason, I
ventured to propose the name “Carroll group” for this alternate degenerate limit of the Lorentz
group [1].

An illustrative way of expressing the situation is that, while the Galilei group appears as
the limit of the Lorentz group when a rescaling of Minkowski space flattens the light cone
on the constant time hyperplane, the Carroll group emerges when the light cone closes up
on the time axis (Figure 2). This leads to another manner of considering the Carroll group,
by recovering dimensional velocities. Since the limit velocity is but the slope of light rays in
Minkowski spacetime, it results that, whereas the Galilei group corresponds to the well-known
limit c→∞, the Carroll group may be seen as resulting from the inverse limit, that is c→ 0,
weird as this limit may appear at first glance.

At the time, I was convinced that, because of the acausal nature of a universe obeying
Carrollian invariance, the usefulness of the Carroll group was very low, and I apologized for
begetting it, arguing that my purpose was mainly pedagogical. So little did I believe in its
fate that I published my result in French, in a journal which did not belong to the mainstream
publications of theoretical physics, concluding my paper by stating with some cheekiness that
“theoretical physics has recently shown itself to be friendly enough for many groups with a
limited physical interest; this is why I have not too much scruple in bringing to light this
degenerate cousin of the Poincaré group”.
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It took me a long time to learn that a paper quite similar to mine had been written in-
dependently by an Indian colleague, N. D. Sen Gupta, working at the Bombay Tata Institute
for Fundamental Research [7]. Rather unexpectedly, his paper had been published very soon
after mine, and, as far as I know, might even had been written before. While it appeared in a
journal at that time more prominent in theoretical physics, the long delay in my recognition of
Sen Gupta’s work and the paucity of any references to it in the literature for many years bear
witness to the little interest elicited by our almost simultaneous small discovery.

3 A terminological excursus

“Relativity” ?

With the benefit of half a century of personal and collective maturation, I wish to indulge here
in a piece of self-criticism concerning the use of the term “non-relativistic” in the title and text
of my old paper. The word was routinely used until late in the XXth century to mean, as many
dictionaries still propose, “not based on or not involving the special relativity of Einstein”.
However, it has become clear today that Einsteinian relativity is not the only consistent one
and that the kinematical structure of classical mechanics obeys a relativity theory of its own,
now known as Galilean relativity. One might object to this denomination that it is somewhat
anachronistic, as the general notion of space-time symmetries would take almost three cen-
turies after Galileo to emerge. Nonetheless, a most important paragraph in Galileo’s seminal
Dialogo shows quite clearly that he had fully understood the invariance of physical laws with
respect to changes of reference frames with uniform velocity [8].

But we might well take one more step in the revision of the current terminology. Indeed,
the term “relativity” itself, which, concerning its use in physics, dates back to Poincaré [9],
may be considered as a misnomer. As early as 1948, an undisputable authority, namely A.
Sommerfeld, wrote:

“[The theory of space-time] is an Invariantentheorie of the Lorentz group: The relativity
of space and time is not the essential thing, which is the independence of the laws of nature
from the point of view of the observer.” [10]

This independence/invariance is characterized by the intrinsic structure of spacetime, that
is, what I believe natural to name a chronogeometry, exactly as we call elementary geome-
try the theoretical structure of Euclidean space, with the term “geometry” having been gen-
eralised to describe the structure of variously defined spaces, according to Klein’s Erlangen
program [11].

A proposal:
— Replace “relativity” by “chronogeometry”.
— Replace “non-relativistic” by “Galilean” (... or “Carrollian”).

“Speed of light” ?

Einstein’s derivation of Lorentz transformations (1905) was based on the so-called second
postulate, that of the invariance of light velocity. But Einsteinian chronogeometry is not in-
trinsically linked to the properties of light: Indeed, as a universal structure of Minkowskian
spacetime, it rules as well non-electromagnetic phenomena, such as strong interactions. As a
matter of fact, it was realized as early as 1911 that the Lorentz group may be constructed with-
out any appeal to the second postulate (Ignatowsky, Frank & Rothe), as many authors have
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Figure 3: Yearly quotations of the birth certificate for the Carroll group [6]. (Thanks
to Yves Gingras for providing me with this graph).

rediscovered since.1 Furthermore, suppose the photon has a non-zero mass, however small,
a case which, obviously, cannot be excluded; then light would not travel with a non-invariant
velocity...

A proposal:
— Replace “speed of light” by “speed limit” or better: “Einstein constant”.

“Group contraction”

The notion of group contraction, which formalize the limiting process leading from Einsteinian
chronogeometry to the Galilean (or Carrollian) one, was introduced just a century ago by Inönu
and Wigner in the following terms:

“We shall call the operation of obtaining a new group by a singular transformation of the
infinitesimal elements of the old group a contraction of the latter. The reason for this term will
become clear below. (. . . ) In the limit e = 0 (if such a limit exists), one will have contracted
the whole group to an infinitesimally small neighborhood of the group.”

But this is hardly a proper description. In fact, the process goes rather the other way, that
is, extending the structure of an infinitesimal neighbourhood of the group to that of a fully-
fledged new group. More than a simple extension, this change of structure in fact deserves to
be considered as a distension.

A proposal:
— Replace “group contraction” by “group distension”.

Such discussions about the terminology of physics are by many considered as futile nit-
picking: Why, do they ask, should we care about words since we have the formulas to rely
on? This is not the place to develop a detailed answer [13]. Let me only state that paying at-
tention to our linguistic choices and assessing their relevance, may be of great significance for

1For a recent example with bibliography (incomplete), see [12].
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Figure 4: Possible chronogeometries [16].

research, as it should go beyond formalism, for teaching, as it should go beyond technicalities,
for popularisation, as it should go beyond catchwords.

4 The late blooming of Carrollian physics

As I had suspected right from the beginning, the decades following the appearance of the
Carroll group on the theoretical scene, viewed very little references to my paper or Sen Gupta’s.

From 1965 to the early 2000s, there were one or two quotations per year in journals as
varied as J. Math.Phys., Ann. Der Phys., J. of Phys. Comm., Nuovo Cimento, Int. J. Theor. Phys.,
Bull. Acad. R. Belg., Phys. Lett., J. Geometry & Phys., etc., dealing mainly with general consid-
erations about abstract Group theory, Special relativity, Electromagnetism. But, to my utmost
surprise, from the 2000s onwards, with a notable acceleration after 2010, more and more
papers appeared dealing with Carrollian chronogeometry, with a concentration in J. Math.
Phys., J. of High Energy Phys., Class. & Qu. Gravity, Phys. Rev. D, Phys. Rev. Lett., General
Relat. & Gravit., J. of Cosmology & Astroparticle, Phys. Lett. (Figure 3). These works are now
mainly concerned with General relativity, Field Theory, Gravitation, etc. Some keywords char-
acterizing them are: Conformal structures, Asymptotic flat spacetimes, Nonrelativistic SUSY,
Symplectic spacetime, Non-Riemannian isometries, Bondi-Metzner-Sachs group, Null mani-
folds, Cartan geometry, Anti-deSitter symmetry, BMS field theories, Tachyon cosmology, Flat
holography, Chern-Simons supergravity, etc.2

While this renewal of interest may at first seem puzzling, the reason in fact is rather easy to
understand. Indeed, if Galilean chronogeometry yields a simple approximate way to explore
the portion of Minkowski spacetime interior to the lightcone, Carrollian chronogeometry fur-
nishes a similar simple approximate way to explore the portion of Minkowski spacetime exte-
rior to the lightcone. Even though the latter is an acausal region, it is a constitutive portion
of spacetime and plays a significant role in many physical phenomena. This argument may be
strengthened by considering how Lorentz transformations may be generated by a combination
of Galilean and Carrollian ones3

A few years after the appearance of the Carroll group, it was shown by Henri Bacry and

2See the recent Carroll workshops [14].
3See a recent and long overdue annex to [6]: J.-M. Lévy-Leblond (2023) [15].
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Figure 5: Yearly quotations of [16]. (Thanks to Yves Gingras for providing me with
this graph).

myself to take place in an overall description and classification of logically and physically
possible chronogeometries [16], as summed up by an elegant diagram (Figure 4). This paper
had the good fortune to be remarked by F. Dyson who wrote the following lines in a wonderful
article about various “missed opportunities” in theoretical physics:

“The eight groups can then be visualized as the vertices of a cube. P and G are the only
kinematical groups that correspond to orthodox physical universes. But the other five groups
are just as good, mathematically speaking. The most interesting of the heterodox groups are
N and C. N describes a Newtonian universe with curved space-time. C describes a universe
in which space is absolute, in contrast to the Galilei group G which has time absolute. The
group C was discovered by Lévy-Leblond and called by him the Carroll group. In the Carroll
universe, all objects have zero velocity although they may have nonzero momentum. Carroll
was a pure mathematician who had already foreseen this possibility in 1871: ‘A slow sort of
country,’ said the Queen, “Now, here, you see, it takes all the running you can do, to keep in
the same place.” But his mathematical colleagues once again missed an opportunity by failing
to take him seriously.” [17]

Our paper had a career quite similar, although a bit more favourable, to the birth act of the
Carroll group, in that it has known a fast increasing number of quotations after 2000 (Figure 5).

5 A few conclusions

• The pace of contemporary science is not necessarily “fast and furious”:

“Torniamo all’antica. Sarà un progresso.” [“Let us go back to antiquity. It will be a
progress.”]. [18]

• Sharing knowledge may help developing it:

“L’homme ne peut jouir de ce qu’il sait qu’autant qu’il peut le communiquer à quelqu’un
(et ainsi l’enrichir).” [“One cannot enjoy one’s knowledge but by sharing it (and thereby
enriching it).”]. [19]
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• Language should be taken seriously:

“Le parole (. . . ) non presentano la sola idea dell’oggetto significato, ma quando piu
o quando meno immagini accessorie. Ed è pregio sommo della lingua l’aver di queste
parole. Le voci scientifiche presentano la nuda e circoscritta idea di quel tale oggetto e
percio si chiamano termini perche determiniano e definiscono la cosa da tutte le parti.”
[“Words do not convey only the sheer idea of the object signified, but also a more or less
important number of related meanings and pictures. It is the utmost value of language
to be thus made of words. Most scientific terms present but the bare and limited idea
of the object: They may indeed be called terms, as they determine and confine the
thing.”]. [20]

• It is worthwhile exploring neglected opportunities:

“Undoubtedly, there exist many more missed opportunities to create new branches of
pure mathematics out of old problems of applied science.” [17]

But no less undoubtedly, reciprocally and more generally, there exist many missed op-
portunities to solve new problems of science out of old branches of it.
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Abstract

Dominant shapes naturally emerge in atomic nuclei from first principles, thereby es-
tablishing the shape-preserving symplectic Sp(3,R) symmetry as remarkably ubiquitous
and almost perfect symmetry in nuclei. We discuss the critical role of this emergent
symmetry in enabling machine-learning descriptions of heavy nuclei, ab initio modeling
of α clustering and collectivity, as well as tests of beyond-the-standard-model physics.
In addition, the Sp(3,R) and SU(3) symmetries provide relevant degrees of freedom
that underpin the ab initio symmetry-adapted no-core shell model with the remarkable
capability of reaching nuclei and reaction fragments beyond the lightest and close-to-
spherical species.
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1 Introduction

Dominant shapes, often very few in number, naturally emerge in atomic nuclei.1 This remark-
able result has been recently shown by large-scale nuclear simulations from first principles [2].
Indeed, each nuclear shape respects an exact symmetry, namely, the symplectic Sp(3,R) sym-
metry [3, 4]. Thereby the outcome of these simulations establishes the symplectic Sp(3,R)
symmetry as remarkably ubiquitous and almost perfect symmetry in nuclei up through the
calcium region (anticipated to hold even stronger in heavy nuclei [5]). This outcome also
exposes for the first time the fundamental role of the Sp(3,R) symmetry and suggests that its
origin is rooted in the strong nuclear force, in the low-energy regime.

This builds upon a decades-long research, starting with the pivotal work of Draayer [4,6–8]
and that of Rowe and Rosensteel [3, 5, 9, 10], who have successfully harnessed group theory
as a powerful tool for understanding and computing the intricate structure of nuclei. This
pioneering work has been instrumental in designing the theory that underpins many highly
ordered patterns unveiled amidst the large body of experimental data [11–13]. In addition, it
has explained phenomena observed in energy spectra, E2 transitions and deformation, giant
resonances (GR), scissor modes and M1 transitions, electron scattering form factors, as well
as the interplay of pairing with collectivity. The new developments and insights have provided
the critical structure raised upon the very foundation laid by Elliott [14–16] and Hecht [17,18],
and opened the path for large-scale calculations feasible today on supercomputers. And while
these earlier algebraic models have been very successful in explaining dominant nuclear pat-
terns, they have assumed symmetry-based approximations and have often neglected symmetry
mixing. This establishes Sp(3,R) as an effective symmetry2 for nuclei, which may or may not be
badly broken in realistic calculations. It is then imperative to probe if this symmetry naturally
arises within an ab initio framework, which will, in turn, establish its fundamental role.

Indeed, within an ab initio framework without a priori symmetry assumptions, the
symmetry-adapted no-core shell model (SA-NCSM) [8, 20, 21] with chiral effective field the-
ory (EFT) interactions [22–24] has recently confirmed the goodness of the symplectic Sp(3,R)
symmetry that is only slightly broken. With no parameters to adjust, the SA-NCSM is capable
then not only to explain but also to predict the emergence of nuclear shapes and collectiv-
ity across nuclei, even in close-to-spherical nuclear states without any recognizable rotational
properties.

Within an ab initio framework, the emergent symmetries play a critical role, as they can
inform relevant degrees of freedom. In particular, a symmetry-adapted many-body basis can
be employed, as in the SA-NCSM, thereby providing solutions for drastically reduced sizes of
the spaces in which particles reside (referred to as “model spaces”) compared to the corre-
sponding ultra-large model spaces, without compromising the accuracy of results for various
nuclear observables. By exploiting symplectic symmetry, ab initio descriptions of spherical and

1This publication reuses some material from [1] under the terms of its CC BY license.
2A familiar example for an effective symmetry is SU(3). While the Elliott model with a single SU(3) irrep

explains ground-state rotational states in deformed nuclei, the SU(3) symmetry is, in general, largely mixed, mainly
due to the spin-orbit interaction (nonetheless, SU(3) has been shown to be an excellent quasi-dynamical symmetry,
that is, each rotational state has almost the same SU(3) content [19]).

007.2

https://scipost.org
https://scipost.org/SciPostPhysProc.14.007


SciPost Phys. Proc. 14, 007 (2023)

deformed nuclei up through the calcium region are now possible without the use of effective
charges [8, 21, 25–27]. This allows the SA-NCSM to accommodate even larger model spaces
and to reach heavier nuclei, such as 20Ne [2], 21Mg [28], 22Mg [29], 28Mg [30], as well as
32Ne and 48Ti [31].

In this paper, we briefly outline the SU(3) and Sp(3,R) schemes utilized by the ab initio SA-
NCSM. We overview the critical role of the emergent Sp(3,R) symmetry in enabling machine-
learning descriptions of heavy nuclei [32], ab initio modeling of α clustering and collectivity,
along with tests of beyond-the-standard-model physics [33]. In addition, we show that with
the help of the SA-NCSM, which expands ab initio applications up to medium-mass nuclei
by using the dominant symmetry of nuclear dynamics, one can provide solutions to reaction
processes in this region, with a focus on elastic neutron scattering.

2 Emergent symmetries in nuclei: Sp(3,R) and SU(3)

2.1 SU(3) scheme

It is well known that SU(3) [6,14,18,34,35] is the symmetry group of the spherical harmonic
oscillator (HO) that underpins the valence-shell model and the valence-shell SU(3) (Elliott)
model [14–16] (for technical details of SU(3), see Ref. [36]). The Elliott model has been
shown to naturally describe rotations of a deformed nucleus without the need for breaking
rotational symmetry. But even beyond the valence shell, the SU(3) scheme provides a classifi-
cation of the complete shell-model space in multiple shells, and is related to the LS-coupling
and j j-coupling schemes via a unitary transformation. It divides the space into basis states
of definite (λµ) quantum numbers of SU(3) that are linked to the intrinsic quadrupole defor-
mation according to the established mapping [37–39]. For example, the simplest cases, (0 0),
(λ0), and (0µ), describe spherical, prolate, and oblate deformation, respectively,3 while a gen-
eral nuclear state is typically a superposition of several hundred various triaxially deformed
configurations. Note that, in this respect, basis states can have little to no deformation, and,
e.g., about 60% of the ground state of the closed-shell 16O is described by a single SU(3) basis
state, the spherical (00).

Specifically, in the SU(3) scheme, in place of the spherical quantum numbers |ηlml〉, one
can consider the single-particle HO basis

�

�ηzηxηy

�

, the HO quanta in the three Cartesian
directions, z, x , and y , with ηx + ηy + ηz = η (η = 0,1, 2, . . . for s, p, sd, ... shells).
For a given HO major shell, the complete shell-model space is then specified by all distin-
guishable distributions of ηz ,ηx and ηy . E.g., for η = 2, there are 6 different distributions,
(ηz ,ηx ,ηy) = (2,0, 0), (1,1, 0), (1,0, 1), (0, 2,0), (0, 1,1) and (0, 0,2). The number of these
configurations is Ωη = (η+ 1)(η+ 2)/2 (spatial degeneracy) and the associated symmetry is
described by the U(Ωη) unitary group. Each of these (ηz ,ηx ,ηy) configurations can be either
unoccupied or has maximum of two particles with spins ↑↓.

As a simple example for an SU(3)-scheme basis state, consider A = 2 protons in the sd
shell (η = 2) with a particle in the (2,0, 0) level with spin ↑ and another in the (1,1, 0) level
with spin ↑. The total number of quanta in each direction is (ηtot

z ,ηtot
x ,ηtot

y , ) = (3, 1,0), or
equivalently, ηtot(λµ) = 4(21), where ηtot = ηtot

x + η
tot
y + η

tot
z , together with λ = ηtot

z − η
tot
x

and µ = ηtot
x − η

tot
y labeling an SU(3) irrep, in addition to the total intrinsic spin and its pro-

jection SMS . For given (λµ), the quantum numbers κ, L and ML are given by Elliott [14,15],
according to the SU(3)

κ
⊃ SO(3)L⊃SO(2)ML

, where the label κ distinguishes multiple occur-

3Following this mapping, quadrupole moments of (0 0), (λ0), and (0µ) configurations – in a simple classical
analogy to rotating spherical, prolate, and oblate spheroids in the lab frame [40] – are zero, negative, and positive,
respectively.
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rences of the same orbital angular momentum L in the parent irrep (λµ). For our exam-
ple, (λµ) = (21) with κ = 1, L = 1,2, 3, and ML = −L,−L + 1, . . . , L. Hence, the set
{ηA(λµ)κ(LS)J M} completely labels a 2-proton SU(3)-scheme basis state (with ηtot = Aη). A
basis state in this scheme for a 2-particle system is given by, {a†

(η0)stz
×a†
(η′0)s′ t ′z

}(λµ)κ(LS)J M |0〉,

which is an SU(3)-coupled product, provided that a† is a proper SU(3) tensor; incidentally, the
SU(3) tensor a† of rank (λµ) = (η0) coincides with the familiar particle creation operator,
a†
(η0)lmsσtz

≡ a†
ηlmsσtz

, while the particle annihilation SU(3) tensor of rank (λµ) = (0η) is

given as ã(0η)l−ms−σtz
= (−1)η+l−m+s−σaηlmsσtz

. Note that for η= η′ = 2, e.g., there are only
a few 2-proton configurations (λµ) = (4 0) with L = 0,2, 4, (21) with L = 1, 2,3, and (02)
with L = 0,2. Furthermore, these basis states are related to LS-coupled basis states (similarly,
to j j-coupled basis states) via a simple unitary transformation,

n

a†
(η0)stz

× a†
(η′0)s′ t ′z

o(λµ)κ(LS)J M
|0〉=
∑

l,l ′
〈(η0)l; (η′0)l ′∥(λµ)κL〉{a†

ηlstz
× a†

η′ l ′s′ t ′z
}(LS)J M |0〉 , (1)

where 〈. . . ; . . .∥ . . . 〉 is the SU(3) analog of the familiar reduced Clebsch-Gordan coefficient
[note that there is no dependence on the particle orbital angular momenta, l and l ′, in the
SU(3)-scheme basis states].

An important feature of the SU(3) scheme is that all possible configurations within a ma-
jor HO shell η (for protons or neutrons) are not constructed using the tedious procedure of
coupling of creation operators referenced above, but are readily available based on the U(Ωη)
unitary group of the many-body three-dimensional HO. In particular, the basis construction is
implemented according to the reduction [41]

U(Ωη) × SU(2)
�

f1, f2, . . . fΩη
�

Sη
∪ αη

SU(3)
(ληµη)

(2)

with SU(3)(λη µη)
κη
⊃ SO(3)Lη⊃SO(2)MLη

[14, 15], where a multiplicity index αη distinguishes
multiple occurrences of an SU(3) irrep (ληµη) in a given U(Ωη) irrep labeled by Young
tableaux, [f] = [ f1, f2, . . . , fΩη], with f1 ≥ f2 ≥ · · · ≥ fΩη and fi = 0 (unoccupied), 1 (oc-
cupied by a particle), or 2 (occupied by 2 particles of spins ↑↓). An illustrative example for 4
particles in the p f shell (η= 3) is shown in Table 1.

2.2 Sp(3,R) scheme

The key role of deformation in nuclei and the coexistence of low-lying quantum states in a sin-
gle nucleus characterized by configurations with different quadrupole moments [11]makes the
quadrupole moment a dominant fundamental property of the nucleus. Hence, the quadrupole
moment Q (or deformation) and the monopole moment r2 (or “size” of the nucleus), along
with nuclear masses, establishes the energy scale of the nuclear problem. Indeed, the nuclear
monopole and quadrupole moments underpin the essence of symplectic Sp(3,R) symmetry.

Specifically, for A particles in three-dimensional space, the complete basis for the shell
model is described by Sp(3A,R)×U(4) [10], where Sp(3A,R) is the group of all linear canon-
ical transformations of the 3A-particle phase space and Wigner’s supermultiplet group U(4)
describes the complementary spin-isospin space. A complete translationally invariant shell-
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Table 1: SU(3)×SU(2)S configurations for 4 protons (neutrons) in the p f shell (η= 3
with Ωη = 10). Note that a spatial symmetry represented by a Young tableau
�

f1, . . . , fΩη
�

is uniquely determined by its complementary spin symmetry of a given
intrinsic spin Sη (conjugate Young tableaux) ensuring the overall antisymmetriza-
tion of each U(Ωη)×SU(2)Sη configuration with respect to spatial and spin degrees
of freedom (d.o.f.) [41].

Spatial d.o.f. Spin d.o.f.
U(10) ⊃ SU(3) SU(2)
[ f1 f2 . . . f10] (λµ) S

(82), (7 1), (44)2, (52), (0 6), (60), (33)

[22] (14), (4 1), (22)2, (11) S = 0

(90), (6 3), (71), (44), (2 5), (52)2, (33)2

[212] (14)2, (41)2, (22), (0 3), (30)2, (11) S = 1

(52), (0 6), (33), (22), (3 0)

[14] S = 2

model basis is classified according to (see, e.g., [5,10]),

Sp(3(A− 1),R) × U(4)
∪ ∪

Sp(3,R)×O(A− 1) SU(2)S × SU(2)T .
(3)

The Sp(3,R) scheme utilizes the symplectic group Sp(3,R). It consists of all particle-
independent linear canonical transformations of the single-particle phase-space observables,
the positions r⃗i and momenta p⃗i (with particle index i = 1, . . . , A and spacial directions
α,β = x , y, z)

r ′iα =
∑

β

Aαβ riβ + Bαβ piβ , (4)

p′iα =
∑

β

Cαβ riβ + Dαβ piβ , (5)

that preserve the Heisenberg commutation relations [riα, p jβ] = iħhδi jδαβ [5, 8, 42]. Gen-
erators of these transformations, symbolically denoted as matrices A, B, C, and D, are con-
structed as “quadratic coordinates” in phase space, r⃗i and p⃗i , and, most importantly, sum
over all the particles and act on the space orientation. Hence, the generators include phys-

ically relevant operators: the total kinetic energy ( p2

2 =
1
2

∑

i p⃗i · p⃗i), the monopole moment
(r2 =
∑

i r⃗i · r⃗i), the quadrupole moment (Q2M =
p

16π/5
∑

i r2
i Y2M (r̂i)), the orbital angular

momentum

�

L⃗ =
∑

i

r⃗i × p⃗i

�

, and the many-body harmonic oscillator Hamiltonian
�

H0 =
p2

2
+

r2

2

�

.
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In addition, other generators describe multi-shell collective vibrations and vorticity degrees of
freedom for a description from irrotational to rigid rotor flows.

On the contrary, the generators of the complementary O(A) sum over the three spatial
directions and act on the particle index, with a growing complexity with increasing parti-
cle number. One can then organize the A-particle model space according to the dual group
O(A−1), with O(A) ⊃ O(A−1) ⊃ SA. The O(A) is the group of orthogonal transformations that
act on the “particle-index” space (transformations of nucleon coordinates, riα→

∑A
j=1 r jαPji ,

that leave the O(A) scalars rα · rβ =
∑A

i=1 riαriβ invariant for α,β = x , y, z). This scheme is
reviewed in detail in Refs. [5, 10]. O(A− 1) is the subgroup of O(A) which leaves center-of-
mass coordinates invariant (note that center-of-mass coordinates are symmetric with respect
to nucleon indices and, therefore, invariant under SA permutations) and has as a subgroup the
permutation group SA, which permutes the spatial coordinates of a system of A particles.

The Sp(3,R) scheme utilizes an important group reduction to classify many-particle basis
states |σnρωκLM〉 of a symplectic irrep,

Sp(3,R) ⊃ U(3) ⊃ SO(3) ⊃ SO(2)
σ nρ ω κ L M

(6)

where σ ≡ Nσ (λσ µσ) labels the Sp(3,R) irrep, n ≡ Nn (λnµn), ω ≡ N (λωµω), and
N = Nσ+Nn is the total number of HO quanta (ρ and κ are multiplicity labels) [5]. The rela-
tion of these symplectic basis states to M -scheme states of the NCSM is provided in Ref. [43].
Importantly, a single-particle Sp(3,R) irrep spans all positive-parity (or negative-parity) states
for a particle in a three-dimensional spherical or triaxial (deformed) harmonic oscillator.

The translationally invariant (intrinsic) symplectic Sp(3,R) generators can be written as
SU(3) tensor operators in terms of the harmonic oscillator raising, b†(10)

iα = 1p
2
(riα − ipiα),

and lowering b(0 1) dimensionless operators (with r and p the laboratory-frame position and
momentum coordinates and α= 1,2, 3 for the three spatial directions),

A(20)
LM =

1
p

2

A
∑

i=1

{b†
i × b†

i }
(20)
LM −

1
p

2A

A
∑

s,t=1

{b†
s × b†

t }
(2 0)
LM , (7)

C (11)
LM =

p
2

A
∑

i=1

{b†
i × bi}

(11)
LM −

p
2

A

A
∑

s,t=1

{b†
s × bt}

(11)
LM ,

H(00)
00 =

p
3
∑

i

{b†
i × bi}

(00)
00 −

p
3

A

∑

s,t

{b†
s × bt}

(00)
00 +

3
2
(A− 1) , (8)

together with B(02)
LM = (−)L−M (A(20)

L−M )
† (L = 0, 2), where the sums run over all A particles of

the system. Equivalently, the symplectic generators, being one-body-plus-two-body operators
can be expressed in terms of the fermion creation operator a†

(η0) and its SU(3)-conjugate an-
nihilation operator, ã(0η). This is achieved by using the known matrix elements of the position

and momentum operators in a HO basis, and hence, e.g., the first sum of A(2 0)
LM in Eq. (7) be-

comes,
∑

η

Ç

(η+1)(η+2)(η+3)(η+4)
12

¦

a†
(η+20) × ã(0η)
©(2 0)

LM
[44]. Note that this operator describes

excitations of a nucleon from the η shell to the η + 2 shell, which corresponds to creating
two single-particle HO excitation quanta, as manifested in the first term of Eq. (7). The eight
0ħhΩ operators C (11)

LM (L= 1,2) generate the SU(3) subgroup of Sp(3,R). They realize the angu-

lar momentum operator (dimensionless), L1M = C (1 1)
1M , and the Elliott “algebraic” quadrupole

moment tensor Qa
2M =
p

3C (11)
2M .

The many-body basis states of an Sp(3,R) irrep are built over a bandhead |σ〉 (defined by
the usual requirement that the symplectic lowering operators B(02)

LM annihilate it) by 2ħhΩ 1p-

1h monopole or quadrupole excitations, realized by the first term in A(2 0)
LM of Eq. (7), together
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with a smaller 2ħhΩ 2p-2h correction for eliminating the spurious center-of-mass (CM) motion,
realized by the second term in A(20)

LM :

|σnρωκ(LSσ)J M〉=
∑

ML MS

〈LML; SσMS| J M〉{{A(2 0)×A(20) · · ·×A(2 0)}n×|σ; SσMS〉}
ρω
κLML

. (9)

States within a symplectic irrep have the same spin value, which are given by the spin Sσ
of the bandhead |σ; Sσ〉. Symplectic basis states span the entire shell-mode space. A com-
plete set of labels includes additional quantum numbers |{α}σ〉 that distinguish different
bandheads with the same Nσ (λσ µσ). Remarkably, these Sp(3,R) basis states are in one-
to-one correspondence with a coupled product of the states of the Bohr vibrational model
(realized in terms of giant monopole-quadrupole resonance states with irrotational flows),
{{A(20)×A(20) · · ·×A(2 0)}n×|Nσ(0 0)〉}(λn µn), and (λσ µσ) deformed states of an SU(3)model [42].

2.3 Ab initio symmetry-adapted no-core shell model

Not surprisingly, the symplectic Sp(3,R) symmetry, the underlying symmetry of the symplectic
rotor model [3,5], has been found to play a key role across the nuclear chart – from the lightest
systems [45,46], through intermediate-mass nuclei [4,8,47], up to strongly deformed nuclei
of the rare-earth and actinide regions [5, 19, 48, 49]. The results agree with experimental
evidence that supports formation of enhanced deformation and clusters in nuclei, as well as
vibrational and rotational patterns, as suggested by energy spectra, electric monopole and
quadrupole transitions, radii and quadrupole moments [11,29,50].

The symmetry-adapted no-core shell model [2, 8, 20] capitalizes on these findings and
presents solutions in terms of a physically relevant basis of nuclear shapes. It exploits both
the SU(3) and Sp(3,R) schemes. Indeed, since the symplectic symmetry does not mix nuclear
shapes, the SA-NCSM provides important insight from first principles into the physics of nuclei
and their low-lying excitations as dominated by only a few (typically one or two) collective
shapes – equilibrium shapes with their vibrations – that rotate (Fig. 1).

By exploiting this almost perfect symmetry, the SA framework resolves the scale explo-
sion problem in nuclear structure calculations, i.e., the explosive growth in computational
resource demands with increasing number of particles and model spaces size. We note that
the SA-NCSM uses the complete model space (that is, all possible shapes) as usually done in
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Figure 1: Emergence of almost perfect symplectic Sp(3,R) symmetry in nuclei from
first principles, enabling ab initio descriptions of collectivity and clustering. Source:
Figure from [2]@ APS; reproduced with permission.
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Figure 2: Chiral parameterization independence for nuclear shapes and clus-
ter formation: (Left) Probability amplitude of the predominant Sp(3,R) irrep
Nσ(λσ µσ) = 0(2 0) (L = 0) in the 6Li 1+ ground state. Inset: Contributions from the
equilibrium shape (symplectic bandhead) and its vibrations (the case for the NNLOopt
is also shown). (Right) α+ d 3S1-wave vs. the relative distance r. Calculated from
the 6Li 1+ ground state, computed with the SA-NCSM in the Sp(3,R) scheme with
NNLO chiral potential for 10 HO shells and ħhΩ=15 MeV. The ±10% variation in the
LECs of the chiral potential is shown (left) on the horizontal axis and (right) by the
spread of the curve. Source: Figures adapted/reused from [52] @ Frontiers; repro-
duced under the terms of its CC BY license.

conventional shell models, but expands, in a prescribed way, only for those deformed con-
figurations with vibrations that lie outside of the complete model space. This is critical for
enhanced prolate deformation, since spherical and less deformed or oblate shapes easily de-
velop in comparatively small model-space sizes.

The SA-NCSM, when combined with a high-precision realistic inter-nucleon interaction,
provides ab initio predictions of nuclear observables. We often adopt the NNLOopt chiral po-
tential [51] that is used without 3N forces, which have been shown to contribute minimally
to the 3- and 4-nucleon binding energy [51]. Chiral potentials are typically parameterized by
two-nucleon (and three-nucleon) data, whereas the parameters, called the low-energy con-
stants (LECs), remain unchanged and are not adjusted from one many-body system to an-
other. This ensures a predictive power. At the next-to-next-to-leading order (NNLO), there are
14 LECs that enter into the chiral nucleon-nucleon (NN) potential. Our recent findings reveal
the remarkable result that the chiral potential parameterizations have no significant effect on
the dominant nuclear features, such as nuclear shape and the associated Sp(3,R) symmetry,
along with cluster formation (Fig. 2), but only slightly vary details in the nuclear wave func-
tions, such as the contributions of the equilibrium deformation and its vibrations within the
predominant nuclear shape (Fig. 2, left, inset) [52].

3 Critical role of symmetries for studies and predictions of nuclear
properties

3.1 Machine learning pattern recognition with the SA-NCSM

Machine learning approaches are ideal for pattern recognition, thereby providing a suitable
framework to detect and utilize the highly organized patterns in atomic nuclei governed by
the symplectic Sp(3,R) symmetry.

Specifically, Ref. [32] introduces a novel machine learning approach to provide further
insight into atomic nuclei and to detect orderly patterns amidst a vast data of large-scale cal-
culations. The method utilizes a physics-informed neural network that is trained on ab initio
results from the SA-NCSM for light nuclei. Indeed, the SA-NCSM, which expands ab initio
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Figure 3: A novel machine learning approach coupled with the ab initio SA-NCSM is
capable to detect orderly patterns amidst a vast data of large-scale calculations and
to describe sd-shell nuclei, such as 20Ne (shown), 24Si, 40Mg, and even the extremely
heavy nuclei such as 166,168Er and 236U, by training only on nuclei up to 16O. Source:
Figure from [32]@ APS; reproduced with permission.

applications up to medium-mass nuclei, can reach even heavier nuclei when coupled with the
machine learning approach. In particular, we find that a neural network trained on probability
amplitudes for s-and p-shell nuclear wave functions not only predicts dominant configurations
for heavier nuclei but in addition, when tested for the 20Ne ground state, it accurately repro-
duces the probability distribution (Fig. 3).

The nonnegligible configurations predicted by the network provide an important input
to the SA-NCSM for reducing ultra-large model spaces to manageable sizes that can be, in
turn, utilized in SA-NCSM calculations to obtain accurate observables. The neural network is
capable of describing nuclear deformation and is used to track the shape evolution along the
20−42Mg isotopic chain, suggesting a shape-coexistence that is more pronounced toward the
very neutron-rich isotopes [32]. Furthermore, the neural network provides first descriptions of
the structure and deformation of 24Si and 40Mg of interest to x-ray burst nucleosynthesis, and
even of the extremely heavy nuclei such as 166,168Er and 236U, that build upon first principles
considerations [32].

3.2 Probing clustering and physics beyond the standard model

The left-handed vector minus axial-vector (V−A) structure of the weak interaction was postu-
lated in late 1950’s and early 1960’s guided in large part by a series of beta-decay experiments,
and later was incorporated in the Standard Model of particle physics. However, in its most
general form, the weak interaction can also have scalar, tensor, and pseudoscalar terms as
well as right-handed currents. The β decay of 8Li to 8Be, which subsequently breaks up into
two α particles, has long been recognized as an excellent testing ground to search for new
physics (e.g. see [53]) due to the high decay energy and the ease of detecting the β and two α
particles. These experiments have achieved remarkable precision (e.g., see [54,55]) that now
requires confronting the systematic uncertainties that stem from the higher-order corrections
in nuclear beta decay that are difficult to measure experimentally.

As a remarkable result, the ab initio SA-NCSM has recently determined the size of the
recoil-order form factors in the β decay of 8Li (Fig. 4). It has shown that states of the α+ α
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challenging α + α structure of 8Be. The results are essential for largely improving
the sensitivity of high-precision experiments that probe the weak interaction theory
and test physics beyond the Standard Model [33,55]. Calculations performed on the
NERSC and Frontera HPC systems. Source: Figures from [33] @ APS; reproduced
with permission.

system not included in the evaluated 8Be energy spectrum have an important effect on all
j2,3/A

2c0, b/Ac0 and d/Ac0 recoil-order terms, and can explain the elusive MGT discrepancy in
the A= 8 systems common to all other ab initio approaches.

The SA-NCSM outcomes of Ref. [33] reduce – by over 50% – the uncertainty on these
recoil-order corrections. These results help improve the sensitivity of high-precision β-decay
experiments that probe the V−A structure of the weak interaction in the most stringent limit
on tensor current contribution to the weak interaction theory to date, established in Ref. [55].
Furthermore, the SA-NCSM predicted b/Ac0 and d/Ac0 values are important for other inves-
tigations of the Standard Model symmetries, such as the conserved vector current hypothesis
and the existence of second-class currents in the weak interaction.

3.3 Optical potential in the symmetry-adapted framework for nuclear reactions

In recent years there has been a significant interest in describing nuclear reactions from ab
initio approaches, and especially in constructing from first principles effective inter-cluster
interactions, often referred to as optical potentials. Ab initio optical potentials for elastic scat-
tering at low energy are of particular interest for experiments at rare isotope beams. To utilize
the efficacy of the symmetry-adapted basis, we combine the ab initio symmetry-adapted no-
core shell model with the Green’s function technique (SANCSM/GF) and construct non-local
optical potentials rooted in first principles [56, 57]. Using the Green’s function technique en-
sures that all relevant cluster partitionings are included in the effective potential between the
two reaction fragments (clusters) that are typically in their ground state in the entrance chan-
nel. With the view toward studying neutron and proton elastic scattering from deformed and
heavy targets, we first examine a target of 4He (Fig. 5a), where the effect of the spurious
center-of-mass motion is most evident.

In a complementary symmetry-adapted resonating group method (SA-RGM) framework
[58], one starts from an ab initio description of all particles involved and derives the effec-
tive potential for localized clusters, which are properly normalized and orthogonalized in the
particle sector, which yields non-local effective nucleon-nucleus interactions for the cluster
partitioning or channel under consideration. For a single channel, if the effects of the target
excitations are neglected, the non-local effective nucleon-nucleus interaction can be calculated
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Figure 5: (a) Translationally invariant non-local optical potential for elastic neutron
scattering for a 4He target at E = 8 MeV center-of-mass energy, calculated in the SA-
NCSM with the Green’s function technique (10 shells, ħhΩ=17MeV). Figure from [56].
(b) Effective neutron-nucleus non-local potential (translationally invariant) for the
20Ne ground state, where effects of the target excitations and antisymmetrization
involving three nucleons are neglected (based on ab initio SA-NCSM calculations
of 20Ne with NNLOopt in a model space of 11 shells and ħhΩ=15 MeV inter-shell
distance). Source: Figure from [1] @ Annual Reviews; reproduced under the terms
of its CC BY license.

for each partial wave, as illustrated for n+20Ne(0+g.s.) with NNLOopt in 11 shells (Fig. 5b).
While these calculations limit the antisymmetrization to two nucleons only, this is a first step
toward constructing effective nucleon-nucleus potentials for light and medium-mass nuclei for
the astrophysically relevant energies [59,60].

4 Conclusion

We have discussed the critical role of the emergent Sp(3,R) symmetry in atomic nuclei and
the associated subgroup SU(3), which in turn underpin the Sp(3,R) and SU(3) schemes. By
exploiting these schemes, the ab initio SA-NCSM has enabled machine-learning pattern recog-
nition and descriptions of heavy nuclei, ab initio modeling ofα clustering and collectivity, along
with tests of beyond-the-standard-model physics. In addition, we show that with the help of
the SA-NCSM, which expands ab initio applications up to medium-mass nuclei by using the
dominant symmetry of nuclear dynamics, one can provide solutions to reaction processes in
this region, with a focus on elastic neutron scattering.
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1 Introduction

Integrable models appear in all areas of physics, from classical mechanics to quantum field
theory. While they have a natural home in two-dimensional systems like spin chains and 2d
field theories, applications in four-dimensional particle physics have long been limited to spe-
cial high-energy limits in QCD [1]. From the integrability viewpoint an important (still formal)
step into the direction of particle phenomenology was the discovery of integrable structures
in a four-dimensional quantum field theory, i.e. planar N = 4 super Yang–Mills (SYM) the-
ory [2]. While also here a clear connection to two-dimensional physics in the AdS/CFT-dual
string theory is present, this finding opened a new door to apply and extend the toolbox of inte-
grability. Here we discuss another step into this direction, namely the appearance of integrable
structures for Feynman integrals, which constitute the building blocks of generic quantum field
theories including those realized in nature. On the one hand, this detaches integrability in four
dimensions from the special nature of N = 4 SYM theory. On the other hand, an explanation
for these mathematical structures of Feynman integrals can still be found in the integrability of
the planar AdS/CFT correspondence via its so-called fishnet limits [3]. The simplified fishnet
theories arise as particular double-scaling limits of the so-called gamma-deformed N = 4 SYM
theory and they have the particular feature that their correlation functions are in one-to-one
correspondence with individual Feynman integrals [4, 5]. Notably, some of the integrability
structures which underly the planar AdS/CFT duality are inherited by these elementary Feyn-
man integrals as discussed below. Here we will focus on the so-called Yangian symmetry of
these integrals, which is an infinite dimensional extension of a Lie algebra and can be under-
stood as the algebraic foundation of certain classes of integrable models. The need to study
the mathematical properties and symmetry structures of Feynman integrals is underlined by
the fact that their computation still represents a bottle neck for phenomenological predictions,
see [6] for a recent review. At lower loop orders they are governed by the class of multi-
ple polylogarithms which are defined as iterated integrals with rational integration kernels.
In more general cases elliptic integrals and worse geometric structures (e.g. Calabi–Yau ge-
ometries) appear. These are typically characterized by roots of higher order polynomials in
the denominator of the integrand. The exploration of multi-loop Feynman integrals and their
mathematical structure is currently a very active field of research, which makes the appearence
of integrable structures even more fascinating.

2 Integrability and the Yangian

As indicated above, integrability is rooted in two-dimensional physics where it is often iden-
tified with the concept of factorized scattering. The latter denotes the phenomenon that the
n-body scattering matrix of a given theory factorizes into two-body scattering events.1 In fact,
the idea of factorized scattering may be considered the closest to a proper definition of quan-
tum integrability which to date is still lacking, see e.g. [7,8]. On the one hand, the implications
of factorized scattering include the applicability of powerful solution techniques such as the
celebrated Bethe Ansatz. On the other hand, the reason for factorized scattering is found in
the existence of a tower of conserved charges or higher symmetries. In spacetime dimensions
greater than two, higher symmetries are believed to imply a trivial S-matrix via the Coleman–
Mandula theorem [9]. Two-dimensional models, however, provide a fascinating loop-hole and
allow for non-trivial scattering and higher symmetries at the same time. In fact, one can make
the connection between these higher symmetries and the factorization of the S-matrix more
precise and identify a set of symmetry generators bJ such that

�

bJ, S
�

= 0 implies the factoriza-

1Of course, this is only possible in models which feature a notion of scattering.

008.2

https://scipost.org
https://scipost.org/SciPostPhysProc.14.008


SciPost Phys. Proc. 14, 008 (2023)

S3→3
=

S12

S13

S23

=

S23

S13
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Figure 1: Factorized scattering in two dimensions. For consistency the quantum
Yang–Baxter equation (right equality) has to hold: S12S13S23 = S23S13S12. A similar
equation holds for the generating function T (u) of the Yangian generators together
with the quantum R-matrix: RT T = T TR.

tion of S, cf. [10]. The notion of factorized scattering reduces the integrable S-matrix in two
dimensions to the two-body scattering matrix as its fundamental building block, cf. Figure 1.
In the simplest situations, this two-body matrix is a rational function of the rapidity parameter.
This case of rational quantum integrable models is related to the so-called Yangian, an infinite
dimensional extension of a Lie algebra g that was introduced by Drinfeld in 1985 [11], see also
the reviews [12–14]. The Yangian Y [g] in its so-called first realization is defined by two sets
of generators which are characterized by their tensor product actions of the following form:2

Level 0 : Ja =
n
∑

k=1

Ja
k , (1)

Level 1 : bJa = 1
2 f a

bc

n
∑

j<k=1

Jc
j Jb

k +
n
∑

k=1

skJa
k , (2)

Serre relations:
�

bJa,
�

bJb, Jc

��

−
�

Ja,
�

bJb,bJc

��

=O
�

J3
�

. (3)

Here the local level-0 operators generate the underlying Lie algebra and have a trivial coprod-
uct. Their densities Ja

k are also employed to construct the bilocal level-one generators bJa as
specified above. All higher generators of this infinite dimensional algebra can be obtained by
iterative commutation. Here the Serre relations, a quantum algebra generalization of the Lie
algebra’s Jacobi identity, provide additional constraints on the representation. Note that the
Serre relations for the case of the differential operator representation of the conformal alge-
bra, which becomes relevant below, have been discussed in [15,16]. The so-called evaluation
parameters sk in the above definition parametrize an external automorphism of the Yangian
algebra which is realized by the Lorentz boost symmetry in relativistic models.

The Yangian has been studied in the context of various physical setups; examples include
the Heisenberg spin chain with g = su(2), cf. [14]; the AdS/CFT duality with g = psu(2, 2|4),
cf. [17]; or Euclidean fishnet integrals in four dimensions with g= so(1,5), cf. [5].

In fact, the above Yang–Baxter equation depicted in Figure 1 can be lifted to a purely
algebraic structure relating the so-called quantum R-matrix and the monodromy matrix T via
the RTT-relations:

R12(u− v)T1(u)T2(v) = T2(v)T1(u)R21(u− v) . (4)

Here the commutation of two monodromy matrices T (u) acting on spaces 1 and 2, is encoded
in the Yangian R-matrix. The expansion of T (u) in the spectral parameter u gives rise to
the different levels of the Yangian generators. This so-called RTT-realization of the Yangian
represents an alternative way to define the same algebra, which is closely related to the concept
of factorized scattering in physical models.

2In the following these tensor products will be identified with the external legs of planar Feynman graphs.
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3 AdS/CFT and Fishnet theories

One of the physical setups where the Yangian algebra plays a crucial role is the planar AdS/CFT
correspondence. Here both sides of the duality, i.e. N = 4 SYM theory and IIB string theory
on AdS5 × S5 feature the Lie algebra symmetry psu(2, 2|4). In the planar limit, this symme-
try extends to the Yangian Y [psu(2,2|4)] with a natural supersymmetric generalization of the
above algebra definitions. The Yangian has been investigated in many different setups on the
gauge and string side of the duality. It first appeared in this context as a symmetry of the
dilatation generator of N = 4 SYM theory [18]. Here a consequence of Yangian symmetry
is that the spectrum of the dilatation operator can be computed via appropriate generaliza-
tions of the Bethe Ansatz technique that was originally designed for the su(2) Heisenberg spin
chain [2]. Notably, N = 4 SYM theory represents the first four-dimensional quantum field
theory which is believed to be completely integrable3 in the planar limit. It is defined by the
following schematic Lagrangian with SU(N) gauge symmetry:

LN=4 ≃ Tr
�

−FF −DΦDΦ+ Ψ̄DΨ − g2 [Φ,Φ]2 − gΨ [Φ,Ψ]− gΨ̄
�

Φ, Ψ̄
�

�

. (5)

It includes six matrix-valued scalars Φm, four Dirac spinors ΨA and Ψ̄A and the gauge field
strength F . Remarkably, the β-function of N = 4 SYM theory is zero which makes the the-
ory quantum conformal. Integrability arises in the large-N limit with fixed t’Hooft coupling
λ= g2N , where non-planar Feynman diagrams are suppressed by factors of 1/N .

In the above model an additional set of three parameters γ1, γ2 and γ3 can be introduced
via the so-called gamma-deformation of N = 4 SYM theory. All products of fields in the
Lagrangian LN=4 are replaced by non-commutative products, which leads to phase factors
eiγ j(... ) in front of the different terms in the resulting LγN=4. Here the (. . . ) in the phase fac-
tor depends on the different SU(4) Cartan charges of the fields. The additional parameters
in the gamma-deformed Lagrangian now allow for interesting double-scaling limits as noted
in [3]. After rescaling the fields by

p
N , one takes λ→ 0 and sends the gamma-parameters to

imaginary infinity, i.e. γ j → i∞, while keeping the new couplings ξ j =
p
λe−iγ j/2 constant.

In the simplest case only one of the couplings, e.g. ξ = ξ3, is non-vanishing and most of the
fields decouple. The result is the following Lagrangian of the bi-scalar fishnet model for two
complex matrix-valued fields denoted by X and Z:4

LF = N Tr
�

−∂µX̄∂ µX − ∂µ Z̄∂ µZ + ξ2X̄ Z̄X Z
�

. (6)

One of the remarkable properties of this model is that a large class of its planar correla-
tion functions is computed by single Feynman integrals of fishnet structure. The correlator
〈X X X Z ZX̄ Z X̄ X̄ X̄ Z̄ Z̄X Z̄〉 for instance corresponds to the following position space Feynman
graph:

(7)

Here blobs represent integration vertices for the spacetime coordinates xµ with µ = 0, . . . , 3

3A precise definition of this statement is hard to provide.
4We note that in general this bi-scalar Lagrangian is not complete and requires additional double-trace terms

for conformality [19,20]. For the Feynman graphs (alias correlators) considered in this paper, these double-trace
terms do not play a role.
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and lines stand for propagators as summarized in the following Feynman rules:

j k →
1

x2
jk

,
xj →
∫

d4 x j . (8)

Note that we write xµjk = xµj − xµk for differences of the Euclidean spacetime vectors and
we omit the color structure of the graph. Any graph that can be cut out of a square fishnet
lattice thus represents a correlator in the above fishnet theory. This drastic limitation to a
single contributing Feynman graph is attributed to the chiral four-point vertex in the fishnet
Lagrangian.5 The fact that the four-point vertex in (6) is chiral implies a particular admissible
orientation of the color flow in the diagram.

While the fishnet model has been investigated from various perspectives, in the following
we will focus on a particular implication, namely that Feynman integrals possess a higher
Yangian symmetry.

4 Integrability for Feynman integrals

A conformal Lie algebra (or Yangian level-0) symmetry of the above Euclidean Feynman inte-
grals is realized via the following differential operator representation of so(1, 5):

Ja =
n
∑

j=1

Ja
j , with Ja

j ∈



















Dj = −i x jµ∂
µ
x j
− i∆ j ,

Lµνj = i xµj ∂
ν
x j
− i xνj ∂

µ
x j

,

Pµj = −i∂ µx j
,

Kµj = i x2
j ∂
µ
x j
− 2i xµj x jν∂

ν
x j
− 2i∆ j x

µ
j .

(9)

Here derivatives act on the external legs of the Feynman graph and the scaling dimensions
∆ j are set to 1 for the scalar particles considered. Invariance under the above conformal
generators implies that an n-point fishnet integral can be written as a product of a prefactor
Vn, which carries the conformal weight of the integral, and a conformal function that only
depends on a set of conformal variables defined in terms of cross ratios:

In = Vnφ(u1, u2, . . . ) . (10)

Here the precise number of cross ratios uk depends on the number of external points n of the
Feynman graph.

The level-1 Yangian symmetry on the other hand can be constructed from the Lie algebra
generator densities given above with the prescription dictated by (2). Given full level-0 in-
variance of a Feynman integral In, the Yangian commutation relations imply that invariance
under a single level-1 generator yields full Yangian symmetry of the graph. Here one typically
works with the level-1 momentum generator whose explicit form is given by

bPµ = i
2

n
∑

j,k=1

sign(k− j)
�

Pµj Dk + PjνL
µν

k

�

+
n
∑

j=1

s jP
µ
j . (11)

The invariance of the above fishnet integrals under the Yangian can be proven with the so-
called lasso method and the help of the monodromy matrix T (u), whose expansion coefficients
around u=∞ are essentially the Yangian generators, cf. [5]. At order k of the 1/u expansion
these correspond to k-local generators, while the whole monodromy T (u) acts on all n legs of

5This chirality is also responsible for the model being non-unitary.
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a given graph and is constructed as a product of n Lax operators. Schematically, this action
of T (u) can be depicted by a line encircling the Feynman diagram similar to a lasso. A set of
commutation relations and identities for the Lax operators and propagators allow to disentagle
the monodromy from this graph, which results in an eigenvalue equation depicted by (see [5]
for details)

T (u)

= f (u) (12)

Here f (u) denotes a polynomial eigenvalue function of the spectral parameter. Remembering
that T (u) ≃ 1+ 1/u J + 1/u2

bJ + . . . , this eigenvalue equation implies the level-0 and level-1
invariance of the given integral for a judicious choice of the evaluation parameters sk, see the
prescription in [21].

While level-0 conformal invariance of a given Feynman graph implies the form (10), the
level-1 symmetry yields additional constraints for the function φ of the conformal cross ra-
tios. The invariance under the level-1 momentum generator can be rewritten in the following
form [22]:

0= bPµ In = Vn

n
∑

j<k=1

xµjk
x2

jk

Djkφ . (13)

Here at least for lower numbers of external points one can argue that the vectors xµjk/x
2
jk are

in fact independent, which implies that the Yangian invariance can be translated into a system
of partial differential equations (PDEs) in the cross ratios:

Djkφ = 0 , 1≤ j < k ≤ n . (14)

These coupled differential equations are highly constraining and their solutions provide a set
of building blocks, whose linear combination represents the Feynman integral.

Example: 4D cross (or box) integral. The simplest four-dimensional example is the Eu-
clidean cross (or box) integral, whose two names refer to the two alternative representations
in x- or p-space:

I4D
4 = =

∫

d4 x0

x2
10 x2

20 x2
30 x2

40

=

∫

d4ℓ

ℓ2(ℓ+ p1)2(ℓ+ p1 + p2)2(ℓ− p4)2
. (15)

Here the coordinates xµj can alternatively be interpreted as positions, or dual momenta via the

relation to the ordinary momenta pµj = xµj − xµj+1. The level-0 Yangian, or (dual) conformal

symmetry, of the four-point integral I4 implies the form I4 =
1

x2
13 x2

24
φ(z, z̄), with the conformal

variables z and z̄ defined via the following relation to the cross ratios u and v:

zz̄ =
x2

12 x2
34

x2
13 x2

24

= u , (1− z)(1− z̄) =
x2

14 x2
23

x2
13 x2

24

= v . (16)

The additional Yangian level-1 symmetry yields two coupled differential equations of the form
(cf. (14) and [22])

[Dj(z)− Dj(z̄)]φ(z, z̄) = 0 , j = 1, 2 , (17)
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with the second order differential operators Dj given by

D1(z) = z(z − 1)2∂ 2
z + (3z − 1)(z − 1)∂z + z , (18)

D2(z) = z2(z − 1)∂ 2
z + (3z − 2)z∂z + z . (19)

One finds four solutions to these equations which are of the form f j(z, z̄)/(z − z̄) with [22]

f1 = 1 ,

f2 = log(z̄)− log(z) , (20)

f3 = log(1− z̄)− log(1− z) ,

f4 = 2Li2(z)− 2Li2(z̄) + log
1− z
1− z̄

log(z̄z) .

In addition to the Yangian symmetry the cross integral is invariant under all permutations of
its external legs. This permutation invariance singles out the Bloch–Wigner dilogarithm f4
as the correct Yangian invariant which represents this integral. While this solution has been
known since the early works [23], it is remarkable that the cross can be bootstrapped using
integrability and permutation symmetry only [22]. We note that the overall constant prefactor
remains to be fixed by other means, e.g. numerics or a coincidence limit of external points.

While one might expect that integrability fixes an observable completely, here we have
employed the additional permutation symmetry to single out the correct Yangian invariant of
the four solutions (20). It turns out that all four building blocks are required to express the
integral when going from Euclidean to Minkowski kinematics [24]. As opposed to a single
Euclidean region, in the Minkowski case one distinguishes 64 kinematic regions depending on
the signs of the x2

jk. Here, in a given region the integral is typically invariant under a subset of
all permutations and f4 is no longer the only admissible Yangian invariant. Via similar reason-
ing as above one can bootstrap the Minkowski integral using its Yangian symmetry modulo a
small number of constant coefficients [25].

5 Generalizations: Dimensions, masses, momentum space, . . .

In this section we indicate some generalizations, which go beyond massless square fishnet
integrals in four spacetime dimensions.

Fishnet structures and dimensions. The above bi-scalar fishnet model represents the sim-
plest double-scaling limit of gamma-deformed N = 4 SYM theory. More involved models are
obtained by combining different limits of the three parameters γ j and the coupling constant. In
particular, models exist where also some of the fermions survive, which results e.g. in Yangian-
invariant Feynman graphs of brick wall structure [26]. Here the non-scalar particles require
non-scalar representations of the conformal algebra to construct the Yangian generators.

Apart from generalizing the field content, the above fishnet theories have natural gener-
alizations to different spacetime dimensions. In particular, there exists a double-scaling limit
of Aharony–Bergman–Jafferis–Maldacena (ABJM) theory which results in a three-dimensional
fishnet model with triangular Feynman graphs [4]. Also in six spacetime dimensions one can
write down a similar fishnet theory with hexagonal graph structure [27]. All of the associ-
ated Feynman graphs feature the above Yangian symmetry over the conformal algebra in the
respective spacetime dimension [26]. This even generalizes to graphs with deformed prop-
agator powers a j as long as these sum up to the spacetime dimension at each integration
vertex [21,22,26]:

1

x2
jk

→
1

(x2
jk)

a j
,
∑

j∈vertex

a j = D . (21)
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If the latter conformal condition does not hold, one still finds an invariance under the level-one
momentum generator, which relates to the below discussion of momentum space conformal
symmetry. Finally, the square fishnet model was generalized to a D-dimensional Lagrangian
of the form [28]

LD
F = N Tr
�

X (−∂µ∂ µ)
D
4 X̄ + Z(−∂µ∂ µ)

D
4 Z̄ + ξ2X ZX̄ Z̄
�

. (22)

Here the operators (∂µ∂ µ)
D
4 are understood as integral operators for the case D ̸= 4. The

fact that integrability properties are preserved by all the above modifications demonstrates
the universality of these mathematical structures.

Yangian symmetry for the masses. In the massless case, we argued that Feynman integrals
can be interpreted as correlators in the fishnet theory, which is connected to the integrable
N = 4 SYM theory by means of the above double scaling limit. It is well known how to
introduce masses in the latter theory via the Higgs mechanism, but no integrable structures
are known that survive this process. Hence, a priori one might not expect to find integrable
structures in massive Feynman integrals following the same logic. Still it is instructive to
look at the massive version of N = 4 SYM theory on the so-called Coulomb branch. Masses
are introduce by giving a vacuum expectation value (VEV) to one of the scalar fields in the
Lagrangian (5) [29]:

Φ̂= 〈Φ〉+Φ (23)

This leads to the so-called Coulomb phase of the theory and implies the appearence of massive
propagators of the form

1

x̂2
jk

=
1

x2
jk + (m j −mk)2

. (24)

Importantly, here the masses enter in differences in analogy to the spacetime coordinates. In
particular, for a judicious choice of the above VEV only planar Feynman integrals with masses
on the boundaries survive the large-N limit [29, 30]. These have been shown to posess a
massive extension of the dual conformal symmetry with generators of the following form [29]:

Ja =
n
∑

j=1

Ja
j , with Ja

j ∈



















Dj = −i
�

x jµ∂
µ
x j
+m j∂m j

+∆ j

�

,

Lµνj = i xµj ∂
ν
x j
− i xνj ∂

µ
x j

,

Pµj = −i∂ µx j
,

Kµj = −2i xµj
�

x jν∂
ν
x j
+m j∂m j

+∆ j

�

+ i(x2
j +m2

j )∂
µ
x j

.

(25)

Here the mass can be interpreted as the (D+1)th component of the spacetime vector: x D
j = m j .

Unfortunately to date no massive Yangian symmetry has been detected in the full Coulomb
phase of N = 4 SYM theory. Still we can employ the definition of the level-1 generators
in terms of the Lie algebra generator densities as given in (2). Applying these to Feynman
integrals with massive propagators, it turns out that planar one- and two-loop integrals in
generic kinematics are annihilated for an appropriate choice of evaluation parameters [21].
This statement can be proven explicitly for generic number of external legs and propagator
powers obeying the conformal condition

∑

j∈vertex a j = D at each integration vertex [31].
The only criterion for this symmetry is that the internal loop-to-loop propagator of the two-
loop diagrams remains massless. Numerical tests at higher loop orders suggest that in fact all
Feynman graphs cut out of a regular tiling of the plain feature this massive Yangian symmetry
as long as all internal propagators remain massless [31]. Also a massive extension of the
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fishnet Lagrangian can be defined via a double-scaling limit of a gamma-deformed version of
massive Coulomb branch N = 4 SYM theory [30]:

LMF = N Tr
�

−∂µX̄∂ µX − ∂µ Z̄∂ µZ + ξ2X̄ Z̄X Z
�

− N(ma −mb)
2X a

b X̄ b
a − N(ma −mb)

2Za
b Z̄ b

a . (26)

The planar off-shell amplitudes in this theory correspond to the massive versions of Yangian
invariant Feynman integrals described above.6

Momentum space conformal symmetry. Notably, the level-1 momentum generator remains
a symmetry of the above Feynman integrals even if the conformal condition for the propaga-
tor powers in (21) does not hold, i.e. if there is no level-0 (dual) conformal symmetry. This
statement applies to the massless and massive version of the Yangian symmetry and implies
powerful constraints [21]. Translating the x-space level-one momentum bPµ to the dual mo-
mentum variables defined via pµj = xµj − xµj+1, one finds a massive generalization of the special

conformal generator K̄µj in momentum space which forms part of the following set of operators
obeying the conformal algebra relations:

J̄a =
n
∑

j=1

J̄a
j , with J̄a

j ∈



























D̄j = p jν∂
ν
p j
+

m j∂mj
+m j+1∂mj+1

2 + ∆̄ j ,

L̄µνj = pµj ∂
ν
p j
− pνj ∂

µ
p j

,

P̄µj = pµj ,

K̄µj = pµj ∂
2
p j
− 2
�

p jν∂
ν
p j
+

m j∂mj
+m j+1∂mj+1

2 + ∆̄ j

�

∂
µ
p j

.

Note that these generator densities feature a nearest-neighbor action on the masses of the
external legs of the Feynman graph. In the context of N = 4 SYM theory it is a well known
statement that ordinary and dual conformal symmetry of scattering amplitudes close into the
Yangian algebra [33]. Similar statements hold for the above Feynman integrals in the case of
the ordinary (bosonic) conformal algebra [5,31]. The constraints from bPµ or equivalently K̄µ

can thus be exploited independently of the dual conformal symmetry for massless or massive
integrals. Here one representation or the other may be more convenient depending on whether
one works in x- or p-space. Solving the momentum space conformal Ward identities in the
massless case has recently been subject of great interest, see e.g. [34,35] and follow-ups.

Dimensional regularization. Since the above symmetries can be formulated in generic
spacetime dimension D, one can also employ them in the context of dimensionally regulated
integrals. An interesting example is the following family of Euclidean three-point integrals
with half integer propagator powers a j in D = 3− 2ε dimensions:

I D
3 [a1, a2, a3] :=

∫

dD x0

(x2
01)

a1(x2
02)

a2(x2
03)

a3
. (27)

Here we assume that a1 + a2 + a3 ≤ D/2. The motivation to study these integrals comes from
gravitational physics. The Post-Newtonian (PN) expansion with velocities v≪ c of the 3-body
effective potential in general relativity requires these integrals as an input, e.g. in the following

6Alternatively one can introduce masses via spontaneous symmetry breaking in the bi-scalar fishnet theory
which, however, leads to different propagators and seems not to allow for integrable symmetries [32].
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contribution (in red) to the 3PN potential [36]:

S3PN = · · ·+
∑

j ̸=i
k ̸=i, j

G2mim jmk

4π

§

�

(6v2
i +v2

k−8vi ·v j)(vki ·∂x i
)(vk j ·∂x j

)

+ (8v2
ik−4v2

k )(v ji ·∂x i
)(vi j ·∂x j

)
�

I3[
1
2 , 1

2 , 1
2]

+
�

vk ·∂xk

�2 �
(vki ·∂x i

)(vk j ·∂x j
)+2(vik ·∂xk

)(vi j ·∂x j
)

+4(v ji ·∂x i
)(vi j ·∂x j

)+8(v jk ·∂xk
)(vk j ·∂x j

)
�

I3[
1
2 , 1

2 ,−1
2]
ª

. (28)

To bootstrap these integrals one can employ the Yangian level-1 momentum generator, which
yields two second order PDEs in the variables r jk = |x j − xk| (see [36] for explicit expressions):

Dj I3 = 0 , j = 1, 2 . (29)

These differential equations are solved by the ansatz

µ−2ε I3−2ε
3 [a1, a2, a3] =

A
2ε
+ B + C log
� r12+r13+r23

µ

�

+O (ε) ,

with a scale µ and given polynomials A, B, C , which is inspired by the leading integral in this
family as presented in [37]. Plugging the resulting integrals into the effective potential via
(28), this leads to new v2nG2 contributions to the Post-Newtonian expansion of the 3-body
effective potential. The same approach can be applied to higher PN integrals I3−2ε

3 [a1, a2, a3]
in this family (cf. [36]), which can then be inserted into the higher order analogues of (28).

Soft and collinear anomalies. Notably, the above Yangian or momentum space conformal
symmetry does not commute with coincidence or lightlike limits of the external kinematic
variables xµj or their differences, respectively. These correspond to soft or on-shell limits in

the dual momentum variables pµj :

Coincidence/soft limit: xµj → xµj+1 ↔ pµj → 0 , (30)

Lightlike/on-shell limit: x2
j, j+1→ 0 ↔ p2

j → 0 . (31)

These situations lead to anomalies even for finite integrals, see [38] for examples of coinci-
dence limits and [39,40] for the on-shell case.

6 Yangian symmetry and Calabi–Yau geometry

In order to make progress on understanding fishnet integrals at higher loop orders, we consider
Feynman graphs in D = 2 spacetime dimensions, see [41] for more details. For square fishnets
with propagators (x−2)a j to obey the conformal condition

∑4
j=1 a j = D we set a j = 1/2 for

all propagators. The respective integrals represent correlators in the D-dimensional version
of the square fishnet theory defined by the Lagrangian in (22) [28]. Similar to the conformal
Lie algebra in two dimensions, the conformal Yangian splits into a holomorphic and an anti-
holomorphic part: Y [sl(2,R)]⊕ Y [sl(2,R)]. We thus expect the following double copy form
for the respective fishnet integrals:

φ(z, z̄) = Π⃗†(z̄) ·Σ · Π⃗(z) . (32)

Here Π⃗(z) denotes a vector of solutions to the Yangian invariance equations for Y [sl(2,R)]
with z indicating the conformal cross ratios and z̄ their complex conjugates. The symbol Σ
represents a constant matrix which defines the precise linear combination of the Yangian in-
variants representing the Feynman integral.
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Example: 2D cross (or box) integral. Consider the simplest example of the 2D cross inte-
gral which, using conformal symmetry, can be written in the form

I2D
4 = =

1
|x12||x34|

φ(z, z̄) . (33)

The cross integral depends on a single conformal variable z (and its conjugate z̄). Imposing
invariance of the holomorphic part of the integral under Y [sl(2,R)], the respective Yangian
differential equation takes the form

�

1+ 4(2z − 1)∂z + 4z(z − 1)∂ 2
z

�

Π⃗(z) = 0 . (34)

One finds two solutions K(z) and K(1−z) to this equation, which indeed combine into a double
copy of Yangian invariants for the 2D cross integral [38,42]:

φ(z, z̄) =
4
π

i
�

K(z) iK(1− z)
�

·
�

0 1
−1 0

�

·
�

K(z̄)
−iK(1− z̄)

�

. (35)

The two solutions K(z) and K(1− z) of the Yangian equation are identified with the complete
elliptic integral of the first kind evaluated at different arguments:

K(z) =

∫ 1

0

d t
p

(1− t2)(1− zt2)
. (36)

This integral has an interesting relation to geometry via the elliptic curve defined by the poly-
nomial in the denominator of the integrand:

y2 =
�

1− t2
� �

1− zt2
�

a

b

(37)

The elliptic curve is isomorphic to a torus with two distinguished cycles denoted by a and b.
The two period integrals associated to these two cycles are precisely the two Yangian invariants
K(z) and K(1 − z) with (34) representing the so-called Picard–Fuchs differential equation
associated with the elliptic curve.

For higher loop fishnet integrals in 2D it turns out that the above double copy pattern con-
tinues to hold. Also these integrals can be written in the form (32) with a vector of Yangian
invariant functions Π⃗ of the conformal cross ratios [41].7 The geometric interpretation of these
Yangian invariants generalizes to a family of Calabi–Yau’s with the above elliptic curve repre-
senting a Calabi–Yau 1-fold. We note that a Calabi–Yau ℓ-fold is defined as an ℓ-dimensional
complex Kähler manifold with vanishing first Chern class. Here the last condition relates to
the conformal nature of the fishnet integrals defined in terms of four-point vertices only. As
for the elliptic curve, also the higher Calabi–Yau’s posses an associated set of period integrals
which are annihilated by a Picard–Fuchs ideal of differential operators. The conformal cross
ratios of the fishnet integrals correspond to the Calabi–Yau moduli. At 3 loops for instance,
the respective 2D integral depends on 5 cross ratios and corresponds to a Calabi–Yau 3-fold
with a 12-dimensional vector Π⃗ of Yangian-invariant period integrals. The conjecture of [41]

7To obtain the complete Picard–Fuchs ideal of differential operators one has to take the permutation symmetries
of the integrals into account, see also the example of the 4D cross integral given in Section 4 where these were
used in a different way.
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suggests that for generic 2D fishnet integrals the Picard–Fuchs ideal is obtained by combin-
ing Yangian and permutation symmetries of the respective Feynman graph. This represents a
curious new relation between integrability and Calabi–Yau geometries!

Notably, the geometric interpretation of fishnet integrals goes even further [41]. The fish-
net expression of (32) corresponds to the so-called quantum volume of a particular Calabi–
Yau geometry, which is obtained from the original fishnet Calabi–Yau via the celebrated mirror
symmetry. This finding extends the volume interpretation of Feynman integrals, which was
well known at one loop order (see e.g. [43]), to higher loops — at least in two spacetime di-
mensions. Another notable fact is that the conformal fishnet function φ computes the Kähler
potential V of the Calabi–Yau via the relation φ = exp(−V ). More details on this elaborate
construction are given in [41].

7 Conclusion

It is fascinating that integrable structures appear for rather broad classes of Feynman integrals,
which constitute the building blocks of generic quantum field theories. The two-dimensional
nature of integrability is satisfied with the ordering of the external legs of planar Feynman
graphs. Here we have focussed on the Yangian invariance of Feynman integrals, which provides
systems of partial differential equations originating in a spacetime symmetry. We note that
integrability in the context of fishnet integrals can be considered from various different angles
and already in 1980 A.B. Zamolodchikov investigated integrable structures for these integrals
in the context of statistical vertex models [44]. More recent applications include the extraction
of Feynman integrals from elements of the fishnet dilatation operator [4], the Basso–Dixon
correlators of [42,45], or the interesting number-theoretic relation to Q-functions of [46].

There are numerous intriguing directions to further explore the Yangian symmetry of Feyn-
man integrals. In particular, the connection to Calabi–Yau geometries promises interesting
novel insights and new connections to mathematics.

Another curious appearance of integrability in the context of higher dimensional conformal
field theory is the interpretation of conformal blocks as eigenfunctions of integrable Calogero–
Sutherland or Gaudin Hamiltonians [47,48]. It would be fascinating to relate these structures
to the Yangian symmetry of conformal correlation functions discussed above.

Going beyond the realm of flat space, there are curious new relations to correlation func-
tions in Anti-de-Sitter space. In [49] it was noted that Witten contact diagrams are identical
with one-loop Feynman integrals featuring Yangian symmetry [21]. If this connection gener-
alizes to other classes of Witten diagrams, this may open a new playground for applications of
integrability in AdS spaces.
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Abstract

Within the extremal black hole attractors arising in ungauged N ⩾ 2-extended Maxwell
Einstein supergravity theories in 3 + 1 space-time dimensions, we provide an overview
of the stratification of the electric-magnetic charge representation space into “large”
orbits and related “moduli spaces”, under the action of the (continuous limit of the)
non-compact U-duality Lie group. While each “large” orbit of the U-duality supports a
class of attractors, the corresponding “moduli space” is the proper subspace of the scalar
manifold spanned by those scalar fields on which the Attractor Mechanism is inactive.
We present the case study concerning N = 2 supergravity theories with symmetric vector
multiplets’ scalar manifold, which in all cases (with the exception of the minimally cou-
pled models) have the electric-magnetic charge representation of U-duality fitting into a
reduced Freudenthal triple system over a cubic (simple or semi-simple) Jordan algebra.
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1 Introduction

Within the theory of dynamical (dissipative) systems, an attractor is defined by a fixed point
of the evolution flow of the system itself, describing the equilibrium state and its stability
features. In general, when approaching an attractor, the orbits of the dynamical evolution lose
all memory of their initial conditions, but nonetheless the overall dynamics remains strictly
deterministic.

Within Maxwell-Einstein-scalar theories endowed with local supersymmetry in 3+1 space-
time dimensions, attractors were firstly discovered within the class of extremal black hole
solutions preserving half of the supersymmetries, in presence of N = 2 spinor supercharges.
This led to the discovery of the so-called Attractor Mechanism (AM), governing the dynamics
of evolution of the scalar fields in the black hole background [1]- [4]. We will now review the
basics of AM in such a framework.

As far as propagating (i.e., dynamical) massless fields are concerned, linearly realized
N = 2 local supersymmetry in 3 + 1 space-time dimensions admits three multiplet repre-
sentations (see e.g. [6] for a general treatment and a list of Refs.):

1. one gravity multiplet, whose maximal helicity is 2, given by
�

V a
µ ,ψA,ψA, A0
�

, (1)

where the Vielbein one-form V a (together with the spin-connection one-form ωab) re-
lates to the graviton (a = 0, 1,2, 3), ψA,ψA are SU(2)-doublets of spinor one-forms
(usually named gravitinos; A = 1, 2, with the upper and lower indices respectively de-
noting right and left chirality, i.e. γ5ψA = −γ5ψ

A), and A0 denotes the Maxwell gauge
boson 1-form potential usually named graviphoton.

2. nV vector multiplets, whose maximal helicity is 1, given by (I , i = 1, ..., nV )
�

AI ,λiA,λ
i
A, z i
�

, (2)

each containing a gauge boson one-form AI , a SU(2)-doublet of zero-form spinors

λiA,λ
i
A (usually named gauginos), and a complex scalar field (zero-form) z i . The z i ’s

coordinatize a complex manifold MnV
, of complex dimension nV , which is endowed

with a projective special Kähler structure by supersymmetry.

3. nH hypermultiplets, whose maximal helicity is 1/2, given by (α= 1, ..., 2nH)

(ζα,ζα, qu) , (3)

each containing a pair of zero-form spinors ζα,ζα (named hyperinos), and four real
scalar fields qu (u = 1, ..., 4nH), which coordinatize a quaternionic manifold QnH

(of
quaternionic dimension nH).

When there is no gauging of any global isometry of MnV
and/or QnH

, the nH hypermul-
tiplets are not involved in the AM, and they can be completely decoupled from the attractor
dynamics in the black hole background. This is a direct consequence of the supersymmetry
transformation properties of the zero-form spinor fields: the hyperinos ζα’s transformations do
not depend on the graviphoton A0 nor on AI ’s (i.e., on the Maxwell 1-form potentials), whereas
gauginos λiA’s ones do depend on the Maxwell potentials. More precisely, when disregarding
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for simplicity’s sake the fermionic and gauging terms, the supersymmetry transformations of
hyperinos read [6]

δζα = iUBβ
u ∂µquγµϵAεABCαβ , (4)

implying that the values of the quaternionic scalar fields qu in the asymptotical(ly flat,) spacial
background are unconstrained, and thus they can vary continuously within QnH

. In other
words, the hyperscalars qu’s are moduli of the system in absence of gauging.

Consequently, in order to keep the framework as simple as possible, we can totally dis-
regard hypermultiplets, and this actually does not imply any loss of generality, at least when
ungauged theories are considered. Thus, we consider asymptotically flat, sphedrically sym-
metric, static, dyonic extremal black hole solutions of N = 2-extended supergravity, in which
the gravity multiplet (1) is coupled to nV vector multiplets (2). Since there is no dependence
of the black hole metric on time and azimuthal and polar angles, the unique coordinate charac-
terizing the dynamical evolution of the nV complex scalar fields (one for each vector multiplet)
is the radial coordinate: the AM states that, when approaching the event horizon of the black
hole, one can always find a solution of the scalar flow such that the scalars dynamically run into
fixed points, acquiring values which only depend on (the ratios of) the electric and magnetic
charges of the black hole (respectively denoted by qΛ and pΛ, with Λ= 0,1, ..., nV ), which are
conserved quantities due to the overall U(1)nV gauge symmetry of the system itself and are
arranged into the symplectic vector

Q := (pΛ, qΛ)
T . (5)

Such near-horizon configurations of the scalar fields are completely independent on the bound-
ary conditions of the corresponding dynamics, namely on the spacial asymptotical values of
the scalars. Consequently, the dynamical system describing the scalar flow completely loses
memory of its initial data, because the dynamical evolution is “attracted” to some fixed con-
figuration points, depending on the electric and magnetic charges only. Note that there are no
attractors in “pure” N = 2 supergravity, since the N = 2 gravity multiplet (1) has no scalar
fields (in fact, the Reissner-Nordström extremal black hole background is scalarless).

In presence of (linearly realized) local supersymmetry, extremal black holes can be inter-
preted as BPS (Bogomol’ny-Prasad-Sommerfeld)-saturated [7] solutions, in the low-energy,
effective field theory limit of higher-dimensional, UV-complete theories, such as (9+ 1)-
dimensional superstrings or (10+ 1)-dimensional M -theory [8]. As class of solutions to the
Maxwell-Einstein equations of motion, the extremal black holes under considerations are de-
termined by their (asymptotical) ADM mass [9], by the electrical and magnetic charges (de-
fined by integrating the fluxes of related field strengths’ 2-forms over a two-sphere at infinity),
and by the asymptotical values of the nV complex scalar fields. Thus, the AM implies that the
extremal black holes become “bald”, i.e. they lose all their “scalar hair” in the near-horizon
limit; in other words, when the extremal black hole metric approaches the conformally flat
Bertotti-Robinson AdS2⊗S2 metric [10,11], it is completely characterized only by electric and
magnetic charges, but not by the continuously-varying asymptotical values of the scalar fields.

A major breakthrough in the study of AM was achieved in [5], in which the fixed points of
the scalar dynamics in the extremal black hole background were characterized as critical points
of a suitably defined “black hole effective potential” VBH , in general being a strictly positive
definite function of the 2nV real scalars φa (corresponding to nV complex scalar fields) and of
the 2nV electric and magnetic (real) charges: VBH = VBH (φ,Q) For a fixed set of e.m. charges
Q (5), the non-degenerate critical points of VBH in MnV

, i.e. those points in MnV
such that

∂ VBH

∂ φa
= 0 : VBH | ∂ VBH

∂ φ =0
> 0 , ∀ a = 1, ..., 2nV , (6)
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completely determine the values of the scalar fields in the near-horizon limit, which depend
on the electric and magnetic charges of the black hole only. The (semi)classical Bekenstein-
Hawking entropy (SBH) - area (AH) formula [12]- [15] yields the extremal black hole entropy
SBH to be given by (π times) the critical value of VBH itself:

SBH = π
AH

4
= π VBH | ∂ VBH

∂ φ =0
. (7)

These result reduce the study of extremal black hole attractors to the study and classification
of the various classes of critical points of VBH which yield a non-vanishing critical value of VBH
itself; as we will see below, each of these classes is in 1 : 1 correspondence with a U-orbit
supporting an attractor, and thus to an attractor “moduli space”.

The fluxes (over S2
∞, which exists because of the spherical symmetry of the black hole

metric) of the Maxwell 2-form field strengths (and of their Lagrangian duals) determine the
electric-magnetic charges Q (5) of the black hole itself, which are 2 (nV + 1) conserved quanti-
ties, where nV is the number of vector multiplets. The “+1” corresponds to the contribution of
the graviphoton Maxwell field. In the limit of real values (which is customarily taken within
supergravity, thus disregarding charge quantization, and in particular the Dirac-Schwinger-
Zwanzinger quantizations condition for dyons), the 2 (nV + 1) e.m. charges coordinatize a
vector space which is the representation space Q ≡ RQ of the U-duality Lie group G. Onto
RQ, G acts as a (maximal, non-symmetric) subgroup of Sp (2(nV + 1),R), the split real form
of the Lie group whose Lie algebra is cnV+1:

G
RQ⊊ Sp (2(nV + 1),R) . (8)

Equivalently, one can state that the embedding (8), whose relevance in field theory was firstly
studied by Gaillard and Zumino [16], is a consequence of the fact that the (not necessarily
irreducible) G-representation RQ is anti-self-conjugated (i.e., symplectic), by applying a gen-
eral theorem of Dynkin [17]. Moreover, it should be pointed out that what we are naming as
U-duality Lie group G ≡ GR is actually the (unquantized,) continuous version of the actual
U-duality, stringy group GZ [18]. This is consistent with the aforementioned (semi-)classical
limit of real charges, also taken into account by the fact that we consider Sp (2(nV + 1),R),
and not Sp (2(nV + 1),Z).

Since the action of G onto RQ is in general non-transitive, the linear representation vector
space RQ gets stratified into disjoint classes of orbits under the action of G itself [19–21]: in
general, a G-orbit O is a (usually non-symmetric) homogeneous space of G,

O ≃ G
H
⊊ RQ , (9)

where the isotropy Lie group H is a (generally non-maximal nor compact) subgroup of G itself,
and it is named stabilizer of O.

A remarkable fact, stemming from the classical invariant theory applied to the mathemat-
ical structure of Maxwell-Einstein-scalar theories, is the following: in all1 N = 2 supergravity
theories with homogeneous symmetric (vector multiplets’) scalar manifolds in 3+1 space-time
dimensions, the pair

�

G,RQ
�

is (a suitable real form of) a θ -group à la Vinberg [22], namely
the number of nilpotent G-orbits in RQ is finite, and the ring of G-invariant polynomials on
RQ is finitely generated (with no syzygies) by a unique primitive, homogeneous polynomial
I ≡ I (Q), of degree two or four in Q (which we will denotes as I2 resp. I4); see e.g. Table II
of [23], and Refs. therein. In all these cases, the formula (7) acquires a manifestly G-invariant

1The same holds for N ⩾ 3-extended supergravity theories, which however we will not treat here.
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form,

SBH = π
AH

4
= π







|I2 (Q)| ,
or
q
�

�I4 (Q)
�

� .
(10)

Interestingly, formula (10) relates the Bekenstein-Hawking entropy of extremal black holes
to the theory of the aforementioned distinguished class of θ -groups, which can actually be
identified as Lie groups of type E7 à la Brown of non-degenerate (when I = I4) [24] or
degenerate (when I = I2) [25,26] type. After Brown [24], non-degenerate groups of type E7
can always be characterized as automorphism groups of Freudenthal triple systems (which in
turn can be of reduced or non-reduced type; see below).

Clearly, the value acquired by I is constant along any G-orbit. When I ̸= 0, the corre-
sponding (generic, open, non-nilpotent) G-orbit supports a “large” extremal black hole, which
has SBH ̸= 0, and thus AH ̸= 0, at the two-derivative (Einstein) level; on the other hand, when
I = 0, the corresponding (nilpotent) G-orbit supports a “small” extremal black hole, which
has SBH = 0, and thus AH = 0, at the two-derivative (Einstein) level: thus, such a “small” black
hole is intrinsically quantum, since it needs of an higher-derivative theory of gravity (such as
the ones occurring in string effective actions) for a sensible description as solution within a
Lagrangian theory.

Moreover, in all the above cases, a manifestly G-invariant presentation of the G-orbit
stratification of RQ is given by the 1 : 1 correpondence between G-invariant sets of algebro-
differential constraints on I (Q) and the various (classes of isomorphic) G-orbits O’s. Over C,
all “large” G-orbits, which are level hypersurfaces in RQ, are isomorphic, defining the generic,
open orbit; however, over R, different real forms (of Riemannian or pseudo-Riemannian type)
exist, distinguished by sign(I), but possibly (when G is non-degenerate and non-split) also by
further G-invariant “finer” constraints on I. On the other hand, when G is non-degenerate,
the stratification of “small" (i.e. nilpotent) G-orbits over C may involve G-invariant differen-
tial constraints on I, and, when G is non-split, finer splittings of the G-orbit stratification may
occur over R. For instance, when I = I4 (i.e., for G being non-degenerate of type E7), the
stratification of nilpotent G-orbits is given by [27]

nilp. G-orbit G-inv. constraint rankF TS (Q)
O3 : I4 = 0 , 3 ,
O2 : ∂ I4 = 0 , 2 ,
O1 : ∂ 2I4

�

�

Adj(G) = 0 , 1 ,

(11)

where rankF TS (Q) indicates the G-invariant rank2 of Q ≡ RQ as element of a (reduced)
Freudenthal triple system [28, 29], which in turn is constructed over a rank-3 Jordan alge-
bra (which, for N = 2 symmetric supergravities, are simple or semi-simple; see table 2). Over
R, when G is split, the stratification of nilpotent orbits is still given by (11), whereas when G
is minimally non-compact, each of the O3 and O2 split into two G-orbits. Note that O1, which
is the minimal, highest weight G-orbit, has the largest stabilizer and it is always unique.

2 N = 2 symmetric supergravities

N = 2-extended Maxwell-Einstein supergravity theories [33]- [35] with homogeneous sym-
metric special Kähler vector multiplets’ scalar manifolds will henceforth be shortly referred
to as symmetric Maxwell-Einstein supergravities. The Riemannian, non-compact, symmetric

2If Q belongs to a “large” G-orbit, i.e. when it is such that I4(Q) ̸= 0, then rankF TS(Q) = 4.
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Table 1: Riemannian symmetric non-compact special Kähler spaces (alias vector mul-
tiplets’ scalar manifolds of the symmetric N = 2, D = 4 Maxwell Einstein supergravity
theories). r denotes the geodesic rank of the manifold, whereas nV stands for the
number of vector multiplets.

G
H0×U(1) r dimC ≡ nV

minimal coupling
n ∈ N CPn ≡ SU(1,n)

U(1)×SU(n) 1 n

R⊕ Γ1,n−1, n ∈ N SU(1,1)
U(1) ×

SO(2,n)
SO(2)×SO(n) 2 (n= 1)

3 (n⩾ 2)
n+ 1

JO3
E7(−25)

E6(−78)×U(1) 3 27

JH3
SO∗(12)

U(6) 3 15

JC3
SU(3,3)

S(U(3)×U(3)) 3 9

JR3
Sp(6,R)

U(3) 3 6

R SL(2,R)
U(1) 1 1

special Kähler manifolds have the general coset structure

MnV
:=

G
H0 × U(1)

, (12)

where H0×U (1) is the maximal compact subgroup (mcs) of the U-duality group G. They have
been classified in [30, 31] (see e.g. [32] for a quite recent account), and they are reported in
Table 1. All the corresponding supergravity theories actually have a five-dimensional origin,
since they can be obtained from “parent” (minimally supersymmetric) N = 2 supergravities in
4+1 space-time dimensions, by compactifying à la Kaluza-Klein on S1, and retaining the mass-
less sector. This is reflected in the fact that all such theories are endowed with a holomorphic
prepotential function which, after projectivization of the coordinates, is a homogeneous cubic
polynomial [33]- [35]. The unique exception is provided by the so-called Luciani theories [36],
which do not have a five-dimensional origin and correspond to the minimal coupling of vector
multiplets to N = 2 supergravity. The corresponding special Kähler manifolds are all symmet-
ric spaces, all with geodesic rank one, and they are nothing but the Riemannian non-compact
versions of the nV -dimensional complex projective spaces CP

nV (see e.g. [37, 38]); in these
theories, the prepotential is a homogeneous quadratic polynomial, and thus the trilinear cou-
pling of N = 2 supergravity, expressed by the so-called C-tensor of special geometry, vanishes:
Ci jk = 0.

As unraveled for the first time in [33]- [35], the cubic prepotentials of symmetric Maxwell-
Einstein supergravities are all related to the degree-3 (cubic) norm defined in the correspond-
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ing rank-3 Jordan algebra. The sequence of factorized spaces in the third row of Table 1,
which is usually referred to as the generic Jordan family, is related to the semi-simple rank-
3 Jordan algebras R ⊕ Γ1,n−1, where Γ1,n−1 stands for the degree-2 Jordan algebra with a
quadratic form of Lorentzian signature (1, n− 1) (spin factors) [39]. The complex dimension
of the corresponding special Kähler manifold3

SL (2,R)
U(1)

×
SO(2, n)

SO(2)× SO(n)
, (13)

is n + 1, and its geodesic rank is 1+min(2, n). On the other hand, the four isolated “magic”
theories are based on the four simple rank-3 Jordan algebras JO3 , JH3 , JC3 and JR3 , which can
be realized as generalized matrix algebras of 3× 3 Hermitian matrices over the four Huwitz’s
normed division algebras O (octonions), H (quaternions), C (complex numbers) and R (real
numbers) [33–35,39,41–43]. The name “magic” is due to the fact that the Lie algebras of their
U-duality groups in D = 2+1, 3+1 and 4+1 space-time dimensions fit into the celebrated Magic
Square of Freudenthal and Tits [44–46]. By defining A≡dimRA (= 8,4, 2,1 forA=O,H,C,R,
respectively), the complex dimension of the symmetric cosets of the “magic” supergravities is
3 (A+ 1). Last but not least, the special Kähler scalar manifold of the so-called T3-model is
the rank-1 coset SL(2,R)

U(1) based on the cubic prepotential F = T3 and related to the simplest
cubic Jordan algebra, given by the real numbers, with the cubic norm simply given by the cube
power. This model has a unique vector multiplet coupled to N = 2 supergravity, and it can be
obtained by dimensional reduction of five-dimensional minimal “pure” supergravity.

2.1 “Large” U-duality orbits

The classification of U-duality orbits supporting “large” extremal black holes in symmetric
Maxwell-Einstein supergravities in 3+ 1 space-time dimensions has been carried out in [37],
and it is reported in4 Table 2.

Given the scalar manifold (12), the U-duality orbits which support (1
2 -)BPS-saturated black

holes , i.e. which preserve the maximal (1
2) amount of supersymmetry, has structure

OBPS =
G
H0

, with H0 × U(1)
mcs⊊ G. (14)

As discovered in [37], there are other two non-isomorphic classes of U-duality orbits, both
supporting extremal black hole attractors which are non-supersymmetric (i.e., which dor not
saturate the BPS bound [7]). The first non-supersymmetric (non-BPS) orbit has non-vanishing
N = 2 central charge at the horizon (ZH ̸= 0), with coset structure

OnBPS,ZH ̸=0 =
G
ÒH

, with ÒH × SO (1,1) ⊊ G, (15)

where ÒH denotes the U-duality group of the corresponding parent theory in 4+ 1 space-time
dimensions, and SO (1,1) corresponds to the radius of the circle S1 in the Kaluza-Klein reduc-
tion from five to four dimensions. The second class of non-BPS U-duality orbits has vanishing
central charge at the black hole horizon: ZH = 0, with coset structure

OnBPS,ZH=0 =
G
eH

, with eH × U (1) ⊊ G. (16)

3This is the unique special Kähler manifold which is the product of two irreducible spaces, as proved in [40].
4In the present report, we will not consider the highly-degenerate case given by the so-called T 3-model, for

which the reader is addressed to [47], and to Refs. therein.
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Table 2: Large G-orbits of symmetric N = 2, D = 4 Maxwell-Einstein supergravi-
ties. They all support extremal black hole attractors, with different supersymmetry-
preserving features.

1
2 -BPS orbit
O 1

2−BPS =
G
H0

nBPS ZH ̸= 0 orbit
OnBPS,ZH ̸=0 =

G
ÒH

nBPS ZH = 0 orbit
OnBPS,ZH=0 =

G
eH

minimal coupling
n ∈ N

SU(1,n)
SU(n) − SU(1,n)

SU(1,n−1)

R⊕ Γ1,n−1
n ∈ N

SU(1, 1)× SO(2,n)
SO(2)×SO(n) SU(1, 1)× SO(2,n)

SO(1,1)×SO(1,n−1) SU(1,1)× SO(2,n)
SO(2)×SO(2,n−2)

JO3
E7(−25)

E6

E7(−25)
E6(−26)

E7(−25)
E6(−14)

JH3
SO∗(12)
SU(6)

SO∗(12)
SU∗(6)

SO∗(12)
SU(4,2)

JC3
SU(3,3)

SU(3)×SU(3)
SU(3,3)
SL(3,C)

SU(3,3)
SU(2,1)×SU(1,2)

JR3
Sp(6,R)
SU(3)

Sp(6,R)
SL(3,R)

Sp(6,R)
SU(2,1)

Note that ÒH and eH are the only two non-compact forms of H0 embedded (with rank-1 commu-
tant) into G itself. Thus, the group embedding in the r.h.s. of (15) and (16) are both maximal
and symmetric (see e.g. [48–50]).

While H0 is a real compact Lie group (stabilizing the BPS “large” orbit (14)), the groups ÒH
and eH, respectively stabilizing the non-BPS “large” orbits with ZH ̸= 0 (15) and ZH = 0 (16),
are non-compact, and thus they will admit a proper maximal compact subgroup, which we
denote with bh resp. eh:

bh=mcs
�

ÒH
�

, eh=mcs
�

eH
�

. (17)

2.2 “Moduli spaces” of attractors

For symmetric N = 2 supergravities, general results on the rank r of the 2nV × 2nV Hessian
matrix H of the effective black hole potential VBH (φ,Q) at its critical points are known (see
e.g. [37] and [51]).

The BPS (non-degenerate) critical points of VBH are stable, and thus the Hessian matrix
at BPS critical points HBPS has no massless modes [5], and its rank is maximal: rBPS = 2nV .
Furthermore, the analysis carried out in [37] showed that for the other two classes of non-BPS
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critical points of VBH , the rank of H is model-dependent:

CPn
: rnBPS,ZH=0 = 2 , (18)

R⊕ Γ1,n−1 :







rnBPS,ZH ̸=0 = n+ 2 ,

rnBPS,ZH=0 = 6 ,
(19)

JA3 :







rnBPS,ZH ̸=0 = 3A+ 4 ,

rnBPS,ZH=0 = 2A+ 6 .
(20)

Correspondingly, the number ♯ of massless Hessian modes for the various models is given by

♯ := 2nV − r , (21)

and thus

CPn
: ♯nBPS,ZH=0 = 2 (nV − 1) , (22)

R⊕ Γ1,n−1 :







♯nBPS,ZH ̸=0 = n ,

♯nBPS,ZH=0 = 2n− 4 ,
(23)

JA3 :







♯nBPS,ZH ̸=0 = 3A+ 2 ,

♯nBPS,ZH=0 = 4A .
(24)

From previous statements, it also holds that

♯BPS = 0 , (25)

for all N = 2 theories, regardless the properties of the special Kähler vector multiplets’ scalar
manifold.

Let us start by recalling that VBH is defined as

VBH (φ,Q) := −
1
2
QT M(φ)Q , (26)

where φ denotes the 2nV real scalar fields parametrising the special Kähler scalar manifold
G

H0×U(1) , and Q is the symplectic vector of e.m. black hole charges sitting in the G-irrepr. RQ
of the U-duality group G. Moreover, M(φ) is the 2 (nV + 1)× 2 (nV + 1) real, symmetric and
symplectic matrix defined as [52–54]

M(φ) = −
�

LLT
�−1

, (27)

where L= L (φ) is coset representative of G
H0×U(1) , i.e. a local section of the principal G-bundle

over the special Hodge-Kähler scalar manifold G
H0×U(1) , with structure group H0 × U(1).

The action of an element g ∈ G on VBH (26) is such that

G : VBH (φ,Q) 7→ VBH

�

φg ,Qg
�

= VBH

�

φg ,
�

g−1
�T Q
�

, (28)

thus, VBH is not G-invariant, because its coefficients (given by the components of Q) do not
in general remain the same. The situation changes if one restricts g to gQ ∈ H, i.e. if one
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restricts to the stabilizer H of the “large” G-orbits O ≃ G
H ⊊ RQ (cf. (9)) to which Q belongs.

In such a case, by definition of H:

QgQ =Q (29)

⇓

H : VBH (φ,Q) 7→ VBH

�

φgQ ,QgQ
�

= VBH

�

φgQ ,
�

g−1
Q
�T Q
�

= VBH

�

φgQ ,Q
�

≃ VBH (φ,Q) .

(30)

Then, it is natural to split the 2nV real scalar fields φ as φ =
�

φQ, φ̆Q
	

, where

•

φQ ∈
H

mcs (H)
⊊ MnV

, (31)

where we denote
H

mcs (H)
=: MQ , (32)

• φ̆Q coordinatize the complement of MQ in MnV
:

φ̆Q ∈ MnV
\MQ . (33)

One can then define

VBH,cri t

�

φQ,Q
�

:= VBH (φ,Q)| ∂ VBH
∂ φ̆Q

=0
(̸= 0) , (34)

as the values of VBH along the equations of motion for the scalars φ̆Q. Thus, (30) implies the
invariance of VBH,cri t

�

φQ,Q
�

under H:

H : VBH,cri t

�

φQ,Q
�

7→ VBH,cri t

�

�

φQ
�

gQ
,Q
�

≃ VBH,cri t

�

φQ,Q
�

. (35)

Finally, it is crucial to observe that H, except for the (1
2 -)BPS “large” G-orbit, is generally

a non-compact real Lie group. This implies that VBH at its critical points is independent on the
subset of scalar fields

φQ ∈MQ ⊊ MnV
, (36)

i.e. on those scalar fields belonging to the homogeneous symmetric submanifold MQ ⊊ MnV
,

which thus be regarded as the “moduli space” of the attractor solutions supported by the charge
orbit O ≃ G

H ⊊ RQ. Thus,

∂ VBH,cri t

�

φQ,Q
�

∂ φQ
= 0⇒ VBH (φ,Q)| ∂ VBH

∂ φ̆Q
=0
=: VBH,cri t (Q) , (37)

or, equivalently:

VBH (φ,Q)| ∂ VBH
∂ φ =0

= VBH (φ,Q)| ∂ VBH
∂ φ̆Q

=0
=: VBH,cri t (Q) . (38)

By using this line of reasoning, in [55] (see also [56]) it was proved that, remarkably, the rank
of H corresponds to all positive eigenvalues (i.e., stable directions in the scalar manifold), and
also that the massless modes of H are actually “flat” directions of VBH at the corresponding
classes of its critical points. Thus, such “flat” directions of the critical values of VBH span
some “moduli spaces” of the attractor solutions [55], corresponding to those scalar degrees of
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Table 3: “Moduli spaces” of non-BPS ZH ̸= 0 extremal black hole attractors in N = 2,
D = 4 symmetric Maxwell-Einstein supergravities. They are the real special (vector
multiplets’) scalar manifolds of the corresponding N= 2, D = 5 symmetric “parent”
supergravity theory.

ÒH
mcs(ÒH)

r dimR

R⊕ Γ1,n−1, n ∈ N SO(1, 1)× SO(1,n−1)
SO(n−1) 1 (n= 1)

2 (n⩾ 2)
n

JO3
E6(−26)
F4(−52)

2 26

JH3
SU∗(6)
USp(6) 2 14

JC3
SL(3,C)
SU(3) 2 8

JR3
SL(3,R)
SO(3) 2 5

freedom which are not stabilized by the AM at the horizon of the extremal black hole. The
general coset structure of such “moduli spaces” has the orbit stabilizer as global isometry, and
its corresponding mcs as isotropy group; thus, by virtue of the treatment above (cf. (32)), one
can generally write that

MBPS =
H0

mcs (H0)
≃∅ , (39)

MnBPS,Z ̸=0 =
ÒH

mcs
�

ÒH
� =
ÒH
bh

, dimR
�

MnBPS,Z ̸=0

�

= ♯nBPS,Z ̸=0 , (40)

MnBPS,Z=0 =
eH

mcs
�

eH
� =
eH
eh

, dimR
�

MnBPS,Z=0

�

= ♯nBPS,Z=0 , (41)

where the non-existence of MBPS follows from (25). This means that in N = 2 symmetric
supergravities all critical points of VBH supported by “large” U-duality orbits are stable, up to
a (possibly vanishing) certain number ♯ of “flat” directions, spanning some proper subspace of
the scalar manifold itself:

MnBPS,Z ̸=0 ⊊ MnV
, (42)

MnBPS,Z=0 ⊊ MnV
. (43)

Tables 3 and 4 report spaces MnBPS,Z ̸=0 and MnBPS,Z=0, respectively [55].
Interestingly, the “moduli space” MnBPS,Z ̸=0 of non-BPS ZH ̸= 0 attractors is the scalar

manifold of the corresponding “parent” theory in 4+ 1 space-time dimensions [55] (see also
[57] and [58] for a result holding for generic special d-geometries).
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Table 4: “Moduli spaces” of non-BPS ZH = 0 extremal black hole attractors in N = 2,
D = 4 symmetric Maxwell-Einstein supergravities. They are (non-special) symmetric
Kähler manifolds.

eH
mcs( eH)

≡ eH
eh′×U(1)

r dimC

minimal coupling
n ∈ N

SU(1,n−1)
U(1)×SU(n−1) 1 n − 1

R⊕ Γ1,n−1, n ∈ N SO(2,n−2)
SO(2)×SO(n−2) , n⩾ 3 1 (n= 3)

2 (n⩾ 4)
n− 2

JO3
E6(−14)

SO(10)×U(1) 2 16

JH3
SU(4,2)

SU(4)×SU(2)×U(1) 2 8

JC3
SU(2,1)

SU(2)×U(1) ×
SU(1,2)

SU(2)×U(1) 2 4

JR3
SU(2,1)

SU(2)×U(1) 1 2

2.3 “Moduli spaces” of the ADM mass

Remarkably, by the thumb rule of orbit stabilizer modded by its mcs, one can associate “mod-
uli spaces” also to “small” U-duality orbits, which do not attractor black holes: indeed, as
mentioned above, the corresponding black hole has vanishing entropy in the Einstein, two-
derivative approximation, and no AM (at least in the sense pointed out in the previous sec-
tion; see [59]) holds [47, 60–62]. For “small” U-duality orbits there exists a “moduli space”
also when the semi-simple part of the orbit stabilizer is a compact real Lie group: in such cases,
the “moduli space” is spanned by the non-reductive, translational part of the orbit stabilizer
itself [47,62]. Ça va sans dire that for “small” orbits, there is no event horizon of the extremal
black hole at which the N=2 central charge should be evaluated and no AM holds: in these
cases, one may consider the asymptotical, spacial limit of the black hole, and put forward
the interpretation of the “moduli spaces” associated to “small” orbits as “moduli spaces”of the
ADM mass [9] of the “small” black hole itself.
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Introduction by M. A. del Olmo

Our colleague and friend Kurt Bernardo Wolf Bogner passed away on 25th May 2022 in Cuer-
navaca, Mexico. I received the sad news of his death a couple of days later and it shocked me.
Just ten days before we had exchanged some emails. I was aware that he did not have good
health, but I didn’t think it was too serious for such a quick fatal outcome.

I met Bernardo in 1981 in Canterbury at Group10. It was my first participation in this
series of Colloquia. We have been friends ever since. I have always been charmed by his ease
in engaging in conversation on any subject, his boundless curiosity, his touch of eccentricity and
his affability. We did not collaborate scientifically, although in recent years we have coincided
on some topics we have discussed when we have met.

I do not want to be much longer, because our friend George Pogosyan, who has worked
actively with him for many years, has prepared a memorial lecture. Unfortunately George is
unable to be here with us due to health problems. Let me send a warm abrazo (hug) to George
with our best wishes for a quick recovery.

Memorial lecture by G. Pogosyan

Kurt Bernardo Wolf, was a great friend to all of us, as great humanist and brilliant scientist.
As a theoretical physicist deeply influenced the Mexican science, and not only. He left us on
the 25th of May 2022 in Cuernavaca, Mexico.

In science he is well known for his contribution to mathematical physics, in particular in
the application of group theory and symmetry methods to fundamental problems in atomic
and molecular physics, classical and quantum optics, in Fourier integral transforms (where he
wrote a book titled Integral Transforms in Science and Engineering), in theory of differential
equations, special functions, integrable and superintegrable systems. He is the author of more
than 200 articles and two scientific books [1,2].

Bernardo Wolf was encouraged by his parents from a young age to pursue his studies in
sciences. After finishing the high school in 1960, being 16 years old, he started his undergradu-
ate studies at the Universidad Nacional Autónoma de México (UNAM) to become a theoretical
physicist, where his PhD advisor was Marcos Moshinsky. To continue his PhD studies he moved
to the Weizmann Institute of Science and the Tel-Aviv University to finish his PhD thesis [3].
After obtaining his PhD in 1970, he lived in Gothenburg, Sweden, where he was a post-doctoral
associate at Chalmers University. Finally, in 1971 he returned to Mexico where he became a
principal investigator at the Instituto de Ciencias Físicas at UNAM.

In 2022 he was elected a Fellow by Optica for his outstanding and numerous contributions
to mathematical optics, including signal analysis, by employing symmetry methods known as
group theory. In the same year, the Mexican Government’s National System of Researchers
(SNI) honoured him as Emeritus National Researcher.

Along with a selfless love for theoretical physics, Bernardo’s soul was craving for great
travels. In his youth, he travelled through Ethiopia, Kenya, Uganda, Rwanda, Burundi, and
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Tanzania, including Kilimanjaro, and South Asia, including Persia, Afghanistan, Pakistan and
India. Bernardo Wolf authored a book about his travels [4].

Among many of his talents, he especially stood out as a brilliant organizer. In 1986, Wolf
became the founding director of the Centro Internacional de Ciencias (CIC) at his alma mater
UNAM. He remained director at CIC until 1993, where he organized more than a dozen sym-
posiums and conferences. For a long time he was a member of the Standing Committee of
ICGTMP and QTS series of conferences and main organizer of Group25 in Cocoyoc, Mexico
in 2004. By 1987, he helped found the Mexican Academy of Optics (Academia Mexicana de
Óptica).

I first met Bernardo Wolf almost thirty years ago in 1995 at Dubna, Russia, when he at-
tended our Conference on Symmetry Methods in Physics. We immediately found many com-
mon scientific interests, especially in the field of the theory of superintegrable systems. The
next time we met was in Cuernavaca, in 2000, where I was invited for two years as researcher
in the Centro de Ciencias Fisicas. In Cuernavaca, under the patronage of Bernardo Wolf, we
had a good scientific group, which, in addition to me, also included Natig Atakishiyev. In the
past few years, Alexander Yakhno from the University of Guadalajara has also joined us. We
managed to publish two extensive rounds of scientific articles (about 20) concerning the defini-
tion of Wigner distribution functions on n-dimensional spaces of constant curvature (spheres
and hyperboloids) and superintegrable systems of Zernike type. By the way, recent studies
(the Zernike system) have been continued in the work of Mariano A. del Olmo and Francisco
Hérranz.

Bernardo was one of the brightest and original-thinking persons I have ever met. I was
amazed by his knowledge. He understood well of Christianity or Islam, and as orientalist had
a deep understanding of the Indian philosophy. He was fluent not only in Spanish and English
which allowed him to brilliantly write articles in both languages, but also could read in many
other languages such as Russian, Hebrew, or Swedish. I have to say that the beauty was his
god and simplicity his ideal. It manifested in everything, whether in buying a car, decorating
his house or his office. I remember when I sat in his office, he always played classical music
before starting to work on his computer.

He knew how to be a great friend. Two weeks before his death, he wrote to me:

Dearest George!
It is good to know that you are there, even with a lot of health problems. Unfortunately, I

am not so healthy either. Since 2020 I have been using oxygen 24/7 due to lung problems, and
I am also confined at home. I have been working as far as I can on-line: Kenan graduated with
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honors, 3 articles on Bessels and 2× 2 matrices written, etc., Also my “crónicas de un hitchhiker
in a more amicable world” (in Spanish) was published (292 pages, 120 of my photos) but it is
becoming increasingly difficult to focus on things. I cannot return to Yerevan in this condition,
but I would like to accompany you spiritually in our joint effort to stay alive, well and with bright
future. About Natig, earlier this year he underwent a heart operation, and his state of health is
also not great. ...such is life, as we often said...

Still, may I send you a warm abrazo, such as only good old friends can give!

Bernardo

I am blessed to remember the time spent in Cuernavaca. These memories warm my heart.

Acknowledgements
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Our colleague and friend Tchavdar Palev passed away in Sofia, Bulgaria on November 19,
2021, after a long fight with a terrible disease.

Palev was an active member of the Standing Committee of the “International Colloquium
of Group Theoretical Methods in Physics” from 1988 until December 2008.

As a scientist

• Tchavdar was successful as an outstanding researcher in theoretical and mathematical
physics;

• he was an excellent lecturer;

• he was a promotor of academic freedom, international collaboration and tolerance.

Tchavdar Dimitrov Palev was born in Sofia on April 15, 1936. At the age of 6 months his
family moved to Paris. Soon after, his father took part in the Spanish Civil War, where he was
killed in action. The mother returned with her infant son to Sofia, where she raised and edu-
cated him in a spirit imbued with the pursuit of knowledge, hard work, honesty and integrity.
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Tchavdar graduated from secondary school in Sofia in 1955 and dreamed of building airplanes,
but as often happens at turning points in life, fate took him in another direction. He studied
physics at Moscow State University “M.V. Lomonosov”, where defended his diploma thesis in
1961. Then returning to Bulgaria, he won a competition to become a research assistant at the
then existing Institute of Physics of the Bulgarian Academy of Sciences, and later went to work
at one of its successors, the Institute for Nuclear Research and Nuclear Energy.

Palev was one of the first physicists to specialize at the International Center for Theoretical
Physics in Trieste, Italy, which opened in 1964. Working for a year at the Center, he was one
of the lucky ones who were in daily contact with its Director, Nobel Laureate Abdus Salam.
In 1968, he defended his Ph.D. thesis in mathematical physics at the University of Marburg,
(West) Germany on “Realization of Lie algebras as functions of Heisenberg algebra genera-
tors. General theory and applications to finite- and infinite-component field equations”. His
supervisor was Prof. Dr. H. D. Doebner.

Being back in Sofia he received his Habilitation degree and was elected as a Professor at
the Institute for Nuclear Research and Nuclear Energy at the Bulgarian Academy of Sciences.
In recognition of his achievements in the field of mathematical and theoretical physics, Palev
was successively elected as a corresponding member and academician in 2004 and 2008.

As a human, Palev was a sports personality, he jogged every day. On a cold, snowy day he
was jogging along a river in Sofia when he noticed something strange in the water. Tchavdar
realized it was a 7-8 year old drowning child. Without a second thought, he entered the icy
water, pulled him out, gave him first aid and took him to the hospital. This is how Tchavdar
saved the life of the child, who is now a young man.

Each year from 1984 to 1994 Palev was a guest professor at the Arnold Sommerfeld Insti-
tute for Mathematical Physics, TU Clausthal, Germany giving lectures on associative algebras,
Lie algebras, Lie superalgebras and Hopf algebras. He was a guest professor at the Depart-
ment of Physics, University of Naples, Italy in 1990 and at the Department of Mathematics,
Concordia University, Montreal in 1992. In addition Tchavdar was a visiting professor at the
Department of Mathematics, University of Queensland, Brisbane, Australia, at the Research
Institute for Fundamental Physics, Kyoto, Japan, at the Department of Physics and Astronomy,
University of Rochester, USA, at the Department of Applied Mathematics, Computer Science
and Statistics, Ghent University, Belgium, at the Department of Mathematics, University of
Southampton, UK and he was a honourary associate in ICTP, Trieste from 1992 to 1998.

In 1987, Tchavdar organized the XVI International Colloquium on Group Theoretical Meth-
ods in Physics, which took place in Varna, Bulgaria. The following year, 1988, he was elected
as a member of the Standing Committee. Palev was an active contributor to the organization
of our Colloquia until 2008 when he had to retire, along with 7 other established members.

A large part of Palev’s scientific activity is devoted to the algebraic approach he introduced
for the generalization of quantum statistics, i.e. the Bose-Einstein and Fermi-Dirac statistics,
as well as their generalizations, the Green’s parastatistics, which he proved to correspond to
different representations of Lie algebras or superalgebras of class B. These results give a cer-
tain algebraic sense to the known statistics and become the starting point for many interesting
generalizations. Palev introduced the notion of a Wigner quantum system and studied the
physical properties of such systems. It turns out that the geometry of these systems is non-
commutative, which is one of the important directions in particle physics today. The A statis-
tics he introduced is known and quoted today as “Palev’s statistics”. Also, of interest are the
mathematical problems solved by Tchavdar – he constructed explicit finite-dimensional repre-
sentations of Lie superalgebras, defining an analogue of the Gelfand-Zetlin basis for them. He
generalized these results to their infinite-dimensional analogues and to quantum deformations
of these superalgebras.
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At the celebration of the 75th anniversary of T. Palev, his co-authors said:
Ronald King: “My impressions of Tchavdar Palev were that he was immensely stimulating,

with a great breadth of knowledge and expertise in group theoretical methods and their appli-
cation to physics, characterised by great attention to detail. But perhaps above all he was great
fun to work with, and it is both a delight and a privilege to contribute here to the celebration
of his 75th birthday.”

Joris Van der Jeugt: “T.D. Palev laid the foundations of the investigation of Wigner quantum
systems through representation theory of Lie superalgebras. His work has been very influential,
in particular on my own research. It is quite remarkable that the study of Wigner quantum
systems has had some impact on the development of Lie superalgebra representations.”

I was a Ph.D. student of Tchavdar and after defending my thesis I had the privilege of
working with him for about 10 years. He was a dedicated mentor, a stimulating scientist, a
splendid person and a great inspiration to me.
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To the memory of my mentors and friends, Jǐrí and Pavel, with admiration and gratitude.

1 Introduction

Within a year, sadly, Pavel Winternitz and Jǐrí Patera passed away in 2021 and 2022. Each
one of them stands tall and deserves separate praise. Fate has had it that they have often been
celebrated together even though in fact, most of their scientific work has been done separately.
I will also indulge in this conflation that will not fully do them justice. One reason is that they
cannot be dissociated on the occasion of the 50th anniversary of the International Colloquium
on Group Theoretical Methods in Physics (ICGTMP); another, is that they leave a truly joint
heritage in Montreal.

Like quantum interacting particles that become entangled and yield “magic” [1], through
the vicissitudes of History, these brilliant individuals were set on a colliding course which they
steered to have profound influences on various fronts. This is the story that I will try to tell as
a tribute to their accomplishments.

2 Early life and education in the eastern bloc

Born in Czechoslovakia, both in 1936, Jǐrí and Pavel have been educated as theoretical physi-
cists in the great Russian tradition of the Soviet era.
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Figure 1: Jǐrí and Pavel.

Jǐrí was a native of Zdice, a small town in central Bohemia near Prague. He attended
high school in Děčín in northwestern Bohemia after which he studied at Moscow State Uni-
versity and Dubna as well. In 1964, he obtained his Doctorate from Charles University in
Prague. One of his first papers published in 1963 in Nuclear Physics studied the production
of Λ-hyperons in π−− p interactions [2] and was written in collaboration with the prominent
physicist Blokhintsev, a student of Tamm, who founded the Joint Institute for Nuclear Research
(JINR) in Dubna and was its first director. In 1965, Jǐrí took a leave from the Physical Institute
of the Czechoslovak Academy of Sciences to hold a postdoctoral fellowship from the National
Research Council (NRC) of Canada within the developing theory group of the Physics Depart-
ment of the Université de Montréal that included Asok Bose, Guy Paquette and soon thereafter
Jean-Robert Derome as well as Robert Brunet in the Mathematics Department. This is when,
with Bose, Jǐrí began his work on group theoretical methods and as you appreciate, this stay
in Montreal was to have in many other ways a determining effect on the future. It should be
recalled that a memorable world fair the “Expo 67” took place in Montreal during that period
and that the Tchechoslovak pavilion was one of the most popular. At the end of his NRC award
in December 1966, Jǐrí came back to Prague.

Pavel was born in Prague. He spent the war years in England from where came his flu-
ency in English. He pursued graduate studies at the Leningrad University where Fock was
teaching and then in Dubna where he obtained his doctorate in 1966 under the supervision of
Smorodinsky, a student of Landau, who Blokhintsev had invited in 1956 to become the head
of the Theoretical Group of the JINR. In 1967, he took a leave from the JINR and from the
position he had obtained at the Nuclear Research Institute of the Czechoslovak Academy of
Sciences in Řež to spend time at the International Center for Theoretical Physics in Trieste. In
1968, he returned to his home country.

3 Prague and Montreal

Czechoslovakia was an exciting place to be at the beginning of 1968 with the election in Jan-
uary of Dubček as First Secretary. Followed the Prague Spring with its waves of proposed
reforms. This unfortunately displeased the Soviet leaders to the extent that in late August
troops from four Warsaw Pact countries invaded and controlled Czechoslovakia. For some
days, it was possible to flee and so did Jǐrí and Pavel. With a visa in hand to attend a scien-
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tific meeting in Vienna, Jǐrí, his wife Tania and their baby daughter Sacha left with what they
could pack in their small car. After a stay in London, they headed to a city that was familiar to
Jǐrí, namely Montreal, where he was appointed Researcher in the nascent CRM in 1969. More
hesitant to cut ties with Europe, Pavel initially went to England with his wife Milada and their
twin boys Michael and Peter and spent some time at the Rutherford High Energy Laboratory
in Chilton where Roger Philips a student of Dirac was his host. A year later he crossed the
Rubicon and at the invitation of Wolfenstein, Pavel moved to Pennsylvania with his family first
to Carnegie-Mellon and subsequently to the University of Pittsburgh. This is when he was
encouraged to come to Montreal by Jǐrí.

In 1968, the Rector of the Université de Montréal Roger Gaudry, together with Maurice
Labbé, the first Vice-Rector Research of the university and, Jacques St-Pierre who created the
Computer Science Department, had the vision to establish a national institute for research
in the mathematical sciences: the Centre de Recherches Mathématiques that was to become
internationally known as the CRM. They obtained sizable funding from the NRC to that end.
Jacques St-Pierre acted as Interim Director and hired Jǐrí. Three years later, in 1972, Pavel was
also joining the CRM as Researcher. And this is how the stage was set for two young Czechs
in their mid-thirties to shape the course of mathematical physics in Canada. In retrospect, the
Czech diaspora generated by the 1968 events had a profound effect on the scientific life of
Montreal. I shall expand on the roles that Jǐrí and Pavel played but there is another striking
example that I wish to mention. Montreal has two university hospital systems attached to the
Université de Montréal and McGill University. Quite strikingly at the same time in the 90s and
2000s, the research institutes of both these university hospitals were led by two Czechs: Pavel
Hamet and Emil Skamene who had come to Montreal in circumstances similar to those of Jǐrí
and Pavel and who all became friends of course.

I started my undergraduate studies at the Université de Montréal in 1970. Little was I
suspecting that the Prague Spring demise that I had watched unfold with distress two years
before was to have a defining impact on my life. In the Fall of 1972, totally oblivious to the
creation of the CRM, I wished to enroll in the Master’s program in Physics and was looking
for a supervisor. It is Robert Brunet from whom I had taken a class who informed me of the
existence of the CRM and of the fact that it had recruited two outstanding theoretical physicists
with one, Pavel, that had just arrived. He thought they would be interested in taking graduate
students and suggested that I approach them. I followed up and still recall the enthusiasm I
felt when together Jǐrí and Pavel presented their research programs to me. This was obviously
a personal defining moment.

4 CRM: The early period and the collaborative years

When the Centre de Recherches Mathématiques or CRM was created the plan was to develop
research groups in mathematics and statistics, theoretical physics and computer science. While
quality hires were made in all three sectors, somehow the group in computer science dispersed.
The physics division had a statistical mechanics section that proved less cohesive and very
much thanks to Jǐrí and Pavel a tradition in mathematical physics developed along with other
more mathematical areas that also benefited from the presence of Czech scientists like Anton
Kotzig and Ivo Rosenberg.

In the Summer of 1974, when I reported to begin my Master’s, the CRM was located in the
Jésus-Marie Pavilion and moved that very Summer to the location on Côte Ste-Catherine that
many of you have visited and where it stayed until 1994. For starters, I was asked to read the
book of Naimark on the representations of the Lorentz group. Eventually, I collaborated more
closely with Pavel on superintegrable models. By then, Jǐrí and Pavel had hired a postdoc
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whose name was Ernie Kalnins that I had a hard time understanding because of his New-
Zealander accent. The group was already very lively. Bob Sharp who was on Faculty at McGill
University had found like-minded colleagues in Jǐrí and Pavel at the CRM and was already
collaborating with them. Marcel Perroud who had completed a thesis with Derome and John
Harnad became soon regular members of the team whom Jǐrí and Pavel have much supported.
It is during that period in 1973, that Jǐrí together with David Sankoff another CRM researcher,
produced, in book format [3], his first set of tables collecting data on representations of simple
Lie algebras (others were produced later [4–7]). Thanks to particle physicists such as Pierre
Ramond and Dick Slansky who made them largely known, these tables found their ways to
the bookshelves of many scientists making practical use of representation theory.

André Aisenstadt, a Montreal philanthropist who held a doctorate in theoretical physics
from the University of Zurich was a benefactor of the CRM and endowed a distinguished
lectureship at the CRM known as the Aisenstadt Chair. In 1973-74, Jǐrí and Pavel arranged for
Marcos Moshinsky to hold this Chair and to spend an extended period in Montreal. Charles
Boyer and Kurt Bernardo Wolf came with him from Mexico on this occasion. Willard Miller Jr.
was spending a sabbatical at the CRM (that led to his career-long partnership with Kalnins).
You can imagine the intellectual intensity that such a concentration of visiting collaborators
was generating and this came to be the rule with Jǐrí and Pavel acting as extraordinary magnets.
A continuous flow of distinguished speakers would participate in the weekly seminar. Viktor
Kac for example who in 1977 had recently completed the classification of Lie superalgebras
visited the CRM very soon after he arrived at MIT. In 1979, the Aisenstadt Chair was attributed
to Yuval Ne’eman and so on. Eugen Dynkin was also among the numerous distinguished people
to hold that chair; Jǐrí had early on carefully studied his works in Russian and I always thought
that this had a big influence on him.

After having completed my Master’s, I embarked on a Ph.D. Together with John Harnad
and Steven Shnider a differential geometer from McGill and under the benevolent eye of Pavel,
I began investigations bearing on gauge field theories and their geometrical and topological
properties that were generating much interest at the time. Yvan Saint-Aubin started his Ph.D.
two years after I did and other talented students kept coming to this exceptional environment
that Jǐrí and Pavel were animating.

Between 1973 and 1980, Jǐrí and Pavel wrote an astonishing average of 7 papers per year
together. The Journal of Mathematical Physics or JMP which was then one of their favorite
venues could as well have been called the JJP for journal of Jǐrí and Pavel! Their first paper
published in 1973 [8] brought Heun polynomials into the realm of the rotation group repre-
sentations and 50 years later is still inspiring new results. Jǐri and Pavel had the knack for
developing lasting collaborations with truly distinguished researchers. In the 70s and the 80’s
one of those was Hans Zassenhaus who is known as a pioneer of computer algebra. He has had
an illustrious career that began by being an assistant to Emil Artin in Hamburg in 1936. After
having occupied positions at various universities with McGill among those, in 1965 Zassen-
haus settled at Ohio State University for the rest of his career and from there visited Montreal
regularly even taking a sabbatical at the CRM in 1977-78. As an illustration of the fruitful
collaboration he enjoyed with Jǐri and Pavel I will recall the program they initiated in 1975
aiming to determine the continuous subgroups of the fundamental groups of physics [9]. This
involved many additional collaborators (among them Guy Burdet and Martine Perrin from
Marseille for work on the optical group), and culminated with the study of the conformal
group from that perspective. The results found many applications among which the classifi-
cation by Beckers (from Liège), Harnad, Perroud and Winternitz of the tensor fields invariant
under conformal transformations [10]. My thesis work on solutions of the Yang-Mills equa-
tions has also roots in these foundational studies. And thus Jǐrí and Pavel thrived and drew
many into their wake.
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From 1973 to 1982, the Director of the CRM was Anatole Joffe. At the end of his term,
the funding model of the CRM was modified to one where its researchers would hold Faculty
positions in university departments and it is then that Jǐrí and Pavel became professors in the
Department of Mathematics and Statistics of the Université de Montréal. In 1984, Francis
Clarke was appointed Director and the CRM blazed new trails under his leadership. It played
a pioneering role together with the MSRI in defining in the 80s the modern organization of
research in the mathematical sciences around institutes organizing visitors and thematic pro-
grams.

5 ICGTMP and Outreach

The International Colloquium on Group Theoretical Methods in Physics was initiated by Henri
Bacry from Marseille and Aloysio Jenner from Nijmegen and oscillated between these two
cities from 1972 to 1975. In 1974, even though I was a rather young graduate student then, I
had the privilege to attend the third edition of the colloquium in Marseille. There was a good
contingent from Montreal led of course by Jǐrí and Pavel. I could thus observe firsthand the
interest they were generating and how many interactions they were having. During the event,
they proposed that the conference be held at the CRM in 1976, the year Montreal was to have
the Olympic Games. This proposal was adopted and after returning to Nijmegen in 1975, the
ICGTMP was held outside Europe for the first time and, thanks to the leadership of Jǐrí and
Pavel, became truly an international series. Before the colloquium, they also organized a three-
week summer school in the framework of the yearly Séminaire de Mathématiques Supérieures
(SMS) initiated by Maurice Labbé in 1962 at the Université de Montréal. Renowned scien-
tists such as Feza Gürsey, Sigurdur Helgason, Peter Lax, Louis Michel, Willard Miller, Marcos
Moshinsky, and many others lectured at these meetings. Jǐrí and Pavel showed us the way.
Following in their footsteps Yvan Saint-Aubin and I organized the ICGTMP again in Montreal
in 1988 together with an edition of the SMS. Because of the glasnost and perestroika taking
place in the Soviet Union, it proved possible to host for the first time in the West many distin-
guished Russian scientists such as Yuri Manin or Sacha Zamolodchikov who were playing key
roles in the development of quantum groups and conformal field theories. I shall mention an-
other ICGTMP story. In 1978-79, having mostly finished my Ph.D. work, I accompanied Pavel
for a year in Paris as he was spending a sabbatical at Saclay. I shall come back to this later.
During that year, André Aisenstadt offered me a scholarship that made it possible to attend
the Jerusalem Einstein Centennial as well as the ICGTMP that followed in Kyriat Anavim. This
offered memorable experiences with Jǐrí and Pavel who was kind enough to share a room with
me. Pavel was for many years a member of the ICGTMP Standing Committee and in 2018 he
received the Wigner medal.

In addition to the ICGTMP, Jǐrí and Pavel organized numerous meetings over the years
thus influencing research directions broadly and much contributing to the animation of the
international scientific community and the visibility of the CRM. One striking example is the
workshop on Symmetries and Integrability of Difference Equations that I ideated with Pavel
in 1994 and which Decio Levi helped put in place; as you know, this led to the ongoing SIDE
series of biennial conferences. Another example involving Jǐrí this time is the thematic program
entitled Aperiodic Long Range Order that he and Bob Moody organized albeit at the Fields
Institute in 1995 [11].

Jǐrí and Pavel have also been very active in developing international collaborations. To
that end they made good use of agreements between France and Belgium; this led in partic-
ular to the appointment of Véronique Hussin at the Université de Montréal. Over time Jǐrí
concentrated more in North America. He developed a very fruitful and long lasting collabo-
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ration with Bob Moody who was based in Saskatchewan and Alberta. In 1983-84, he spent
a sabbatical at Caltech. Around that time, he began collaborating with Gordon Shaw and
became involved in the MIND Research Institute which was created in 1998 in Irvine. Jǐrí
has also been a regular participant in the Aspen Center for Physics program and often visited
the MSRI. From the mid 90s onward, with Eliza Shahbazian, Jǐrí also pursued collaborative
projects with Lockheed Martin Canada and OODA technologies. The international collabora-
tions of Pavel were concentrated mostly in Europe, more precisely in Italy, with Decio Levi
and others and in Spain, especially with Miguel Angel Rodriguez and Mariano Del Olmo who
had been postdocs at the CRM. He also had close ties with Mexico, with Sacha Turbiner in
particular. Furthermore, when it became possible both Jǐrí and Pavel reconnected with their
roots and put in place collaborative links between Prague and Montreal. This brief overview
of the outreach activities of Jǐrí and Pavel is grossly incomplete but hopefully illustrates how
they have both made Montreal an international hub of mathematical physics.

6 Moving in different scientific directions: Relentless creativity

As already indicated, Pavel took a sabbatical year in 1978-79 while for Jǐrí this happened
in 1983-84. At the time, together, they had more or less completed the large undertakings
described before and this had monopolized them fully. Without turning their backs on these
programs, they then wished to explore new directions and used the occasion of their leaves
to do so. As a result, while they kept writing joint papers until 1999 on the classification of
maximal Abelian subalgebras [12] and graded contractions [13] in particular, the intensity of
their collaborative production diminished as each one of them independently opened up new
domains. In France, while pursuing his never-ending interest in the nucleon-nucleon scattering
phenomenology [14], Pavel decided to focus his attention on the field of non-linear integrable
systems whose study with emphasis on solitonic waves and the introduction of the inverse
scattering method had been generating great advances. As for Jǐrí, his collaboration with Bob
Moody had already kicked off with papers on weight multiplicities [15] and on characters of
elements of finite order [16] . This would launch four decades of pioneering research by the
two of them of which I will only give a succinct overview.1

From the late 80’s, with several collaborators Jǐrí developed the profound theory of Lie
gradings that he had initiated with Zassenhaus [17]. Joris Van der Jeugt who had collaborated
with Bob Sharp held a NSERC Visiting Researcher position at the CRM in that period and got
involved in those studies. Then, together with Moody, Jǐrí made fundamental advances toward
the mathematical understanding of quasicrystals viewed as cut and project point sets [11,18].
This led them, while Jǐrí was holding a Killam scholarship, to study Voronoi domains [19] and
non-crystallographic root systems [20]. Jǐrí also pursued the applications of these results in
cryptography [21]. One additional broad topic that Jǐrí has much shaped with signal process-
ing in mind, is that of orbit functions. He wrote a foundational paper with Anatolyi Klimyk [22]
and much collaborated on this with Jǐrí Hrivnák [23] who was a postdoc at the CRM and is
now on Faculty at the Czech Technical University in Prague. As part of this program, a gen-
eralization of the known properties of the Chebyshev polynomials of the second kind in one
variable to polynomials of many variables based on the root lattices of compact simple Lie
groups of any type and any rank was provided [24]. Another fascinating application that Jǐrí
has explored is the connection that non-crystallographic Coxeter groups have with fullerene
and nanotube structures [25].

1I shall cite below a number of papers for illustration’s sake. This is somewhat arbitrary of course, and I apologize
to important collaborators that are not mentioned.
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Pavel’s first contributions to integrable models had to do with Bäcklund transformations.
Renewing with Bob Anderson an acquaintance from the time in Trieste, together with John
Harnad, he determined the nonlinear superposition properties of matrix Riccati equations
[26]. Subsequently, he launched a broad program aimed at obtaining solutions to these in-
tegrable nonlinear partial differential equations through symmetry reduction. This involved
finding first the symmetry algebra of the system, a task that he computerized with colleagues
[27] and second, imposing invariance under subalgebras with the help of his expertise at clas-
sifying those. This was applied fruitfully to many systems and in particular to the KP one [28]
in collaboration with Daniel David, a Ph.D. student of Pavel, Niky Kamran a postdoc at the time
and now a distinguished Faculty at McGill and Decio Levi with whom Pavel wrote the largest
number of papers. Pavel and Decio further introduced the notion of conditional symmetry to
treat analogously the Boussinesq equation for example [29]. Michel Grundland who came to
the CRM from Poland in the early 80s also participated in these studies. Meanwhile, Pavel pur-
sued his maximal Abelian subalgebras program (see for example [30]) as well as the one aimed
at characterizing Lie algebras [31], an undertaking that Libor Šnobl joined as a postdoc [32]
to eventually bring it all together in a book [33] co-authored with Pavel. Another major ac-
complishment of Pavel has been to develop the Lie theory of difference equations [34,35]; the
large body of results he has obtained in this area has been collected in a book [36] written
with Levi and Yamilov that will be posthumously published. One cannot write about Pavel’s
scientific production without mentioning his work on superintegrable models which is rooted
in his seminal paper [37] of 1966. Throughout his career, he kept returning with numerous
co-workers to this fertile topic that he championed connecting it for instance to separation of
variables and more lately to Painlevé transcendents. Pavel’s discovery in 2009 with his stu-
dent Tremblay and Turbiner of the so-called TTW model [38] exhibiting constants of motion
of arbitrary degrees had the effect of a bomb and gave an enormous impetus to the field. His
former student Ian Marquette and former postdocs Sarah Post and Adrian Escobar-Ruiz among
others worked actively with Pavel on this topic in more recent times.

Without adequately summarizing their abundant research outputs, I trust this short
overview nevertheless gives a sense of the diversity, richness, and importance of their work.

7 Conclusion: Passion for research — Legacy and memories

Jǐrí and Pavel both had an unquenchable passion for research and science which they followed
with talent throughout their professional lives for more than 60 years. They had the good
fortune to never lose their vivacity and their curiosity remained high and sharp. Unfettered by
fashions, they pursued their interests to achieve bodies of work of great depth and originality.
Even afflicted by blindness in his later years, Jǐrí admirably carried on serenely, supervising in
this period many students and postdocs who came from the Czech Republic.

At the Université de Montréal the title of Emeritus Professor is a high distinction and is
awarded parsimoniously; there is a yearly quota for these appointments and nominations
across the university are carefully assessed. To be eligible, you need of course to announce
your retirement. The title of Emeritus Professor was bestowed upon Pavel in June 2020. That
this recognition made him very proud reflects how much his belonging to the CRM and the
Université de Montréal mattered to him. As for Jǐrí, he did not find the time to retire!

I had the privilege to be the Director of the CRM from 1993 to 1999 and from 2013 to
2021. This means that I was at the helm in 1996 and 2016 when Jǐrí and Pavel turned 60
and 80 respectively. For highly distinguished colleagues to whom much is owed, it is a nice
and appropriate tradition to organize celebratory events to express esteem and gratitude. Jǐrí
and Pavel deserved such an homage and we made sure not to miss out on this occasion in
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Figure 2: 80th Birthdays of Jǐrí and Pavel held at Prague in 2016.

1996 and so Yvan Saint-Aubin and I organized a conference entitled Algebraic Methods in
Physics: A Symposium for the 60th Birthdays of Jǐrí Patera and Pavel Winternitz [39]. For
obvious reasons, this was one of those instances where they were lauded together. Present
at this event and no longer with us were the Wigner medal recipients Louis Michel, Marcos
Moshinsky, and Lochlain O’Raifeartaigh as well as David Rowe and Dick Slansky. Jean-Pierre
Gazeau, Basil Grammaticos, Ronald King, Frank Lemire, George Pogosyan, Peter Olver, Alfred
Ramani, Guy Rideau, Keti Tennenblat and Jǐrí Tolar whom I have not mentioned before were
among the participants.

In 2016, both 80 then, Jǐrí and Pavel were active as ever and many new generations of
colleagues had profited from their interactions with them. Another birthday party was thus
in order. This one was held in Prague and put together by the Doppler Institute in collabo-
ration with the CRM. Many Czech colleagues obviously attended, among them Pavel Exner
and Igor Jex the Dean of the Faculty of Nuclear and Physical Engineering at the Czech Tech-
nical University that was hosting the meeting nicely organized by Libor Šnobl. Let me also
add the names of more friends of Jǐrí and Pavel who spoke on this occasion and who had not
appeared in these lines yet: Vladimir Dorodnitsyn, Hubert De Guise, Luigi Martina, Anatoly
Nikitin, Alexei Penskoi, Marzena Szajewska, Piergiulio Tempesta, Mark Walton.2 It was great
to have these occasions to express to Jǐrí and Pavel during their lifetime our deep appreciation
for their science, their friendship and the bridge they built between Prague and Montreal.

Alas, they are no longer with us but their legacy lives on. On the scientific front, they
have written papers that will keep being touchstones for major areas of mathematics and
theoretical physics as well as springboards for many discoveries to come. To all the people
they have trained, inspired and befriended, sharing their knowledge, intelligence and culture,
they have offered something of themselves that will be transmitted through generations. And,
on the human side, they left us with the memory of kind and free men, of proud Czechs and
Canadians who were citizens of the World, of fellows who enjoyed life and were caring, of
extraordinarily hospitable and welcoming individuals who instilled in the CRM warmth and
excellence and taught it to always aim higher. They have set the stage for the members of their
Laboratory to carry on and for other researchers from the world over to join the CRM, walk in
their footsteps and like them have a global impact. Jǐrí and Pavel, here is to you.

2I have made the perilous choice to identify for memory many individuals whose paths crossed those of Jǐrí and
Pavel one way or the other. To the many who have unfortunately been left out I apologize trusting they will have
understood the intent and will not hold grudges.
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Abstract

David Rowe was a highly respected theoretical physicist who made seminal contributions
that improved our understanding of the atomic nucleus, in particular of the collective
behaviour of its constituent nucleons — results he often obtained with the use of sophis-
ticated group-theoretical methods. He will also be remembered as the (co-)author of
monographs on nuclear physics, written with the scientific rigour that was characteris-
tic of his research.
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David Rowe was born in Totnes, United Kingdom, on February 4th 1936 and went to school
in Kingsbridge. He did his undergraduate studies at the Universities of Cambridge and Oxford
and graduated at Oxford University with a PhD in nuclear physics.

David’s scientific career started with a study in experimental nuclear physics [1] but quickly
his attention shifted to theoretical physics, where it stayed for the rest of his life. Three post-
doctoral stays turned out to be of crucial importance in the forging of his scientific interests.
The first was in 1962/63 when he was a Ford Foundation fellow at the Niels Bohr Institute in
Copenhagen, at the forefront of research in nuclear physics at that time. This post-doctoral
stay no doubt must have laid the foundation of his life-long interest in the collective behaviour
of nucleons in the nucleus. From 1963 to 1966 David held a post-doctoral position at the
Atomic Energy Research Establishment at Harwell in England. There also he thrived in a
stimulating intellectual environment where important advances in theoretical physics were
made by John Bell, Phill Elliott, Brian (later Lord) Flowers, Tony Skyrme and others; during
that period he interacted in particular with Tony Lane. His third post-doctoral stay took place
at the University of Rochester in the USA, where he benefitted from the presence of Bruce
French who was, among other things, an expert in the application of group theory in physics.

From 1968 onwards he held a permanent position, first as an associate and later as a full
professor, at the University of Toronto, where he remained for the rest of his career except for
two sabbatical leaves at the University of São Paulo (Brazil) and the University of Canterbury
(UK). He was Associate Dean of the School of Graduate Studies in Physical Sciences from 1984
to 1987. For his contributions to theoretical physics he received the Rutherford Memorial
Medal and Prize of the Royal Society of Canada in 1983, the CAP/CRM Medal and Prize for
Theoretical and Mathematical Physics in 1999 and was elected a Fellow of the Royal Society
of Canada in 1986. In 1998 he retired and became emeritus professor at the University of
Toronto. Freed from teaching and administrative duties, he could devote more time to research
and continued to develop new ideas in theoretical physics until the final days of his life.

A central aim of David’s scientific activity at the beginning of his career was to arrive at a mi-
croscopic understanding of the collective model of the atomic nucleus. This model, proposed
in the 1950s by Aage Bohr and Ben Mottelson, describes nuclear states in terms of vibrations
and rotations of a quantised droplet of dense nuclear matter [2]. While this interpretation
met with a certain success when confronted with spectroscopic data known at that time, a mi-
croscopic understanding of the approach was lacking. That is, its connection with the nuclear
shell model, which describes the nucleus in terms of its constituent neutrons and protons, was
not well understood. At the time when David began pondering this question (mid-1960s), one
important breakthrough had been made by Phil Elliott [3, 4], who had shown that rotational
states can be realised in the spherical shell model on the basis of an SU(3) (dynamical) sym-
metry of the nuclear Hamiltonian. Nevertheless, an embedding of the collective model into
the shell model, i.e., the formulation of the collective model as a submodel of the shell model,
had not yet been achieved. Inspired by Elliott’s earlier work, David realised that group theory
would play an essential role in establishing this connection since both the shell model and
the collective model have an algebraic structure. He also realised that earlier attempts, where
the observables are shape coordinates of the nuclear surface and their associated momenta,
cannot lead to a microscopic theory and should be replaced by the monopole and quadrupole
moments of the nuclear density. The combination of these two features—the algebraic struc-
ture of the shell model and the formulation of collective observables in terms of moments—led
in a natural way to the symplectic model based on the algebra Sp(3, R), as proposed by David
and his (then) graduate student George Rosensteel in 1977 [5]. Not only is Sp(3, R) a sub-
algebra of the full Lie algebra of shell-model observables (which is infinite dimensional) but
it contains itself SU(3) and CM(3) (the algebra of the collective model) as subalgebras. The
symplectic model therefore provided the first microscopic understanding of the origins of the
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rotational dynamics of nuclei, including rigid as well as irrotational flows. It continues to in-
spire present-day nuclear structure. Recently, Sp(3, R) was shown to be a symmetry emerging
from ab initio large-scale shell-model calculations [6].

Throughout his life David remained interested in nuclear collective models, steadily im-
proving our understanding of them as well as enlarging their applicability. An example of the
latter is his proposal of a computationally tractable version of the collective model [7], which
made it much more versatile than in the original numerical implementation. As was so often
the case, David’s formulation was based on an elegant piece of mathematics, namely the cor-
respondence between SO(5), the rotation algebra in five dimensions, and SU(1,1), the algebra
of scale transformations in the radial coordinate. He then exploited the presence of the contin-
uous series of SU(1,1) representations to obtain concrete results in terms of greatly improved
numerical convergence properties. In subsequent work, David and collaborators showed that
the dual pairing of symmetry and dynamical algebras is a feature common to many physical
systems [8], the significance of which therefore largely surpasses that of its application to the
collective model.

Since most models can be assigned an algebraic structure, it became important to construct
unitary representations of Lie algebras in a systematic way. With this goal in mind, David in-
vented a new mathematical structure, namely vector coherent states [9]. VCS theory can be
considered as a physically intuitive version of the mathematical theory of induced represen-
tations and can be used in the construction of not-so-simple irreducible representations of a
Lie algebra, starting from known irreducible representations of one of its subalgebras. VCS
theory provides a powerful technique to derive many concrete results, for example, explicit
expressions for vector coupling coefficients.

A common thread in all research activities of David was the use of symmetries, which arise
if the Hamiltonian of a quantum-mechanical system commutes with a set of transformations
that form a Lie algebra. The concept of symmetry can be further generalised to that of a dy-
namical symmetry when the Hamiltonian leaves invariant the subspaces of the total Hilbert
space that carry the irreducible representations of a subalgebra of the dynamical algebra. In
fact, the algebraic properties of several ‘classical’ nuclear physics models, such as Wigner’s
SU(4) supermultiplet scheme, Racah’s seniority model of pairing, Elliott’s SU(3) description
of rotations and the solvable limits of the interacting boson model (IBM) of Arima and Iachello,
can all be understood as arising from a dynamical symmetry. Often a single model may display
several incompatible dynamical symmetries. This is well known for the IBM, which has three
competing dynamical symmetries (or limits): U(5), SU(3) and SO(6). Competing dynamical
symmetries also occur in the nuclear shell model, where the short-range pair-coupling inter-
action among the nucleons keeps the nucleus spherical and induces an SU(2)-type dynamical
symmetry while the long-range quadrupole interaction favours a deformed equilibrium shape,
corresponding to an SU(3) limit. The properties of systems with competing symmetries can be
elucidated with the notion of quasi-dynamical symmetry: the mixing of different representa-
tions of a dynamical symmetry caused by a competing symmetry frequently occurs in a highly
coherent manner, creating the illusion that the symmetry is preserved. While this concept
can be given a precise formulation in terms of embedded representations [10], the intuitive
interpretation is that the dominant symmetry is distorted but not broken. As the competing
symmetry increases in strength this distortion becomes more important until it reaches break-
ing point and the system enters a transition phase from where a quasi-dynamical symmetry of
the competing phase may emerge. Over the years David and collaborators investigated sev-
eral models with competing symmetries [11–13] the properties of which can be in terms of
quasi-dynamical symmetries.

We close with some heartfelt memories of David as a friend and colleague, which one of
us (JLW) enjoyed for 46 years. David was a private and modest person who loved to think,
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share stories with friends, walk, and travel. He was a master of bird photography. He was
an accomplished pianist. He had an infectious sense of humour. Physics discussion could be
very intense, his demand was for logical clarity, often with the sense that only the shadows
of his thinking were accessible to lesser souls. He was, at least for us, one of the giants of
mathematical physics in the latter part of the twentieth century. But one had to listen very
carefully: “when the giants walk by, they do so very silently”. Walking by his side was a
singular experience and a privilege.

David has left a legacy of ideas that we term the Rowe Legacy. To the limits of our ability,
we will see this legacy shared in our role as authors and editors.
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Abstract

The construction of negative grade KdV hierarchy is proposed in terms of a Miura-gauge
transformation. Such gauge transformation is employed within the zero curvature rep-
resentation and maps the Lax operator of the mKdV into its couterpart within the KdV
setting. Each odd negative KdV flow is obtained from an odd and its subsequent even
negative mKdV flows. The negative KdV flows are shown to inherit the two different
vacua structure that characterizes the associated mKdV flows.
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1 Introduction

Integrable models have been focus of considerable attention in the past few years. These are
very peculiar two dimensional field theories admitting an infinite number of conservation laws
and soliton solutions. The algebraic construction of integrable models has provided a series of
important achievements allowing their construction and classification in terms of the decom-
position of the affine algebra into graded subspaces. Structural connection and the derivation
of many properties such as the construction of conservation laws and soliton solutions, can be
set from the zero curvature representation [1], [2]. In particular the mKdV hierarchy, based on
the affine sl(2) algebra, provides the simplest example of systematic construction of a series
of evolution equations associated to a universal object called Lax operator. For the mKdV case
the relevant decomposition occurs according to the principal gradation. Explicit constructions
for positive and negative graded sub-hierarchies have been obtained. The positive flows are
known to be labelled by odd numbers whilst there are no restriction for the negative flows [3].

An interesting relation between the KdV and mKdV hierarchies can be realised by the Miura
transformation which maps one hierarchy into the other. In ref. [4], [5] we have related the
two hierarchies by a gauge transformation that maps one Lax operator into the other. Such
Miura-gauge transformation acting upon the zero curvature maps the flows from one hierarchy
into the other. For the positive sub-hierarchy the mapping is one to one, i.e., each flow equation
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of mKdV is mapped into its counterpart within the KdV hierarchy. However this is not true for
the negative KdV sub-hierarchy. In sec. 3 we argue that only odd flows are consistent for the
KdV hierarchy and since there are even and odd flows within the negative mKdV side, there
should be a mapping of a pair of mKdV flows into a single KdV flow. This is indeed true, in
sect. 4 we construct these mappings and show that an odd and its subsequent even mKdV
flows can be mapped into a single KdV flow. An interesting point to mention is that odd mKdV
flows admit only zero vacuum whilst the even admit strictly non-zero vacuum solutions and the
associated KdV flow ends up inheriting both types of structure.

2 mKdV negative hierarchy

In this section let us review the construction of mKdV hierarchy within the algebraic formalism.
Consider the affine G = ŝl(2) centerless Kac-Moody algebra generated by

h(m) = λmh(0) , E(m)±α = λ
mE(0)±α , with λ ∈ C , and n ∈ Z , (1)

satisfying the following algebra
�

h(m) , E(n)±α
�

= ±2E(m+n)
±α ,
�

E(m)α , E(n)−α
�

= h(m+n) . (2)

Introduce the principal grading operator

Qp = 2λ
d

dλ
+

1
2

h , (3)

that decomposes the affine algebra into graded subspaces, i.e., G =
⊕

i Gi with
�

Qp,Ga

�

= aGa , [Ga,Gb] ∈ Ga+b , a, b ∈ Z , (4)

where, for G = ŝl(2),

G2n =
�

h(n) = λnh
	

, G2n+1 = {λn (Eα +λE−α) ,λ
n (Eα −λE−α)} . (5)

A second important ingredient is the choice of a constant grade one element E(1) ∈ G1

E(1) = E(0)α + E(1)−α , (6)

such that it decomposes the affine algebra as Ĝ =K⊕M, where K is the Kernel of E(1):

KE =
�

y ∈K , [y, E(1)] = 0
	

=
¦

E(2n+1) ≡ E(n)α + E(n+1)
−α

©

∈ G2n+1 , (7)

and M is its complement subspace. We now define the spatial Lax operator to be an universal
algebraic object within the whole hierarchy to be

AmKdV
x (φ) = E(1) + A(0)(φ) = E(0)α + E(1)−α + ∂xφ h(0) =

�

∂xφ 1
λ −∂xφ

�

, (8)

where v(x , t−N ) = ∂xφ is the field of the theory. We are interested in the negative time flows
generated by the temporal Lax operator component of the form [3]

AmKdV
t−N

= D(−N) + D(−N+1) + · · ·+ D(−1) , N = 1,2, · · · , (9)

where D(i) ∈ Gi . Thus, for a given integer N , the zero curvature equation
�

∂x + E(1) + A(0), ∂t−N
+ D(−N) + D(−N+1) + · · ·+ D(−1)

�

= 0 , (10)
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decomposes according to the grading structure, i.e.,
�

A(0) , D(−N)
�

+ ∂x D(−N) = 0 , (11)
�

A(0) , D(−N+1)
�

+
�

E(1) , D(−N)
�

+ ∂x D(−N+1) = 0 , (12)
...

...
�

E(1) , D(−1)
�

− ∂tN
A(0) = 0 . (13)

These eqns. can be solved grade by grade in order to determine D(i) and the evolution equation
for A(0)(φ) according to time t−N is given by (13).

The simplest case is found by taking N = 1, leading to

AmKdV
t−1

= e−2φE(−1)
α + e2φE(0)−α =

�

0 λ−1e−2φ

e2φ 0

�

, (14)

associated with the well known sinh-Gordon equation,

φx ,t−1
= e2φ − e−2φ . (15)

Notice that v = ∂xφ = v0 = const. is the vacuum solution of (15) only if v0 = 0→ φ = 0. It
therefore follows that the sinh-Gordon equation only admits zero vacuum solution.

Considering now N = 2, we find

AmKdV
t−2

= h(−1) +
�

2e−2φd−1(e2φ)
�

E(−1)
α − 2e2φd−1(e−2φ)E(0)−α

=

�

λ−1 λ−1
�

2e−2φd−1(e2φ)
�

−2e2φd−1(e−2φ) −λ−1

�

, (16)

where we have denoted d−1 f =
∫ x

0 f d x ′. It leads to the following nonlocal equation of motion

φx ,t−2
= −2
�

e−2φd−1(e2φ) + e2φd−1(e−2φ)
�

. (17)

Notice that for φ = φ0 = v0 x the following identity

e−2v0 x d−1(e2v0 x) + e2v0 x d−1(e−2v0 x) = 0 , (18)

holds only for v0 ̸= 0 and v = v0 is the vacuum solution of (17), only if v0 ̸= 0. In fact, it can
be shown that all models associated to negative even values of N only admit non-zero vacuum
solutions [3]. Let us consider the zero curvature equation in the vacuum regime, i.e.,
�

Avac
x = E(1) + v0h(0), Avac

t−N
= D(−N)

vac + D(−N+1)
vac + · · ·+ D(−1)

vac

�

= 0 . (19)

The lowest grade equation is
�

v0h(0), D(−N)
vac

�

= 0 . (20)

Thus, if v0 ̸= 0 D(−N)
vac must commute with h(0) and therefore D(−N)

vac ∈ G−2n and N = 2n.
Conversely if v0 = 0 the lowest grade eqn. becomes

�

E(1), D(−N)
vac

�

= 0 , (21)

implying D(−N)
vac ∈ KE and N is odd. Thus, the negative mKdV hierarchy splits in two sub-

hierarchies: one even admitting strictly non-zero vacuum (v0 ̸= 0) and one odd admiting,
only zero vacuum (v0 = 0) solutions. The systematic construction of soliton solutions for the
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negative mKdV hierarchies was previously studied and can be written as follows (see [3]). For
the odd sub-hierarchy the one soliton solution was constructed from dressing the zero vacuum
solution (Avac

x = E(1)) leading to

v(x , t−2n+1) = ∂x ln

�

1− βe2kx+ω−2n+1 t−2n+1

1+ βe2kx+ω−2n+1 t−2n+1

�

, with ω−2n+1 = 2k−2n+1 . (22)

For the even sub-hierarchy the constant value of the vacuum, v0 introduces a deformation in
the Lax operator, Avac

x = E(1)+v0h(0) and hence upon the dressing method. In [3] the solutions
were constructed employing deformed vertex operators yielding for the one soliton solution,

v(x , t−2n) = v0 + ∂x ln

�

1+ β(v0 − k)e2kx+ω−2n t−2n

1+ β(v0 + k)e2kx+ω−2n t−2n

�

, with ω−2n =
2k

v0(k2 − v2
0 )n

, (23)

where in both cases, β is a free parameter.

3 KdV negative hierarchy

For the KdV hierarchy we employ the same algebraic structure of section 3, i.e., principal
gradation, Qp (3) and the constant grade one element E(1) (6). We propose the following Lax
operator,

AKdV
x (J) = E(1) + A(−1) = E(0)α + E(1)−α + J E(0)−α =

�

0 1
λ+ J 0

�

, (24)

where A(−1) = J E(0)−α ∈ G−1 and J = J(x ,τN ) is the field of KdV hierarchy. For the sub-hierarchy
that leads to negative time-flow τ−N , the temporal-part Lax operator is given by

AKdV
τ−N
(J) =D(−N−2) +D(−N−1) + · · ·+D(−1) , (25)

where D(i) ∈ Gi . The zero curvature decomposes according to the graded structure as
�

A(−1) ,D(−N−2)
�

= 0 , (26)

∂xD(−N−2) +
�

A(−1) ,D(−N−1)
�

= 0 , (27)

∂xD(−N−1) +
�

E(1) ,D(−N−2)
�

+
�

A(−1) ,D(−N)
�

= 0 , (28)
...

∂xD(−1) +
�

E(1) , D(−2)
�

− ∂τ−N
A(−1) = 0 , (29)

�

E(1) ,D(−1)
�

= 0 , (30)

which allows solving for all D(i) and determines the equation of motion (29) according to
τ−N . Notice that the lowest grade equation (26) implies that D(−N−2) is proportional to E(−m)

−α
and therefore N = 2m − 1. For this reason all equations of motion for the KdV hierarchy are
associated with odd temporal flows, in contrast to the mKdV case, where there are equations of
motion associated to both, even and odd flows.

The equations of motion for KdV hierarchy are more conveniently expresed in terms of
non-local field J(x ,τN ) = ∂xη(x ,τN ). The first negative flow is obtained from zero curvature
with N = 1, leads to the following temporal Lax operator,

AKdV
τ−1
=
ητ−1

2

�

E(−1)
α + E(0)−α
�

+
ηx ,τ−1

4
h(−1) +

2ηxητ−1
−η2x ,τ−1

4
E(−1)
−α

=

� ηx ,τ−1
4λ

ητ−1
2λ

2ηxητ−1
−η2x ,τ−1

4λ +
ητ−1

2 −
ηx ,τ−1

4λ

�

, (31)
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and equation of motion
4ηxηx ,τ−1

+ 2η2xητ−1
−η3x ,τ−1

= 0 . (32)

This equation was first proposed in [6] using the inverse of recursion operator. Later in [7],
its Hamiltonian and soliton solutions were discussed.

If we now take N = 3 in (25) and find for the associated temporal Lax operator,

AKdV
τ−3
=
ητ−3

2

�

E(−1)
α + E(0)−α
�

+
ηx ,τ−3

4
h(−1) −

B
8

�

E(−2)
α + E(−1)

−α

�

+
2ητ−3

ηx −η2x ,τ−3

8
E(−1)
−α −

Bx

16
h(−2) +

B2x −ηx B
8

E(−2)
−α

=

� ηx ,τ−3
4λ −

Bx
16λ2

ητ−3
2λ −

B
8λ2

1
2ητ−3

+
2ητ−3

ηx−η2x ,τ−3
−B

8λ + B2x−ηx B
8λ2 −

ηx ,τ−3
4λ + Bx

16λ2

�

, (33)

where
B = d−1(4ηxηx ,τ−3

+ 2η2xητ−3
−η3x ,τ−3

) . (34)

The corresponding equation of motion is given by

−
1
2
η5x ,τ−3

+ 4ηx

�

−2ηx ,τ−3
ηx +η3x ,τ−3

−η2xητ−3

�

+ 5η2xη2x ,τ−3

+ 4ηx ,τ−3
η3x +η4xητ−3

+η2x d−1
�

4ηxηx ,τ−3
+ 2η2xητ−3

−η3x ,τ−3

�

= 0 . (35)

Notice that vacuum solution η = η0 = constant, either zero or non-zero, satisfy both
equations of motion (32) and (35). Such behavior differs from the mKdV hierarchy where
the equations of motion associated with odd-time flows are satisfied with zero vacuum and
the even-time flows with non-zero vacuum (constant). This coalescence in vacuum solution
presented in KdV hierarchy can be explained more generally from zero curvature projected
around vacuum, i.e,
�

AKdV
x

�

�

vac , AKdV
τ−N

�

�

vac

�

=
�

E(1) +η0 E(0)−α,D(−N−2)
vac +D(−N−1)

vac + · · ·+D(−1)
vac

�

= 0 . (36)

Its lowest grade component leads to
�

η0 E(0)−α,D(−N−2)
vac

�

=
�

η0 E(0)−α, a−N−2 E(−1/2(N+1))
−α

�

= 0 , (37)

which is automatically satisfied no matter whether η0 is zero or non-zero if N = 2n − 1. It
therefore follows that the negative KdV hierarchy are associated to odd flows, τ−N = τ−2n−1
and admit both, zero and non-zero vacuum solutions.

4 Miura transformation and soliton solutions

In order to map the mKdV and KdV hierarchies let us consider the Miura-gauge transformation
generated by (see [4], [5] )

S1 = eφx E(0)−α =

�

1 0
φx 1

�

, (38)

which maps the two Lax operators, AmKdV
x into AKdV

x of eqns. (8) and (24) respectively, i.e.,

AKdV
x = S1AmKdV

x S−1
1 + S1∂xS−1

1 = E(0)α + E(1)−α + J E(0)−α , (39)
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where
J(x , t) = ∂xη(x , t) = (φx)

2 −φ2x . (40)

We now analyse how S1 acts as a local gauge transformation upon AmKdV
t . Let us consider

first its action on an even grade element D(−2n) = c−nh(−n):

D(−2n)→eφx E(0)−α
�

c−nh(−n)
�

e−φx E(0)−α + eφx E(0)−α∂t

�

e−φx E(0)−α
�

= c−nh(−n)
︸ ︷︷ ︸

G−2n

+2c−nφx E(−n)
−α

︸ ︷︷ ︸

G−2n−1

−∂tφx E(0)−α
︸ ︷︷ ︸

G−1

. (41)

On the other hand, if we consider D(−2n+1) = a−nE(−n)
α + b−nE(−n+1)

−α under the local gauge
generated by (38) we find

D(−2n+1)→ eφx E(0)−α
�

anE(−n)
α + bnE(−n+1)

−α

�

e−φx E(0)−α + eφx E(0)−α∂t

�

e−φx E(0)−α
�

= − an(φx)
2E(−n)
−α

︸ ︷︷ ︸

G−2n−1

− anφxh(−n)
1
︸ ︷︷ ︸

G−2n

+ anE(−n)
α + bnE(−n+1)

−α
︸ ︷︷ ︸

G−2n+1

−∂tφx E(0)−α
︸ ︷︷ ︸

G−1

. (42)

Thus, any even negative mKdV time flow of the form AmKdV
t−2n

= D(−2n)+ D(−2n+1)+ · · ·+ D(−1)is
mapped into its KdV counterpart with the following graded structure,

AKdV
τ−2n+1

= eφx E(0)−α
�

D(−2n) + D(−2n+1) + · · ·+ D(−1)
�

e−φx E(0)−α −φx ,t−2n
E(0)−α

=D(−2n−1) +D(−2n) + · · ·+D(−1) . (43)

For odd negative mKdV time flow of the form AmKdV
t−2n+1

= D(−2n+1) + D(−2n+1) + · · ·+ D(−1) will
be mapped into

AKdV
τ−2n+1

= eφx E(0)−α
�

D(−2n+1) + D(−2n+2) + · · ·+ D(−1)
�

e−φx E(0)−α −φx ,t−2n+1
E(0)−α

=D(−2n−1) +D(−2n) +D(−2n+1) + · · ·+D(−1) . (44)

Since AKdV
x is universal for both, even and odd KdV flows, the zero curvature representation

(26 ) - (30) implies that AmKdV
t−2n+1

and AmKdV
t−2n

are transformed by the Miura-gauge transformation

(38), into a single graded KdV structure AKdV
τ−2n+1

(43)-( 44) (associated to flow τ−2n+1). We
therefore conclude that both negative even and negative odd mKdV flows collapse within the
same KdV odd flow, i.e.,

tmKdV
−2n+1, tmKdV

−2n =⇒
S1

τKdV
−2n+1 . (45)

Notice that this explains why each KdV negative flow admits both zero and non-zero vacuum
solutions. They inherit the zero and the non-zero vacuum information from mKdV negative
odd and its subsequent negative even flows respectively. Let us illustrate explicitly for the first
two negative mKdV flows, namely, t−1 and t−2.

For tmKdV
−1 the field φ = φ(x , t−1) satisfies the sinh-Gordon eqn (15). We then have

AKdV
τ−1
= S1AmKdV

t−1
S−1

1 + S1∂t−1
S−1

1

= eφx E(0)−α
�

e−2φE(−1)
α + e2φE(0)−α
�

e−φx E(0)−α −φx ,t−1
E(0)−α , (46)

leading to

AKdV
τ−1
= e−2φ
�

E(−1)
α + E(0)−α
�

+
ηx ,t−1

4
h(−1) − (φx)

2e−2φE(−1)
−α , (47)
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where we used the sinh-Gordon equation of motion, φx ,t−1
= e2φ − e−2φ and the Miura trans-

formation, ηx = (φx)2−φ2x to simplify some terms. Note that in terms of zero curvature, we
had already constructed AKdV

τ−1
given in (31),

AKdV
τ−1
=
ητ−1

2

�

E(−1)
α + E(0)−α
�

+
ηx ,τ−1

4
h(−1) +

2ηxητ−1
−η2x ,τ−1

4
E(−1)
−α . (48)

From the condition for eqns (47) and (48) to agree we find

ητ−1
= 2 · e−2φ(x ,t−1) . (49)

On the other hand, if we now consider tmKdV
−2 with φ = φ(x , t−2) satisfiyng (17), we get from

the Miura gauge transformation AKdV
τ−1
= S1AmKdV

t−2
S−1

1 + S1∂t−2
S−1

1 ,

AKdV
τ−1
= eφx E(0)−α
�

h(−1) + 2e−2φd−1(e2φ)E(−1)
α − 2e2φd−1(e−2φ)E(0)−α

�

e−φx E(0)−α −φx ,t−2
E(0)−α ,

leading to

AKdV
τ−1
= 2e−2φd−1(e2φ)

�

E(−1)
α + E(0)−α
�

+
ηx ,t−2

4
h(−1) + 8(φx −φ2

x e−2φd−1
x e2φ)E(−1)

−α , (50)

where we used the equation of motion for tmKdV
−2 (17) and Miura transformation. Thus, (50)

only agrees with (48) provided

ητ−1
= 2 · 2e−2φ(x ,t−2)d−1(e2φ(x ,t−2)) . (51)

Notice that the same AKdV
τ−1

is written in two different ways, one in terms of the sinh-Gordon
field φ(x , t−1) given by (47)-(49) and another, in terms of solution of eqn. (17) namely
φ(x , t−2) in (50)-(51) . This can be checked explicitly with solutions given in (22) and (23)
for n= 1.

5 Conclusion

We have therefore concluded from the above simple example that solutions of the KdV equa-
tion associated to the time flow τ−1 inherit different vacuum structures from a pair of mKdV
solutions (via Miura transformation) . The first associated to mKdV flow t−1, eqn. (15) (with
zero vacuum) satisfying (49) and the second associated to mKdV flow t−2, eqn. (17) (with
non-zero vacuum) satisfying (51). The argument can be easily generalized for higher flows,
and each KdV flow admits both, zero and non-zero vaccum solutions. They are constructed
from pairs of subsequent of mKdV flows each of them admiting different vacuum structures.
We expect to report in a future publication the generalization of our construction to the Ar
- KdV hierarchy employing the gauge-Miura transformation proposed in [5]. We also expect
to discuss the systematic construction of soliton (multisoliton) solutions and their vacuum
structure in terms of vertex operators and its deformations along the lines of refs. [3], [4].
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Abstract

Recently, a mathematical method to solve the Fokker Plank equation (FPE) enabled the
analysis of the protein folding kinetics, through the construction of the temporal evo-
lution of the probability density. A symmetric tri-stable potential function was used to
describe the unfolded and folded states of the protein as well as an intermediate state
of the protein. In this paper, the main points of the methodology are reviewed, based on
the algebraic Supersymmetric Quantum Mechanics (SQM) formalism, and new results
on the kinetics of the evolution of the system characterized in terms of the diffusion
parameter are presented.
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1 Introduction

Proteins are structures made up of chains of amino acids. In the unfolded state the protein is in
a linear configuration of amino acids and is synthesized in a folded three-dimensional structure
to perform specific functions in the organism. To reach this final structure, this linear sequence
can pass through intermediate conformations, which are transition states in which the protein
may not reach its three-dimensional structure. The importance of studying folding lies in
understanding how an unfolded linear structure reaches a three-dimensional and functional,
folded structure. The subject has been extensively studied within the last decades under the
concept of folding funnel, where the energetic scenario has the shape of a funnel, [1–3].

In a previous work, [4], a consistent mathematical model to physically describe the bio-
logical process of protein folding was introduced. The approach considers the process as a
diffusion model inspired by the concept of a folding funnel, aiming to analyse its dynamic
behavior. The protein folding process is described by the Fokker-Planck equation, FPE, associ-
ated to a free energy described by a tri-stable symmetric potential function V(x). In turn, the
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FPE can be mapped to a Schrödinger-type equation, SE, [5,6], i. e., both equations share the
same spectrum. At this point the methodology of Supersymmetric Quantum Mechanics, SQM,
associated with the variational method, [7, 8], is used to obtain the approximate spectrum
of energy and eigenfunctions of SE and to evaluate the time-dependent probability function
P(x , x0, t), FPE solution, where x is the reaction coordinate, [9], and the coordinate x0 is
associated to the protein in the unfolded state.

The free energy, given by the tri-stable potential function V(x), is a symmetric function that
has lateral minima with the same depth (symmetric wells) that can be interpreted, respectively,
as the folded and unfolded protein states; the central minimum is related to an intermediate
protein conformation. The kinects of the diffusion process was characterized by the calculation
of the particle population of the right well (folded state). The time required for the evolution
of the population of the system from its initial state to the well on the right is used as the
characteristic passage time of the system to the folding state of the protein. The results in [4]
are consistent with those expected in similar diffusion problems, [10].

In this work a short review of the methodology is presented (Section 2) showing the con-
nection of the FPE with the SE, given in terms of the free energy V(x). The model is illustrated
by a specific free energy function, a study case different from the one in [4]. Section 3 contains
new results, a mapping of the diffusion dependence and its influence on the symmetric free
energy profile performed aiming to analyse the way the increase of the diffusion impacts the
passage time to the protein folded state. Section 4 contains the conclusions.

2 Methodology: FPE and SE formalism

The probability distribution, FPE’s solution, is found by a mapping on an SE, whose solutions
are obtained by the variational method associated with the SQM. The free energy to be used
is described by tri-stable potentials. Because it is time-dependent, probability distribution
describes a characteristic time for the dynamics of protein folding through an estimate of the
passage time as a function of the reaction coordinate. The behavior of the population towards
the third well is verified, which characterizes the folded state, as a function of time, as an
exponential decay characteristic of diffusive processes with a directional force.

The FPE, which describes the time evolution of the probability distribution P(x,t) in diffu-
sion systems is given by

∂

∂ t
P (x , t) = −

∂

∂ x
[ f (x) . P (x , t)] +Q

∂ 2

∂ x2
P (x , t) , (1)

where x is the characteristic variable of the system, the reaction coordinate (number of native
contacts); t is the time variable; Q is the diffusion coefficient and f (x) represents an external
force (driving force) acting on the medium, it is associated with the free energy of the medium,
the tri-stable potential V (x),

f (x) = −
d

d x
V (x) . (2)

Writing the probability P(x,t) as a product of a function of x and a function of t,

P (x , t) = Ψ (x) e−λt , (3)

it can be shown that the FPE solutions are solutions of a time-independent Schrödinger-type
equation, SE, given by

d2

d x2
Ψ (x)−

1
2Q

�

f (x)2

2Q
+

d f (x)
d x

�

Ψ (x) =
λ

Q
Ψ (x) , (4)
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where λ is proportional to the energy. Expanding Ψ (x) on an orthonormal basis, we obtain
the probability distribution given by

P (x , t|x0, t0) =
Ψ0 (x)
Ψ0 (x0)

∞
∑

n=0

Ψn (x). Ψn (x0) . e−λn(t−t0) , (5)

where Ψ0 (x) is the ground state wave function and x0 is the starting position. The SE used
by SQM is expressed, in reduced units, in general as

−
d2

d x2
Ψ (x) +
�

W1 (x)
2 −

dW1 (x)
d x

+ E(1)0

�

︸ ︷︷ ︸

VSE(x)

Ψ (x) = E Ψ (x) , (6)

where VSE(x) is the Schrödinger potential function defined in terms of the superpotential
function W1(x), [7]. Comparing the equations (4) and (6) and considering the relationship of
f (x) with V (x) given by Eq. (2), we obtain

W1(x) =
1

2Q
dV (x)

d x
, (7)

that is, the FPE potential V (x) is related to the superpotential W1(x) of SQM. Also the energy
E is related to the parameter λ as

E =
λ

Q
. (8)

Thus, the SQM methodology associated with the variational method can be used to determine
the spectrum, [8]. At this point it is important to remark the relationship between potential
function of the SE (6) with the diffusion parameter Q, through the superpotential W1 in (7),

VSE(x) =W1 (x)
2 −

dW1 (x)
d x

+ E(1)0 . (9)

In other words, when using the SQM methodology the spectrum is explicitly dependent on the
value of the diffusion constant Q.

2.1 The tri-stable potential and the spectrum

The tri-stable potentials used are of the type

V (x) = ax6 − 8.93851x4 + 5.42373x2 , (10)

illustrated in Figure 1 for various values of the constant a. The lateral minima (Vmin) have the
same depth (symmetrical wells) and are interpreted, respectively, as the unfolded (left well)
and folded (right well) states of the protein, and the central minimum is related to a set of
intermediate protein conformations, with ∆V = V (0)− Vmin. The choice of parameters was
made in order to have several symmetrical potentials with V(0)=0 and different lateral depths
of the wells, as in [10]. Thus, only the variation of the parameter a in each tri-stable potential
is enough to deal with the depth of the lateral minima.

2.2 Study case for fixed diffusion parameter Q

To illustrate the model, we choose the potential V (x) with a = 3.90456 and fixed diffusion
constant, Q = 0.5, as in Figure 2. The value of Q is arbitrary but it has to be fixed in order to
apply the SQM methodology to obtain the spectrum, as it can be seen from the superpotential
W1 in equation (7). In Section 3 we vary the diffusion constant and evaluate its impact on the
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Figure 1: Representation of tri-stable potentials, Eq.(10) for different values of the
constant a with the respective values of ∆V = V (0)− Vmin, [4].

Figure 2: Representation of tri-stable potential function,
V (x) = 3.90456x6 − 8.93851x4 + 5.42373x2 with the respective value of
∆V = 0.34719, [4].

folding kinetics. It should be mentioned that in other works, [10], the quantities are given in
units 1

Q .
Once defined the free energy given by the potential V (x) we return to the construction of

the equivalent SE spectrum, solution of Eq. (6). Then using the SQM methodology, [7]- [8],
the approximate spectrum of energies and eigenfunctions is shown by Table 1 and Table 2. It
should be stressed that as we are dealing with an approximative method, the number of terms
in the probability expansion, Eq. (5), was fixed to six terms in the series, (n = 0, ..., 5), since
that the contribution of the next exponential term is several orders of magnitude smaller than
the previous term and thus can be neglected.

From the SE spectrum, the probability density, given by Eq. (5), can be calculated for
different starting points x0. The diffusion process is then characterized by calculating the
population defined by

N (t) =
∫ x f

x i

P(x , t)d x , (11)

where the limits of integration x i and x f refer to the investigation region of the particle pop-
ulation, regions I, II and III, as denoted in Figure 2.
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Table 1: Values of the energy spectrum of the SE when the potential function (free
energy) is V (x) = ax6 + bx4 + cx2 with the values a = 3.90456, b = −8.93851,
c = 5.42373.

n 0 1 2 3 4 5
λn 0 1.0361 1.9797 9.2517 17.3589 27.4762

Table 2: Wave functions spectrum of the SE, when the potential function (free en-
ergy) is V (x) = ax6 + bx4 + cx2 with the values a = 3.90456, b = −8.93851,
c = 5.42373.

Ψ
(1)
0 (x) = 1.021e(−5.42373x2+8.93851x4−3.90456x6)

Ψ
(1)
1 (x) = e(2.73824x2−3.05175x4−0.777117x6)x(1.99656− 8.75317x2 + 10.4419x4)

Ψ
(1)
2 (x) = e(−3.68104x2+1.08564x4−2.13171x6)

(−0.904686+ 5.15415x2 − 9.43439x4 + 33.953x6 − 199.101x8 + 303.278x10)

Ψ
(1)
3 (x) = e(−3.50991x2−1.40729x4−0.64738x6)(−5.23999x + 1.07696x3 + 20.5988x5−

74.5237x7 + 66.0048x9 − 36.7167x11 + 73.6961x13 + 69.4599x15)

Ψ
(1)
4 (x) = e(−4.601x2−1.49668x4−0.559156x6)(0.928068− 17.7878x2 + 1.05918x4 + 5.10868x6

−84.9985x8 − 0.86348x10 − 24.6105x12 + 118.086x14 + 180.684x16 + 126.316x18

+44.1023x20)

Ψ
(1)
5 (x) = e(−5.52086x2−1.54808x4−0.53713x6)(4.7712x + 0.962939x3 − 63.0876x5 − 155.71x7−

181.732x9 + 13.8384x11 + 423.621x13 + 738.097x15 + 712.503x17+
438.794x19 + 175.5x21 + 42.7624x23 + 5.15394x25)

Figure 3 illustrates the results of the numerical calculation of the population of the left well,
region I, NI(t) as a function of time t and the population of the right well, region III, NI I I(t) for
the initial value x0 = xmin = −1.05282. The initial population NI(t) decreases in time until
it reaches equilibrium while the population NI I I(t) increases in time until reaching the same
equilibrium, revealing the diffusion behavior of the process since the wells are symmetrical.

Figure 4 illustrates the best numerical fit of population versus time t of Region I, NI(t),
as a function of time t and the population of the well on the right, Region III, NI I I(t), for the
initial value x0 = xmin = −1.05282, numeric data from Figure 3. The fit is given by a decreas-
ing exponential (dotted line) and an increasing exponential (dashed line) with characteristic
times: τ′ = 0.787511 and τ = 1.46159, respectively. The characteristic time is interpreted as
the transition time from region I to region III.

2.3 Results for the passage time for different potentials

Figure 5 illustrates the passage time τ versus the initial position x0 for different potentials
V (x) illustrated in Figure 1, revealing a decrease in the value of τ as a function of the initial
position x0, in addition to a decrease in the value of τ with an increase of ∆V , of the depth of
the symmetrical wells.
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Figure 3: Graph of the population of region I (circle) as a function of time, NI(t),
and of the population of region III (square) as a function of time, NI I I(t), calculated
numerically, [4].

Figure 4: Best numerical fit of population versus region t time of region I, NI(t),
(dotted line) and the population versus time t of the region III, NI I I(t), (dashed
line), [4].

3 Diffusion

Using the methodology developed in [4] for the protein folding process, the characteristic
passage time τ was evaluated for different values of the diffusion parameter Q for the free
energy of Figure 2, V (x) = 3.90456x6 − 8.93851x4 + 5.42373x2. For each fixed value of Q
in the interval 0.4 < Q < 20, the passage time τ for the evolution of the population to the
right well was calculated, starting from the initial position x0 = xmin = −1.05282, as shown
in Figure 6 (dotted line). Figure 6 also shows the best fitting for the results (solid line), given
as as function of 1/Q.

Figure 6 shows that the passage time τ decreases as the diffusion increases, as expected.
The general behavior of the curve of τ versus Q is a function proportional to 1/Q which is
compatible with that obtained by another method, that uses the stationary state approxima-
tion, [10].
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Figure 5: Passage time τ versus the initial position x0 for the different potentials
V (x), as in Figure 1, with Q = 0.5, [4].

Figure 6: Passage time τ versus the diffusion constant Q for
V (x) = 3.90456x6 − 8.93851x4 + 5.42373x2 (Figure 2) for analytical results
(dotted line) and the best fitting (solid line).

4 Conclusion

The main point of this paper was to determine explicitly the passage time (τ) dependence on
the diffusion parameter Q. The general τ versus Q curve obtained (Figure 5) is a function
proportional to 1/Q which is compatible with that obtained by another method, [8].

The results obtained reinforce the application of the SQM mathematical method proposed
for protein folding problems, mainly in the determination of P(x,t) by solving the FPE through
its relation with the SE. The passage time of the unfolding-folding process is an important
ingredient for the reaction kinetics; the results are consistent with those obtained in [8]. In
this reference only the SE ground state is used which makes the probability density depend
only on x and not explicitly on t, i.e., their method only use the stationary state. Our approach
allows the use of more terms in the expansion of Eq. (5) which makes the dependence of t on
P(x , t) appear explicitly.
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Abstract

We give a brief review on recent developments of Zn
2 -graded symmetry in physics in

which hidden Zn
2 -graded symmetries and Zn

2 -graded extensions of known systems are
discussed. This elucidates physical relevance of the Zn

2 -graded algebras. As an example
of physically interesting algebra, we take Z2

2-graded supersymmetry (SUSY) algebras and
consider their irreducible representations (irreps). A list of irreps for N = 1, 2 algebras
is presented and as an application of the irreps, Z2

2-graded SUSY classical actions are
constructed.
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1 Introduction

It was more than half a century ago that Ree pointed out that one may generalize Lie alge-
bras by grading with any abelian group [1]. The same object was rediscovered by Rittenberg
and Wyler in late 70s [2, 3] (see also [4, 5]). Lie superalgebras are the simplest example of
Ree’s generalization where the abelian group is taken to be Z2. Among other possibilities, only
Zn

2 := Z2 × · · · × Z2 (n times) allows us to determine the generalized Lie algebra in terms of
commutators and anticommutators so that the Zn

2-graded algebra is a natural generalization
of Lie superalgebras [2,3]. This implies that the Zn

2-graded algebras have potential applicabil-
ity to physical problems, but it is hard to say that such algebra itself is widely recognized in
physics community.

One of the purposes of this paper is to emphasize, by providing a brief review on recent
developments of Zn

2-graded symmetry in physical problems, that the Zn
2-graded algebras are

not unusual in physics. Rather, they are ubiquitous and would be an important notion to
understand nature. This is the contents of §2. The second purpose is to present irreducible
representations of Z2

2-graded version of the supersymmetry algebra [6, 16] which is an alge-
bra of recent particular interest. Here the SUSY-algebra means the super-Poincaré algebra in
(0+ 1)D spacetime. Knowledge on irreps of an algebra is of fundamental importance for its
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physical and mathematical applications. In §3.1, irreps of Z2
2-graded SUSY algebra of N = 1, 2

are presented. As an application of the irreps, we consider Z2
2-graded classical mechanics in

§3.2. A Z2
2-graded SUSY transformation is defined by the irrep and classical actions invariant

under the transformation and conserved Noether charges are given explicitly.

2 Zn
2-graded algebras in physics

This section is a very brief review on recently observed relations between Zn
2-graded algebras

and physics. For those discussed in earlier days, readers may refer the references in [7].

2.1 Zn
2-graded algebras in known systems

(a) symmetries of Lévy-Leblond equation [8,9].
The Lévy-Leblond equation is a quantum mechanical wave equation describing a spin 1/2

particle in non-relativistic setting. The wave function is a four-component spinor which repro-
duces, when coupled with electromagnetic field, gyromagnetic ratio two as the Dirac equation
does. The equation has Galilean superconformal symmetry, but there exit other symmetry
generators which never close in a superalgebra but in Z2

2-graded algebra. Thus, the symmetry
of the equation is given by a Z2

2-graded algebra.
Similar situation is also observed in the supersymmetric harmonic oscillator discussed

in [10]. The system has additonal symmetry generators to the ones in [10] and the whole
symmetry generators close in a Z2

2-graded algebra. This is one of the examples that even
simple systems have Z2

2-graded symmetries.

(b) mixed system of parabosons and parafermions [11].
It is known that parafermion and paraboson algebras are isomorphic to orthogonal algebra

and orthosymplectic superalgebra, respectively. There are two possible ways of mixing para-
bosons and parafermions and form an larger algebra. It has been known that one of them is
isomorphic to the superalgebra osp(2m+1|2n). Recently, it was shown that the another one is
isomorphic to a Z2

2-graded extension of orthosymplectic superalgebra. Using this fact, a Fock
representation of Z2

2-graded orthosymplectic superalgebras has been constructed in [12].

(c) Clifford algebras [3,13,14].
Clifford algebra Cl(n, m) is regarded as a Zn

2-graded algebra. This identification is not
unique, namely, there are several different ways of assigning Zn

2-grading to the Clifford alge-
bras. Quaternion and split-quaternion realize Cl(0,3) and Cl(2, 1), respectively. Thus, they
are also Zn

2-graded algebra. One may use this fact to realize a Zn
2-graded algebra in terms of

an ordinary superalgebra and a Clifford algebra which leads us to Zn
2-graded extensions of

supersymmetric and superconformal quantum mechanics (see §2.2).

These observations reveal hidden Zn
2-graded algebraic structure in well-known systems.

What is remarkable is that Zn
2-graded algebras are found in simpler systems compared with the

earlier works where SUGRA, string theory were discussed. We believe that this is an illustration
of the fact that the Zn

2-graded algebras are found in many places in physics so that they would
play certain roles for deeper understanding of nature.

2.2 Zn
2-graded extensions of known systems

(a) supersymmetric and superconformal quantum mechanics [15–18].
Supersymmetric quantum mechanics (SQM) can be generalized to Zn

2-graded setting for
arbitrary values of n. It is also possible to have Zn

2-graded extensions of many models of su-
perconformal mechanics (SCM). This is a consequence of Zn

2-graded algebraic nature of the
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Clifford algebras. One may find an appropriate combination of SQM or SCM and a Clifford
algebra which produce its Z2

2-graded extension. What is remarkable is that these extensions
are not unique. That is, for a given model of SQM or SCM, we may have several inequivalent
Zn

2-graded extensions.

(b) supersymmetric classical systems [19–23].
Several Z2

2-supersymmetric classical actions (field theory, mechanics), which produce Z2
2-

supersymmetric quantum systems upon quantization, have been proposed. Contrast to the
quantum mechanics, only Z2

2-grading is considered in the literature. The actions are con-
structed by extending D-module presentation and superfield formulation to Z2

2-setting. Exten-
sion of superfield formalism is not straightforward since Z2

2-graded superspace has an extra
bosonic coordinate which is not nilpotent and anticommute with fermionic coordinate so that
the superfield is a formal power series in this exotic bosonic coordinate. Furthermore, inte-
gration on the Zn

2-graded superspace is highly non-trivial and only Z2
2 case is known yet [24].

(c) sine-Gordon equation [25].
It has been shown that a Z2

2-graded extension of the sine-Gordon equation is solvable.
This suggest the existence of a new class of integrable systems which are characterized by
Z2

2-graded symmetry.

(d) detectability of Z2
2-graded supersymmetry [26,27].

It is an important question whether the Z2
2-graded supersymmetry is physically different

from the ordinary one. The question has been answered affirmatively. Existence of operators
which distinguish Z2

2 and Z2-graded SQM was shown in multipartite sector of a simple model
with harmonic oscillator potential. Z2

2-graded SUSY describes a kind of para-particle since, by
definition of the symmetry algebra, it has commuting fermions and exotic bosons. Recently, it
was reported that para-particle oscillators were realized experimentally [28]. This implies the
possibility of experimental realization of Z2

2-graded para-particles.

(e) super division algebras [29].
It is known that the number of inequivalent associative real super division algebras is ten.

Three of them are purely even (R,C and H) and another seven with odd elements. These
ten super division algebras have a deep connection with other objects having ten inequiva-
lent classes such as the periodic table of topological insulators and superconductors, Morita
equivalence classes of real and complex Clifford algebras, and classical families of compact
symmetric spaces (see [30] for a review).

The superdivision algebra is a Z2-graded extension of the purely even one. There is no
reason to stop at Z2-grading, one may consider Zn

2-graded division algebras and would expect
surprising connection with other objects. In [29], a classification of Z2

2-graded division alge-
bras has been done. It was shown that there are 13 Z2

2-graded division algebras in addition to
the Z2-graded counterpart. Objects having connection with these Z2

2-graded division algebras
are not known yet. Finding them is an exciting problem.

From these observation, one may conclude thatZn
2-graded symmetries enlarge the concepts

of physical importance and open up new fields of research interest.

3 Irreducible representations of Z2
2-graded SUSY algebras

3.1 Irreps of N = 1, 2 algebras

In this section, we present irreps of Z2
2-graded SUSY algebras. We deal with N = 1 and N = 2

algebras and consider their representations in a Z2
2-graded vector space.
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Let us first recall the definition of Z2
2-graded algebra [1–3]. It is a direct sum of four vector

spaces each of which is labeled by an element of Z2
2 : g = g(0,0) ⊕ g(1,0) ⊕ g(0,1) ⊕ g(1,1). The

multiplication of two elements X a⃗ ∈ ga⃗ and Yb⃗ ∈ gb⃗ is defined by generalized Lie bracket
⟦ , ⟧ : g× g→ g which is a bilinear map and satisfies

⟦X a⃗, Yb⃗⟧= −(−1)a⃗·b⃗⟦Yb⃗, X a⃗⟧ ∈ ga⃗+b⃗ , (1)

⟦X a⃗,⟦Yb⃗, Zc⃗⟧⟧= ⟦⟦X a⃗, Yb⃗⟧, Zc⃗⟧+ (−1)a⃗·b⃗⟦Yb⃗,⟦X a⃗, Zc⃗⟧⟧ , (2)

where a⃗ · b⃗ is the inner product of two-component vectors. The relation (1) implies that the
generalized Lie bracket is realized by commutator and anticommutator. The relation (2) is a
Z2

2-graded version of the Jacobi identity.
Now we turn to the Z2

2-graded SUSY algebra [6,16]. The N = 1 algebra is of four dimen-
sion

H ∈ g(0,0) , Q10 ∈ g(1,0) , Q01 ∈ g(0,1) , Z ∈ g(1,1) , (3)

and the relations is given, in terms of commutator and anticommutator, by

{Q01,Q01}= {Q10,Q10}= 2H , [Q01,Q10] = 2iZ ,

[H,Q01] = [H,Q10] = 0 , [Z , H] = {Z ,Q01}= {Z ,Q10}= 0 .
(4)

While, the N = 2 algebra is six-dimensional

H ∈ g(0,0) , Q10, Q†
10 ∈ g(1,0) , Q01, Q†

01 ∈ g(0,1) , Z ∈ g(1,1) . (5)

The defining relations are

{Qa,Q†
a}= H , [Q01,Q†

10] = [Q
†
01,Q10] = iZ ,

{Qa,Qa}= {Q†
a,Q†

a}= {Z ,Qa}= {Z ,Q†
a}= [Z , H] = 0 , (6)

[Qa,Qb] = [Q
†
a,Q†

b] = 0 , a, b = (1, 0), (0, 1) .

One may see that H is centeral, while Z is Z2
2-graded centeral. It follows that H, Z span

the Cartan subalgebra, but they are not diagonalizable simultaneously as they belong to the
subspaces of different Z2

2-degree. It is easy to see that H2 and Z2 are the second order Casimir
which commute with all the elements. Thus, irreps are labeled by their eigenvalues which
are denoted by E2 for H2 and λ for Z2. The variables E,λ also labels irreps of the Cartan
subalgebra in a Z2

2-graded representation space [7]:

Lemma 1. Irreps of the Cartan subalgebra spanned by H, Z are equivalent to one of the followings:

1. One dimensional irrep ν(E, 0) = lin. span 〈 v0 〉

Hv0 = Ev0 , Z v0 = 0 . (7)

2. Two dimensional irrep ν(E,λ) = lin. span 〈 v0, v1 〉, λ ̸= 0

Hv0 = Ev0 , v1 = Z v0 , Z v1 = λv0 . (8)

Without loss of generality, one may assume the v0 belongs to the subspace of Z2
2-degree (0, 0).

Representations of the Z2
2-graded SUSY algebras are induced from ν(E,λ), but the induced

representations are not irreducible. For N = 1,2 cases, due to their simplicity, one may find
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invariant subspaces explicitly in the induced representation space. For instance, the induced
space for N = 1,λ ̸= 0 is eight dimensional whose basis is taken to be

v0 , Q10v0 , Q01v0 , 1
2 {Q10,Q01} v0 ,

v1, Q10v1 , Q01v1 , 1
2 {Q10,Q01} v1 .

(9)

The four dimensional invariant subspace is spanned by the vectors

v00 := αv0 +
β

2
{Q10,Q01}v1 , v11 = Z v00 , v10 =Q10v00 , v01 =Q01v00 , (10)

provided that α,β satisfy the relations

α2 = λβ2(E2 −λ) , (Ec + iλ)2 = λ(E2 −λ) , (11)

where c is the constant connecting two vectors : Q01Z v00 = cQ10v00. In the case of N = 2
algebra, the induced representation is 16 and 32 dimensional for λ= 0 and λ ̸= 0, respectively.
Like the N = 1 case, one may find a basis of irreps explicitly. Details are presented in [22,23].
We come to present a list of irreps of the Z2

2-graded SUSY algebras:

Theorem 2. The N = 1 algebra has a 4D irrep for all possible values of E,λ. While, the N = 2
algebra has some inequivalent irreps depending the value of E,λ :

1. four inequivalent 4D irreps if λ= 0.

2. two inequivalent 4D irreps if λ= E2.

3. two inequivalent 8D irreps if λ ̸= 0 and λ ̸= E2.

Some remarks are in order. If λ = 0, then Z is represented by the zero matrix so that the
algebra is almost two copies of the ordinary SUSY algebra. “Almost” means that two super-
charges Q10 and Q01 commute instead of anticommute which is the case of ordinary SUSY. If
λ= E2, irrep of both N = 1 and N = 2 algebras is four dimensional and this irrep is peculiar
since H2 = Z2 holds for this irrep. In fact, all the physical models discussed in the literature
(see §2.2) is limited to this particular irrep. Our theorem shows the existence of wider irreps,
the restriction λ = E2 is not necessary for both N = 1 and N = 2 algebras. Therefore, we
would expect the existence of physical models in which irreps with λ ̸= E2 are realized.

3.2 Z2
2-graded SUSY classical mechanics

As an application of the irreps of §3.1, we construct Z2
2-graded SUSY actions of classical me-

chanics. We employ the four dimensional irrep (λ = E2) of N = 2 algebra. The represen-
tation basis is taken to be four complex variables x(t), z(t),ψ(t),ξ(t) which are functions of
time t. Their Z2

2 degree are (0,0), (1,1), (1,0), (0,1), respectively and we assume that they
are Z2

2-commutative: ⟦A, B⟧ = 0. This assignment makes x(t) an ordinary complex number,
ψ(t),ξ(t) nilpotent and z(t) anticommute with ψ(t),ξ(t). Thus, x(t) is a bosonic variables,
ψ(t),ξ(t) are fermionic and z(t) is an exotic bosonic.

The action of the N = 2 algebra on this basis defines a Z2
2-graded SUSY transformation

which reads as follows:

Q10 : (x , z,ψ,ξ)→ (ψ,ξ, i ẋ , iż) , ( x̄ , z̄, ψ̄, ξ̄)→ (−ψ̄, ξ̄,−i ˙̄x , i˙̄z) ,

Q01 : (x , z,ψ,ξ)→ (−iξ,−iψ,−ż,− ẋ) , ( x̄ , z̄, ψ̄, ξ̄)→ (−iξ̄, iψ̄, ˙̄z,− ˙̄x) ,

Z : (x , z,ψ,ξ)→ (−ż,− ẋ , ξ̇, ψ̇) , ( x̄ , z̄, ψ̄, ξ̄)→ (−˙̄z,− ˙̄x ,− ˙̄ξ,− ˙̄ψ) , (12)
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where the bar indicates the complex conjugation and H transform all variables to their time
derivative.

One may easily write down an action invariant under the transformation (12):

L0 = ˙̄x ẋ + ˙̄zż − i(ψ̄ψ̇+ ξ̄ξ̇) . (13)

This is a free theory with four complex dynamical variables and interaction will be introduced
by the way similar to [20]. It is also easy to compute the Noether charges. With the notation
same as the symmetry generators, they are given by

H = ˙̄x ẋ + ˙̄zż, Q10 = ẋψ̄+ żξ̄ , Q†
10 = ˙̄xψ− ˙̄zξ ,

Z = ˙̄xż + ẋ ˙̄z , Q01 = ẋ ξ̄+ żψ̄ , Q†
01 = ˙̄xξ− ˙̄zψ .

(14)

Like the standard supersymmetry, it is possible to convert dynamical variables to auxiliary
ones. We give three examples of such conversion together with the Noether charges.

1) Define F := ż, F := ˙̄z, then all the degree (1, 1) variables become auxiliary:

L0 → L1 = ˙̄x ẋ + |F |2 − i(ψ̄ψ̇+ ξ̄ξ̇) , (15)

H = ˙̄x ẋ , Z = 0 , Q10 = ẋψ̄ , Q†
10 = ˙̄xψ , Q01 = ẋ ξ̄ , Q†

01 = ˙̄xξ . (16)

2) Define y := 1
2(x + x̄), A := i

2( ẋ − ˙̄x), then one of the degree (0, 0) variables becomes
auxiliary:

L0 → L2 = ẏ2 + A2 + ˙̄zż − i(ψ̄ψ̇+ ξ̄ξ̇) , (17)

H = ẏ2 + ˙̄zż , Q10 = ẏψ̄+ żξ̄ , Q†
10 = ẏψ− ˙̄zξ ,

Z = ẏ(ż + ˙̄z) , Q01 = ẏξ̄+ żψ̄ , Q†
01 = ẏξ− ˙̄zψ .

(18)

3) Define a = ẋ , ā = ˙̄x , then all the degree (0,0) variables become auxiliary:

L0 → L3 = |a|2 + ˙̄zż − i
�

ψ̄ψ̇+ ξ̄ξ̇
�

, (19)

H = ˙̄zż , Z = 0 , Q10 = żξ̄ , Q†
10 = ˙̄zξ , Q01 = żψ̄ , Q†

01 = ˙̄zψ . (20)

An interesting observation is the degree (1,1) charge Z vanishes if all degree (0,0) variables
or all degree (1,1) ones are auxiliary. This is understood from the form of Z given in (14).
More details of classical actions for N = 1, 2 are found in [22,23].

4 Conclusion

Based on many observations of Z2
2-graded symmetry in physics, we asserted physical relevance

of Z2
2-graded algebras. Supersymmetry is one of the most important symmetries in physics

so that its Z2
2-extensions were considered. We present irreps of Z2

2-graded SUSY algebras of
N = 1,2 on Z2

2-graded representation space. Even though our investigation was restricted to
(0+1)D spacetime, due to the Z2

2-grading of the representation space, the algebras have richer
irreps compared with the standard SUSY algebra. We use the four dimensional irrep of N = 2
algebra to construct Z2

2-graded classical mechanics and discuss its property such as vanishing
Noether charge of Z2

2-degree (1,1).
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Abstract

In this contribution we present a general procedure that allows the construction of non-
commutative spaces with quantum group invariance as the quantization of their associ-
ated coisotropic Poisson homogeneous spaces coming from a coboundary Lie bialgebra
structure. The approach is illustrated by obtaining in an explicit form several noncom-
mutative spaces from (3+1)D (A)dS and Poincaré coisotropic Lie bialgebras. In particu-
lar, we review the construction of the κ-Minkowski and κ-(A)dS spacetimes in terms of
the cosmological constant Λ. Furthermore, we present all noncommutative Minkowski
and (A)dS spacetimes that preserve a quantum Lorentz subgroup. Finally, it is also shown
that the same setting can be used to construct the three possible 6D κ-Poincaré spaces
of time-like worldlines. Some open problems are also addressed.
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1 Introduction

The aim of this contribution is twofold. Firstly, we present a systematic “six-step” procedure
that allows the construction of different noncommutative spaces with a common underlying
homogeneous space G/H where G is a Lie group and H is the isotropy Lie subgroup. The
approach requires starting with a coboundary Lie bialgebra (g,δ(r)) such that g is the Lie
algebra of G and δ is the cocommutator obtained from a classical r-matrix r [1,2]. The main
requirement for our development is that δ must satisfy the coisotropic condition δ(h) ⊂ h∧ g
with respect to the isotropy Lie algebra h of H [3–5]. Since coboundary Lie bialgebras are
the tangent counterpart of Poisson–Lie groups (G,Π) with a Poisson structure Π, the latter just
comes from the so-called Sklyanin bracket in this quantum group setting. Therefore, this leads
to coisotropic Poisson homogeneous spaces (G/H,π) where the Poisson structure π on G/H
is obtained via canonical projection of the Poisson–Lie structure Π on the Lie group G. The
quantization of (G/H,π) gives rise to the corresponding noncommutative space.

Secondly, we illustrate this approach by reviewing, from this general perspective, several
very recent noncommutative spaces that could be of interest in a quantum gravity frame-
work [6]. In particular, throughout the paper we will focus on the (3+1)D (Anti-)de Sitter (in
short (A)dS)) and Poincaré Lie groups and their associated (3+1)D homogeneous spacetimes
together with the 6D Poincaré homogeneous space of time-like geodesics.

The structure of the paper is as follows. In the next section we recall the main necessary
mathematical notions and geometric structures. And, as the main result, we present the six-
step approach to noncommutative spaces from coisotropic Poisson homogeneous spaces. In
Section 3 we apply this procedure in order to recover the well-known κ-Minkowski space-
time [7] as well as the (3+1)D κ-(A)dS spacetimes [8]. In Section 4, we present other non-
commutative (3+1)D Minkowski and (A)dS spacetimes, which are quite different from the
usual κ-spacetimes ones, by requiring to preserve a quantum Lorentz subalgebra [9].

Now, we stress that in many proposals to quantum gravity theories from quantum groups
their cornerstone is usually focused on the (3+1)D noncommutative spacetimes (in general,
the κ-Minkowski spacetime), forgetting the role that 6D quantum spaces of geodesics could be
played. In fact, in our opinion, any consistent theory should consider, simultaneously, both a
(3+1)D noncommutative spacetime and a 6D noncommutative space of worldlines. With this
idea and by taking into account the very same six-step procedure of Section 2, we construct
the 6D κ-Poincaré quantum space of time-like geodesics [10] in Section 5. Furthermore, there
exist two other types of κ-Poincaré deformations beyond the usual “time-like” one; namely, the
“space-like” and the “light-like” deformations (see [11,12] and references therein). Thus, we
also present in Section 5 these two remaining and very recently obtained 6D noncommutative
Poincaré spaces of geodesics [12].

Finally, some remarks and open problems are addressed in the last section.

2 Noncommutative spaces from Poisson homogeneous spaces

In this section, we firstly review the basic mathematical tools necessary for the paper and,
secondly, we present a general approach that allows one to construct noncommutative spaces
from coisotropic Poisson homogeneous spaces.

Let G be a Lie group with Lie algebra g of dimension d. We consider a decomposition of
g, as a vector space, given by the sum of two subspaces

g= h⊕ t , [h,h] ⊂ h . (1)
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A generic ℓ-dimensional (ℓD) homogeneous space is defined as the left coset space

Mℓ = G/H , (2)

where H is the (d − ℓ)D isotropy subgroup with Lie algebra h (1). Hence we can identify the
tangent space at every point m= gH ∈ Mℓ, g ∈ G, with the subspace t:

Tm(M
ℓ) = TgH(G/H)≃ g/h≃ t= span {T1, . . . , Tℓ} . (3)

The generators of the isotropy subalgebra h keep a point on Mℓ invariant, the origin O, playing
the role of rotations around O, while the ℓ generators belonging to t move O along ℓ basic
directions, thus behaving as translations on Mℓ. The local coordinates (t1, . . . , tℓ) associated
with the translation generators of t (3) give rise to ℓ coordinates on Mℓ.

A Poisson–Lie (PL) group is a pair (G,Π)where G is a Lie group andΠ is a Poisson structure
such that the Lie group multiplication µ : G × G→ G is a Poisson map with respect to Π on G
and the product Poisson structure ΠG×G = Π⊕Π on G × G. The relation between the Poisson
bivector field and the Poisson bracket is given by

(d f1 ⊗ d f2)Π= { f1, f2}Π . (4)

A Poisson manifold (M ,π) is a manifold M endowed with a Poisson structure π on M . A
Poisson homogeneous space (PHS) for a PL group (G,Π) is a Poisson manifold (M ,π) which
is endowed with a transitive group action α : (G × M ,Π ⊕ π) → (M ,π) which is a Poisson
map. Throughout this paper we shall consider that the manifold is a homogeneous space
M ≡ Mℓ = G/H (2). Moreover, we restrict to the case when the Poisson structure π on Mℓ

can be obtained by canonical projection of the PL structure Π on G.
Next, a Lie bialgebra is a pair (g,δ) where g is a Lie algebra and δ : g→ g ∧ g is a linear

map called the cocommutator satisfying the following two conditions [2]:
(i) δ is a 1-cocycle:

δ
�

[X i , X j]
�

= [δ(X i), X j ⊗ 1+ 1⊗ X j] +
�

X i ⊗ 1+ 1⊗ X i , δ(X j)
�

, ∀ X i , X j ∈ g . (5)

(ii) The dual map δ∗ : g∗ ⊗ g∗→ g∗ is a Lie bracket on the dual Lie algebra g∗ of g.
Coboundary Lie bialgebras [1,2] are those provided by a skewsymmetric classical r-matrix

r ∈ g∧ g in the form
δ(X i) = [X i ⊗ 1+ 1⊗ X i , r] , ∀ X i ∈ g , (6)

such that r must be a solution of the modified classical Yang–Baxter equation (mCYBE)

[X i ⊗ 1⊗ 1+ 1⊗ X i ⊗ 1+ 1⊗ 1⊗ X i , [[r, r]] ] = 0 , ∀ X i ∈ g , (7)

where [[r, r]] is the Schouten bracket defined by

[[r, r]] := [r12, r13] + [r12, r23] + [r13, r23] , (8)

such that

r12 = r i jX i ⊗ X j ⊗ 1 , r13 = r i jX i ⊗ 1⊗ X j , r23 = r i j1⊗ X i ⊗ X j , (9)

and hereafter sum over repeated indices will be understood unless otherwise stated. If the
Schouten bracket (8) does not vanish the Lie algebra g is said to be endowed with a quasitri-
angular or standard Lie bialgebra structure (g,δ(r)). The vanishing of the Schouten bracket
(8) leads to the classical Yang–Baxter equation (CYBE) [[r, r]] = 0 and (g,δ(r)) is called a
triangular or nonstandard Lie bialgebra.
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The main point now is that coboundary Lie bialgebras (g,δ(r)) are the tangent counter-
part of coboundary PL groups (G,Π) [2], where the Poisson structure Π on G is given by the
Sklyanin bracket

{ f1, f2}= r i j
�

X L
i f1 X L

j f2 − X R
i f1 X R

j f2
�

, f1, f2 ∈ C(G) , (10)

such that X L
i and X R

i are left- and right-invariant vector fields defined by

X L
i f (g) =

d
dt

�

�

�

�

t=0
f
�

g etYi
�

, X R
i f (g) =

d
dt

�

�

�

�

t=0
f
�

etYi g
�

, (11)

where f ∈ C(G), g ∈ G and Yi ∈ g. The quantization (as a Hopf algebra) of a PL group (G,Π)
is just the corresponding quantum group.

Given a PHS (Mℓ = G/H,π) with an underlying coboundary Lie bialgebra (g,δ(r)) of
(G,Π), the Poisson structure π on Mℓ, coming from canonical projection of the PL structure Π
on G, is only ensured to be well-defined whenever the so-called coisotropy condition for the
cocommutator δ with respect to the isotropy subalgebra h of H is fulfilled [3–5], namely

δ(h) ⊂ h∧ g . (12)

This condition means that the commutation relations that define the noncommutative space
Mℓ

z , with underlying classical space Mℓ (2) and quantum deformation parameter q = ez , at
the first-order in all the quantum coordinates ( t̂1, . . . , t̂ℓ) close on a Lie subalgebra which is
just the annihilator h⊥ of h on the dual Lie algebra g∗:

h⊥ ≡ Mℓ
z . (13)

The duality between the generators of t (3) and the quantum coordinates ( t̂1, . . . , t̂ℓ) spanning
Mℓ

z is determined by a canonical pairing given by the bilinear form

〈 t̂ j , Tk〉= δ
j
k , ∀ j, k . (14)

Noncommutative spaces can finally be obtained as quantizations of coisotropic PHS in all or-
ders in the quantum coordinates ( t̂1, . . . , t̂ℓ), so completing the initial quantum space Mℓ

z (13)
which just determines the Lie-algebraic (linear) contribution.

A general approach in order to construct any noncommutative space from any coisotropic
PHS (Mℓ = G/H,π) with coboundary Lie bialgebra (g,δ(r)), so fulfilling (12), is summarized
in six steps (see [9,12] and references therein) as follows:

1. Consider a faithful representation ρ of the Lie algebra g.

2. Compute, by exponentiation, an element of the Lie group G according to the left coset
space Mℓ = G/H (2) in the form

GMℓ = exp
�

t1ρ(T1)
�

· · · exp
�

tℓρ(Tℓ)
�

H , (15)

where (T1, . . . , Tℓ) are the translation generators on Mℓ, H is the (d − ℓ)D isotropy sub-
group, and (t1, . . . , tℓ) are local coordinates associated with the above translation gener-
ators of t (3). Note that these coordinates are independent of the representation chosen
in the previous step, provided that it is faithful.

3. Calculate the corresponding left- and right-invariant vector fields (11) from GMℓ (15).
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4. Consider a classical r-matrix (7) so determining a coboundary Lie bialgebra (g,δ(r))
(either of quasitriangular or triangular type), which is the tangent counterpart of the
corresponding coboundary PL group (G,Π).

5. Obtain the Poisson brackets among the local translation coordinates (t1, . . . , tℓ) via the
Sklyanin bracket (10) from the chosen classical r-matrix. The resulting expressions de-
fine the coisotropic PHS.

6. Finally, quantize the PHS thus obtaining the noncommutative space in terms of the quan-
tum coordinates ( t̂1, . . . , t̂ℓ).

In the next sections we illustrate the above procedure by applying it to several (A)dS and
Poincaré quantum deformations giving rise to noncommutative spaces that could be relevant
in a quantum gravity framework [6].

3 κ-Minkowski and κ-(A)dS noncommutative spacetimes

Let us consider the (3+1)D Poincaré and (A)dS Lie algebras expressed as a one-parametric
family of Lie algebras denoted by gΛ depending on the cosmological constant Λ. In a kinemat-
ical basis spanned by the generators of time translations P0, spatial translations P= (P1, P2, P3),
boost transformations K= (K1, K2, K3) and rotations J= (J1, J2, J3), the commutation relations
of gΛ are given by

[Ja, Jb] = εabcJc , [Ja, Pb] = εabc Pc , [Ja, Kb] = εabcKc ,
[Ka, P0] = Pa , [Ka, Pb] = δabP0 , [Ka, Kb] = −εabcJc ,
[P0, Pa] = −ΛKa, [Pa, Pb] = ΛεabcJc , [Ja, P0] = 0 .

(16)

From now on, Latin indices run as a, b, c = 1,2, 3 while Greek ones run as µ = 0,1, 2,3. The
Lie algebra gΛ comprises the dS algebra so(4,1) for Λ > 0, the AdS algebra so(3, 2) for Λ < 0
and the Poincaré one iso(3,1) when Λ= 0.

The first step in our approach is to consider a faithful representation ρ : gΛ→ End(R5) for
X ∈ gΛ, that reads

ρ(X ) = xµρ(Pµ) + ξ
aρ(Ka) + θ

aρ(Ja) =











0 Λx0 −Λx1 −Λx2 −Λx3

x0 0 ξ1 ξ2 ξ3

x1 ξ1 0 −θ3 θ2

x2 ξ2 θ3 0 −θ1

x3 ξ3 −θ2 θ1 0











. (17)

By exponentiation we obtain a one-parametric family of Lie groups, GΛ, that covers the dS
SO(4,1) for Λ > 0, the AdS SO(3,2) for Λ < 0, and the Poincaré ISO(3,1) for Λ = 0. The
(3+1)D Minkowski and (A)dS homogeneous spacetimes (2), M3+1

Λ , are defined by

M3+1
Λ = GΛ/H , H = SO(3,1) = 〈K,J〉 , (18)

where the Lie algebra h of H is the Lorentz subalgebra and t= span {Pµ} (1). Observe that the
constant sectional curvature of M3+1

Λ is ω= −Λ.
Our aim now is to construct the κ-noncommutative counterpart of M3+1

Λ (18). According
to (15) (step 2 in Section 2) we compute GΛ in terms of local coordinates (xµ,ξa,θ a) as

GΛ = exp
�

x0ρ(P0)
�

exp
�

x1ρ(P1)
�

exp
�

x2ρ(P2)
�

exp
�

x3ρ(P3)
�

H , (19)
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where the Lorentz subgroup H = SO(3, 1) is parametrized by

H = exp
�

ξ1ρ(K1)
�

exp
�

ξ2ρ(K2)
�

exp
�

ξ3ρ(K3)
�

exp
�

θ1ρ(J1)
�

exp
�

θ2ρ(J2)
�

exp
�

θ3ρ(J3)
�

. (20)

Notice that here the index ℓ= 4 in (2) and the generic local coordinates (t1, t2, t3, t4) in (15)
corresponds to the spacetime coordinates (x0, x1, x2, x3).

Following the step 3 in Section 2 we compute the left- and right-invariant vector fields (11)
from GΛ. In the step 4 we have to consider a classical r-matrix and we distinguish two cases
between κ-Poincaré with Λ= 0 and κ-(A)dS with Λ ̸= 0.

The κ-Poincaré classical r-matrix is a solution of the mCYBE (7) and reads [7,13]

r0 =
1
κ
(K1 ∧ P1 + K2 ∧ P2 + K3 ∧ P3) , (21)

that satisfies the coisotropy condition (12) with respect to h= span{K, J} and where the quan-
tum deformation parameter κ= 1/z. The corresponding Sklyanin bracket (10) leads to linear
Poisson brackets for the classical coordinates xµ which determine the κ-Minkowski PHS. This
can therefore be quantized directly in terms of the quantum coordinates x̂µ. Hence we recover
well-known κ-Minkowski spacetime [7] (see also [5,11,14,15] and references therein) which
is of Lie-algebraic type:

[ x̂0, x̂a] = −
1
κ

x̂a , [ x̂a, x̂ b] = 0 , (22)

completing the final steps 5 and 6 in Section 2.
When Λ ̸= 0 we consider the κ-(A)dS classical r-matrix, which is also a a solution of the

mCYBE (7), given by [8,16,17]

rΛ =
1
κ
(K1 ∧ P1 + K2 ∧ P2 + K3 ∧ P3 +ηJ1 ∧ J2) , (23)

such that the parameter η is related to the cosmological constant Λ and the sectional curvature
ω of the (A)dS spacetimes (18) by

ω= η2 = −Λ . (24)

Thus η is real for AdS and a purely imaginary number for dS. The Sklyanin bracket now gives
rise to the (nonlinear) κ-(A)dS PHS in the form [8]

{x0, x1}= −
1
κ

tanh(ηx1)

η cosh2(ηx2) cosh2(ηx3)
,

{x0, x2}= −
1
κ

tanh(ηx2)

η cosh2(ηx3)
,

{x0, x3}= −
1
κ

tanh(ηx3)
η

,

(25)

{x1, x2}= −
1
κ

cosh(ηx1) tanh2(ηx3)
η

,

{x1, x3}=
1
κ

cosh(ηx1) tanh(ηx2) tanh(ηx3)
η

,

{x2, x3}= −
1
κ

sinh(ηx1) tanh(ηx3)
η

.

(26)

Consequently, in contrast to the κ-Minkowski spacetime (22) when Λ ̸= 0 the 3-space (26),
determined by xa, is no longer commutative and ordering ambiguities arise in (25) and (26)
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which precludes a direct quantization. This problem can be circumvented by introducing five
ambient coordinates in the (A)dS spacetimes (18) denoted (s4, sµ) ∈ R5 such that they fulfil
the pseudosphere constraint

ΣΛ ≡ (s4)2 −Λ(s0)2 +Λ
�

(s1)2 + (s2)2 + (s3)2
�

= 1 . (27)

These read [8,9]

s4 = cos(ηx0) cosh
�

ηx1
�

cosh
�

ηx2
�

cosh
�

ηx3
�

,

s0 =
sin(ηx0)
η

cosh
�

ηx1
�

cosh(ηx2) cosh
�

ηx3
�

,

s1 =
sinh(ηx1)
η

cosh
�

ηx2
�

cosh
�

ηx3
�

,

s2 =
sinh
�

ηx2
�

η
cosh
�

ηx3
�

,

s3 =
sinh
�

ηx3
�

η
,

(28)

and the spacetime coordinates xµ are called geodesic parallel coordinates. Notice also that
qµ = sµ/s4 are Beltrami projective coordinates in M3+1

Λ (18) which can be obtained through
the projection with pole (0,0, 0,0, 0) ∈ R5 of a point with ambient coordinates (s4, sµ) onto
the projective hyperplane with s4 = +1 (see [18] for details). Next, if we compute the Pois-
son brackets among (s4, sµ) from (25) and (26), consider the quantum coordinates (ŝ4, ŝµ)
along with the ordered monomials (ŝ0)k (ŝ1)l (ŝ3)m (ŝ2)n (ŝ4) j , we finally obtain the κ-(A)dS
spacetimes M3+1

Λ,κ expressed as a quadratic algebra [8]

[ŝ0, ŝa] = −
1
κ

ŝa ŝ4 , [ŝ4, ŝa] =
η2

κ
ŝ0ŝa , [ŝ0, ŝ4] = −

η2

κ
Ŝη/κ ,

[ŝ1, ŝ2] = −
η

κ
(ŝ3)2 , [ŝ1, ŝ3] =

η

κ
ŝ3ŝ2 , [ŝ2, ŝ3] = −

η

κ
ŝ1ŝ3 ,

(29)

where the quantum 3-space Ŝη/κ operator is given by

Ŝη/κ =
�

ŝ1
�2
+
�

ŝ2
�2
+
�

ŝ3
�2
+
η

κ
ŝ1ŝ2 . (30)

Obviously, Jacobi identities are satisfied. We remark that M3+1
Λ,κ (29) has a Casimir operator

Σ̂Λ,κ =
�

ŝ4
�2 −Λ
�

ŝ0
�2
+
Λ

κ
ŝ0ŝ4 +Λ Ŝη/κ , (31)

which is the quantum analogue of the pseudosphere (27) (recall that Λ= −η2 (24)).
As expected, under the flat limit η → 0 (i.e., Λ → 0), the ambient coordinates (s4, sµ)

(28) provide the usual Cartesian ones (1, xµ) in the Minkowski spacetime and the κ-(A)dS
spacetimes (29) reduce to the κ-Minkowski spacetime (22).

4 Noncommutative (A)dS and Minkowski spacetimes with quan-
tum Lorentz subgroups

In this section we present very recent results concerning (3+1)D noncommutative (A)dS and
Minkowski spacetimes that preserve a quantum Lorentz subgroup which were obtained in [9]
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by following the same six-step procedure described in Section 2. We advance that these are
quite different from the κ-Minkowski (22) and κ-(A)dS (29) spacetimes reviewed in the pre-
vious section. Hence, we keep the same notation as in Section 3, in particular we shall make
use of the expressions (16)–(20), (24), (27) and (28).

We consider the family of the (3+1)D Poincaré and (A)dS Lie algebras gΛ (16) and search
for classical r-matrices (7) that keep the Lorentz subalgebra h = span{K, J} = so(3,1) as a
sub-Lie bialgebra, that is,

δ (h) ⊂ h∧ h , (32)

which is a more restrictive version of the coisotropy condition (12). This restriction implies
that the corresponding PHS is constructed through the Lorentz isotropy subgroup H = SO(3, 1)
such that (H,Π|H) is a PL subgroup of (GΛ,Π) and it is called a PHS of Poisson subgroup type.

Then we start with the most general element r ∈ gΛ ∧ gΛ. Since the dimension of gΛ is
d = 10, r depends on 45 initial deformation parameters. From it, we directly compute the
cocommutator δ (6) such that (gΛ,δ(r)) defines a Lie bialgebra if and only if r is a solution of
the mCYBE (7). Moreover, we have to impose the condition (32).

The simplest case is to require that δ (h) = 0 which means that the Lorentz subgroup
remains underformed. The final result is summarized as [9]:

Proposition 1. The only PL group (GΛ,Π) such that Π|H = 0 is the trivial one.

Therefore the only PHS (M3+1
Λ = GΛ/H,π) of Poisson Lorentz subgroup type such that

Π|H = 0 is the trivial one. In other words, there does not exist any quantum deformation of
the (3+1)D Poincaré and (A)dS Lie algebras preserving the Lorentz subalgebra h underformed.

Now the main question is whether there exists a quantum deformation of gΛ preserving
a non-trivial quantum Lorentz subalgebra, that is, δ (h) ⊂ h ∧ h ̸= 0. The answer is positive.
By taking into account previous results concerning quantum Poincaré groups [19, 20] and
quantum deformations of the Lorentz algebra h = so(3, 1) [21], it can be proven that the
classification of the quantum deformations of gΛ keeping a quantum Lorentz subalgebra can
be casted into three types as follows [9]:

Proposition 2. There exist three classes of PHS (M3+1
Λ = GΛ/H,π) for each of the maximally

symmetric relativistic spacetimes of constant curvature (Minkowski and (A)dS) (18) such that
the isotropy Lorentz subgroup H is a PL subgroup of (GΛ,Π). All of them are obtained from
coboundary PL structures on their respective isometry group GΛ which are determined, up to gΛ-
isomorphisms, by the classical r-matrices

rI = z (K1 ∧ K2 + K1 ∧ J3 − K3 ∧ J1 − J1 ∧ J2)− z′ (K2 ∧ K3 − K2 ∧ J2 − K3 ∧ J3 + J2 ∧ J3) ,

rII = z K1 ∧ J1 , (33)

rIII = z (K1 ∧ K2 + K1 ∧ J3) ,

where z and z′ are free quantum deformation parameters. These three classical r-matrices are
solutions of the CYBE [[r, r]] = 0.

Hence the three classes correspond to triangular or nonstandard deformations. Types II and
III would provide one-parametric deformations, while type I would lead to a two-parametric
one with arbitrary deformation parameters z and z′. Recall that the κ-gΛ deformations de-
scribed in the previous section have a quasitriangular or standard character.

Next we apply the approach presented in Section 2 in order to construct the correspond-
ing PHS from the above classical r-matrices in terms of the local coordinates xµ through the
Sklyanin bracket (10). However, the resulting expressions are rather cumbersome and strong
ordering ambiguities appear, so there is no a direct quantization for any class. In order to solve
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Table 1: The three types of (A)dS and Minkowski noncommutive spacetimes with
quantum Lorentz subgroups determined by Proposition 2. These are expressed in
quantum ambient spacetime coordinates ŝµ (28) or in (ŝ± = ŝ0 ± ŝ1, ŝ2, ŝ3). The
quantum coordinate ŝ4 always commutes with ŝµ.

Type I rI = z(K1 ∧ K2 + K1 ∧ J3 − K3 ∧ J1 − J1 ∧ J2)

−z′(K2 ∧ K3 − K2 ∧ J2 − K3 ∧ J3 + J2 ∧ J3)

• Subfamily with z = 0

[ŝ−, ŝ2] = −2z′ŝ+ŝ3 [ŝ−, ŝ3] = 2z′ŝ+ŝ2 [ŝ2, ŝ3] = z′(ŝ+)2 [ŝ+, · ] = 0

• Subfamily with z′ = 0

[ŝ−, ŝ+] = 2zŝ+ŝ2 [ŝ−, ŝ2] = zŝ−ŝ+ − 2z(ŝ3)2 [ŝ−, ŝ3] = 2zŝ3ŝ2

[ŝ2, ŝ3] = zŝ+ŝ3 [ŝ+, ŝ2] = −z(ŝ+)2 [ŝ+, ŝ3] = 0

Type II rII = zK1 ∧ J1

[ŝ0, ŝ1] = 0 [ŝ0, ŝ2] = zŝ1ŝ3 [ŝ0, ŝ3] = −zŝ1ŝ2

[ŝ2, ŝ3] = 0 [ŝ1, ŝ2] = zŝ0ŝ3 [ŝ1, ŝ3] = −zŝ0ŝ2

Type III rIII = z(K1 ∧ K2 + K1 ∧ J3)

[ŝ2, ŝ+] = z(ŝ+)2 [ŝ2, ŝ−] = −zŝ−ŝ+ [ŝ−, ŝ+] = 2zŝ+ŝ2 [ŝ3, ŝµ] = 0

this problem we proceed similarly to the κ-(A)dS spacetimes (29). We again consider the am-
bient coordinates (s4, sµ) (28) (subjected to the pseudosphere constraint (27)), compute their
PL brackets from those initially given in terms of xµ, and finally obtain the corresponding non-
commutive spacetimes by choosing an appropriate order in the quantum coordinates (ŝ4, ŝµ)
(so satisfying the Jacobi identities).

As a final result, we display in Table 1 all the (3+1)D Minkowski and (A)dS noncommutive
spacetimes that preserve a non-trivial quantum Lorentz subgroup [9].

Now some remarks are in order.

• The ambient quantum coordinate ŝ4 is always a central element for all the three types
of noncommutive spacetimes, [ŝ4, ŝµ] = 0, so that these are just defined by the (3+1)
quantum variables ŝµ.

• In this respect, we remark that the corresponding noncommutive Minkowski spacetimes
can directly be obtained through the flat limit Λ → 0 (or η → 0), in such a man-
ner that the quantum coordinates (ŝ4, ŝµ) reduce to the usual quantum Cartesian ones
(1, x̂µ). Since ŝ4 is absent in all the expressions presented in Table 1, the noncommutive
Minkowski spacetimes adopt the very same formal expressions in the quantum Cartesian
coordinates x̂µ.

• For types I and III it is found that the explicit noncommutive spacetimes are naturally
adapted to a null-plane basis [9,22] and for this reason we have considered the quantum
coordinates (ŝ± = ŝ0 ± ŝ1, ŝ2, ŝ3) instead of ŝµ. Thus they lead to ( x̂± = x̂0 ± x̂1, x̂2, x̂3)
for the Minkowski cases.
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• In type I we have distinguished two subfamilies with either z or z′ equal to zero in order
to clarify the presentation of the results. Nevertheless, observe that the general noncom-
mutive spacetimes of type I is just the superposition (the sum) of both subfamilies.

• We remark that the type II noncommutative spacetime has already been obtained for
the quadratic Minkowski case in [23] (set ŝµ ≡ x̂µ) by following a different approach
from ours; that is, from a twisted quantum Poincaré group and then applying the FRT
procedure. Notice that, in fact, the classical r-matrix rII (33) is just a Reshetikhin twist.

• Finally, the type III noncommutative spacetimes can be regarded as (2+1)D quantum
spaces since the quantum coordinate ŝ3 is a central operator, [ŝ3, · ] = 0. We recall that
when this structure is, again, only applied to the Minkowski case ( x̂± = x̂0 ± x̂1, x̂2), it
was already obtained from a Drinfel’d double structure of the (2+1)D Poincaré group
in [24]. In addition, we stress that the corresponding quantum algebra for gΛ comes from
the lower dimensional Lorentz subalgebra so(2,1) spanned by {J3, K1, K2} which is just
the well-known nonstandard (or Jordanian) quantum deformation of sl(2,R)≃ so(2, 1)
(see [25–28]). For higher-dimensional quantum (A)dS algebras keeping such a nonstan-
dard quantum sl(2,R) Hopf subalgebra we refer to [29].

5 κ-Poincaré space of time-like worldlines and beyond

So far we have constructed several (3+1)D Minkowski and (A)dS noncommutive spacetimes
by applying the approach given in Section 2. However, we stress that such a procedure is rather
general and can be applied to any homogeneous space. Hence in this section we shall consider
the 6D homogeneous space of time-like Poincaré geodesics and obtain its κ-noncommutative
version [10].

With this aim we consider the following Cartan decomposition of the Poincaré algebra
gΛ ≡ g and GΛ ≡ G with commutation relations (16) with Λ= 0 (see (1)):

g= ttl ⊕ htl , ttl = span{P,K} , htl = span{P0,J}= R⊕ so(3) . (34)

The homogeneous space of time-like geodesics is of dimension six and is defined by

Wtl = G/Htl , (35)

where the isotropy subgroup Htl = R⊗ SO(3) comes from the Lie subalgebra htl (34).
By following the procedure presented in Section 2, we first parametrize the Poincaré Lie

group from the 5D matrix representation (17) with Λ= 0 taking into account the order given
in (15), that is,

GWtl
= exp
�

η1ρ(K1)
�

exp
�

y1ρ(P1)
�

exp
�

η2ρ(K2)
�

exp
�

y2ρ(P2)
�

× exp
�

η3ρ(K3)
�

exp
�

y3ρ(P3)
�

Htl ,
(36)

where Htl is the stabilizer of the worldline corresponding to a massive particle at rest at the
origin of the (3+1)D Minkowski spacetime, namely

Htl = exp
�

φ1ρ(J1)
�

exp
�

φ2ρ(J2)
�

exp
�

φ3ρ(J3)
�

exp
�

y0ρ(P0)
�

. (37)

Therefore the classical coordinates (t1, . . . , tℓ) in (15) correspond to (ηa, ya) in (36) (recall
that now ℓ= 6). Next we consider the κ-Poincaré r-matrix (21) and by projecting the Sklyanin
bracket (10) to the homogeneous space (35) we obtain a coisotropic PHS for the classical space
of time-like geodesics which can be straightforwardly quantized since no ordering problems
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appear. In this way, the κ-Poincaré space of time-like geodesics Wtl,κ in terms of the six quan-
tum coordinates ( ŷa, η̂a) turns out to be [10]:

[ ŷ1, ŷ2] =
1
κ

�

ŷ2 sinh η̂1 −
ŷ1 tanh η̂2

cosh η̂3

�

,

[ ŷ1, ŷ3] =
1
κ

�

ŷ3 sinh η̂1 − ŷ1 tanh η̂3
�

,

[ ŷ2, ŷ3] =
1
κ

�

ŷ3 cosh η̂1 sinh η̂2 − ŷ2 tanh η̂3
�

,

[ ŷ1, η̂1] =
1
κ

�

cosh η̂1 cosh η̂2 cosh η̂3 − 1
�

cosh η̂2 cosh η̂3
,

[ ŷ2, η̂2] =
1
κ

�

cosh η̂1 cosh η̂2 cosh η̂3 − 1
�

cosh η̂3
,

[ ŷ3, η̂3] =
1
κ

�

cosh η̂1 cosh η̂2 cosh η̂3 − 1
�

,

(38)

together with
[η̂a, η̂b] = 0 , ∀ a, b , [ ŷa, η̂b] = 0 , a ̸= b . (39)

The above commutators can also be written in terms of quantum Darboux operators (q̂a, p̂a)
on a 6D smooth submanifold (η1,η2,η3) ̸= (0,0, 0); these are defined by

q̂1 :=
cosh η̂2 cosh η̂3

cosh η̂1 cosh η̂2 cosh η̂3 − 1
ŷ1 ,

q̂2 :=
cosh η̂3

cosh η̂1 cosh η̂2 cosh η̂3 − 1
ŷ2 ,

q̂3 :=
1

cosh η̂1 cosh η̂2 cosh η̂3 − 1
ŷ3 ,

p̂a := η̂a ,

(40)

where the ordering (η̂a)m ( ŷa)n has to be preserved. They lead to the canonical commutation
relations

�

q̂a, q̂b
�

=
�

p̂a, p̂b
�

= 0 ,
�

q̂a, p̂b
�

=
1
κ
δab . (41)

From these expressions we find that the noncommutative space Wtl,κ can be regarded as three
copies of the usual Heisenberg–Weyl algebra of quantum mechanics where the deformation
parameter κ−1 replaces the Planck constant ħh. We also recall that a first phenomenological
analysis for Wtl,κ, expressed in the form (38) and (39), was performed in [30].

So far we have constructed the noncommutative space Wtl,κ from the usual “time-like”
κ-Poincaré deformation with classical r-matrix (21). However we remark that there exist two
other possible κ-Poincaré deformations provided by “space-like” and “light-like” classical r-
matrices [10,11]. The quantization procedure described in Section 2 can similarly be applied
to these remaining cases in order to construct the quantum counterpart of the 6D homogeneous
space Wtl (35). Therefore we shall keep exactly the expressions (36) and (37) together with
the associated invariant vector fields and only change the underlying r-matrix. In what follows
we summarize the final results which were recently obtained in [12].
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We consider the “space-like” r-matrix given by

r =
1
κ
(K3 ∧ P0 + J1 ∧ P2 − J2 ∧ P1) , (42)

which is also a solution of the mCYBE (7), so quasitriangular. The corresponding quantum
Poincaré algebra was obtained in [31] (c.f. Type 1. (a) with z = 1/κ). When computing
the PHS it is found that again there are no ordering problems so that this can be quantized
directly leading to the commutation relations defining Wtl,κ from the “space-like” κ-Poincaré
deformation; these are

[ ŷ1, ŷ2] = −
1
κ

ŷ1 tanh η̂2 tanh η̂3 ,

[ ŷ1, ŷ3] =
1
κ

ŷ1

cosh η̂3
,

[ ŷ2, ŷ3] =
1
κ

ŷ2

cosh η̂3
,

[ ŷ1, η̂1] = −
1
κ

tanh η̂3

cosh η̂2
,

[ ŷ2, η̂2] = −
1
κ

tanh η̂3 ,

[ ŷ3, η̂3] = −
1
κ

sinh η̂3 ,

(43)

with the same vanishing brackets given by (39).
Finally, in the kinematical basis (16) with Λ= 0 the “light-like” κ-Poincaré deformation is

determined by

r =
1
κ
(K3 ∧ P0 + K1 ∧ P1 + K2 ∧ P2 + K3 ∧ P3 + J1 ∧ P2 − J2 ∧ P1) , (44)

which is triangular with vanishing Schouten bracket. This element provides the so-called “null-
plane” quantum Poincaré algebra introduced in [32, 33] (where z = 1/κ) in terms of a null-
plane basis [22] instead of the kinematical one. Notice that the “light-like” r-matrix (44) is
just the sum of the “time-like” r-matrix (21) and the “space-like” one (42). Consequently, as
expected, the resulting PHS can directly be quantized giving rise to Wtl,κ from the “light-like”
κ-Poincaré deformation which turns out to be given by the sum of (38) and (43) (preserving
the same vanishing brackets (39)); namely

[ ŷ1, ŷ2] =
1
κ

�

ŷ2 sinh η̂1 −
ŷ1 tanh η̂2
�

sinh η̂3 + 1
�

cosh η̂3

�

,

[ ŷ1, ŷ3] =
1
κ

�

ŷ3 sinh η̂1 −
ŷ1
�

sinh η̂3 − 1
�

cosh η̂3

�

,

[ ŷ2, ŷ3] =
1
κ

�

ŷ3 cosh η̂1 sinh η̂2 −
ŷ2(sinh η̂3 − 1)

cosh η̂3

�

,

[ ŷ1, η̂1] =
1
κ

�

cosh η̂1 cosh η̂2 cosh η̂3 − sinh η̂3 − 1
cosh η̂2 cosh η̂3

�

,

[ ŷ2, η̂2] =
1
κ

�

cosh η̂1 cosh η̂2 cosh η̂3 − sinh η̂3 − 1
cosh η̂3

�

,

[ ŷ3, η̂3] =
1
κ

�

cosh η̂1 cosh η̂2 cosh η̂3 − sinh η̂3 − 1
�

.

(45)

We remark that quantum Darboux operators (q̂a, p̂a) satisfying (41) can also be defined for
these latter noncommutative spaces [12].
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6 Concluding remarks and open problems

In this “twofold” contribution we have, firstly, presented in Section 2 a general approach to
construct noncommutative spaces from coisotropic PHS spaces determined by a coboundary
Lie bialgebra structure and, secondly, we have applied it to the physically relevant (3+1)D
(A)dS and Poincaré Lie groups. Besides the well-known (3+1)D κ-spacetimes shown in Sec-
tion 3, we have also presented quite different (i.e. non-equivalent) (3+1)D noncommutative
(A)dS and Minkowski spacetimes by requiring to preserve a quantum Lorentz subgroup in-
variant in Section 4. In addition, we have also considered noncommutative spaces beyond
the (3+1)D noncommutative spacetimes, which are the usual models considered in quantum
gravity. In this respect, we have presented the only three possible 6D noncommutative spaces
of time-like geodesics provided the three types of κ-Poincaré quantum deformations in Sec-
tion 5. We stress that a classification of all 6D noncommutative spaces of κ-Poincaré geodesics,
covering the usual time-like worldlines, already here described, along with the space-like and
light-like geodesics can be found in [12].

To conclude, we would like to comment on some open problems. Obviously, the procedure
considered here can be applied to any coisotropic PHS space providing new noncommutative
spaces. As far as (3+1)D (A)dS and Minkowski noncommutative spacetimes are concerned, we
have presented their well-known κ-deformation together with all possible quantum spacetimes
preserving a non-trivial quantum Lorentz subgroup. These results constitute the cornerstone
of a large number of possibilities for a further development. Nevertheless, we remark that
quantum spaces of geodesics have not been considered and studied so deeply. In fact, to
the best of our knowledge, only κ-deformations for quantum Poincaré geodesics have been
achieved. This fact not only suggests the consideration of other types of quantum Poincaré
geodesics but, in our opinion, the relevant open problem is to construct quantum (A)dS spaces
of geodescics; there are no results on this problem from a quantum group setting. In fact,
for the κ-Poincaré space of time-like worldlines (from the usual κ-Poincaré algebra) its fuzzy
properties have been studied in [30] and by following [30, 34] a similar analysis could be
faced with the other types of κ-Poincaré geodesics. Consequently, the construction of (A)dS
noncommutative spaces of geodesics (covariant under their corresponding (A)dS quantum
groups) could be achieved following the same approach here presented, and thus the role of
a nonvanishing cosmological constant (or curvature) in this novel noncommutative geometric
setting could be further analysed. Work on all these lines is in progress.
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Abstract

The computation of the entanglement entropy for inhomogeneous free fermions chains
based on q -Racah polynomials is considered. The eigenvalues of the truncated correla-
tion matrix are obtained from the diagonalization of the associated Heun operator via
the algebraic Bethe Ansatz. In the special case of chains based on dual q -Hahn polynomi-
als, the eigenvectors and eigenvalues are expressed in terms of symmetric polynomials
evaluated on the Bethe roots.
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1 Introduction

The characterization of entanglement in many-body systems is motivated by its numerous ap-
plications in quantum information [1,2] and its role in describing quantum critical points [3].
This endeavour is usually carried out in bipartite situations, where the amount of entangle-
ment between a region and its complement is determined. While many techniques have been
developed to perform this task [4], analytical results for entanglement entropy in large systems
remain rare.

For spin chains and free fermions models, this problem reduces to diagonalizing a matrix
referred to as the truncated correlation matrix [5]. In cases where couplings are homogeneous,
for example the XX spin chain, this matrix is Toeplitz or Toeplitz+Hankel and one can use
the Fisher–Hartwig conjecture to compute the bipartite entanglement in the thermodynamic
limit [6, 7]. For more general couplings and truncated correlation matrices, applying these
techniques is not possible and different approaches are required.

Inhomogeneous fermionic chains associated to hypergeometric orthogonal polynomials
of the Askey-Wilson scheme [8] are solvable and describe a wide variety of models. It was
observed that their truncated correlation matrix admits a commuting tridiagonal matrix, iden-
tified as a Heun-Askey-Wilson operator [9–13]. This suggests an interesting connection with
the theory of integrable systems. Indeed, these operators arise in the transfer matrices asso-
ciated to solutions of the reflection equations [14]. They correspond to Hamiltonians of XXZ
spin chains with specific boundary fields and have been shown to be diagonalizable via the
algebraic Bethe anstaz [15] (other methods have been developed in [16, 17]). They are also
examples of the so-called homogeneous case in the context of the modified algebraic Bethe
Ansatz, which has been designed to deal with generic Heun operators [14,18,19] and diago-
nalize integrable models with arbitrary boundary conditions (see e.g. [18,20–24]).

This paper applies the algebraic Bethe Ansatz framework to investigate the spectrum
of truncated correlation matrices of models associated to polynomials of the Askey-Wilson
scheme. In particular, the eigenvalues of the truncated correlation matrix of free fermionic
chains associated to dual q-Hahn polynomials are provided in terms of solutions of a set of
Bethe equations. In section 2, we recall the definition of free fermions chains associated to
q-Racah polynomials and diagonalize their Hamiltonians. In section 3, we discuss the prob-
lem of computing the entanglement entropy and introduce the truncated correlation matrix.
In section 4, we exhibit a commuting tridiagonal matrix referred to as the algebraic Heun op-
erator and diagonalize it via the algebraic Bethe Ansatz. This yields a set of relations known
as Bethe equations. The eigenvalues of the truncated correlation matrix are then given in
terms of roots of these equations. The associated TQ-relation and the thermodynamic limit
are briefly discussed in section 5.
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2 The model

Let us consider the following free fermions inhomogeneous Hamiltonian with nearest-
neighbour interaction Jn and magnetic field µn,

ÒH =
N−1
∑

n=0

�

Jnc†
ncn+1 + Jnc†

n+1cn

�

−
N
∑

n=0

µnc†
ncn , (1)

where cn and c†
n are fermionic annihilation and creation operators satisfying

�

c†
m , c†

n

	

= {cm , cn}= 0 ,
�

c†
m , cn

	

= δm,n . (2)

For convenience, we enumerate the sites of the lattice from 0 to N . This model is equivalent
to an inhomogeneous XX spin chain. Indeed, the Jordan-Wigner transformation

c†
n = σ

z
0σ

z
1 . . .σz

n−1σ
+
n , cn = σ

z
0σ

z
1 . . .σz

n−1σ
−
n , (3)

allows to rewrite the canonical relations of the creation and annihilation operators (2) and the
Hamiltonian (1) in terms of spin-1/2 operators,

ÒH = −1
2

N−1
∑

n=0

Jn

�

σx
nσ

x
n+1 +σ

y
nσ

y
n+1

�

−
1
2

N
∑

n=0

µn

�

1+σz
n

�

. (4)

We are interested in the case where the coupling parameters Jn and the local magnetic field
µn are constructed from the recurrence coefficients of the q-Racah polynomials [8]:

Jn = ε
p

AnCn+1 , (5)

µn = An + Cn − 1− γδq , (6)

where ε= ±1 and An, Cn are defined by

An =

�

αqn+1 − 1
� �

γqn+1 − 1
� �

αβqn+1 − 1
� �

βδqn+1 − 1
�

(1−αβq2n+1)(1−αβq2n+2)
, (7)

Cn =
(βqn − 1) (αqn −δ) (αβqn − γ) (qn+1 − q)

(1−αβq2n)(1−αβq2n+1)
. (8)

The choice of such inhomogeneous interactions and magnetic fields yields analytical results for
the spectrum, as shown below. It also describes a large class of models thanks to the presence
of various parameters. Indeed, the constants An, Cn and µn depend on the five real parameters
q, α, β , γ and δ, restricted only by the requirement that

AnCn+1 > 0 , JN = 0 . (9)

For instance, as shown in figure 1, we can get couplings Jn which are monotone in n or peaking
at a certain value. Taking q < 0 also gives models with oscillating couplings, reminiscent of
alternating spin chains [25].

2.1 Diagonalization of the Hamiltonian

In order to diagonalize ÒH, it is convenient to rewrite this operator in matrix form as

ÒH =
�

c†
0, . . . , c†

N

�

A





c0
...

cN



 , (10)
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(a) α= q−N−1, β = q2N ,
γ= q−2N , δ = (q−2N + q−N )/2

(b) α= q−N−1, β = −q,
γ= q2/2, δ = q2/2

(c) α= q−N−1, β = q2N ,
γ= q−2N , δ = q−N−1

(d) α= q−N−1, β = q8N ,
γ= q−2N , δ = q−8N

Figure 1: Inhomogeneous free fermions chains of length N = 10, based on q-Racah
polynomials, for different parameters (q,α,β ,γ,δ). The vertices and edges represent
respectively the sites and the couplings. The color of the edges indicates the magni-
tude of Jn, i.e. the strength of these couplings. Darker color is associated to stronger
couplings.

where A is the hermitian (N + 1)× (N + 1) tridiagonal matrix given by

A=
N
∑

n=0

�

Jn|n〉〈n+ 1| −µn|n〉〈n|+ Jn|n+ 1〉〈n|
�

, (11)

with the convention JN = J−1 = 0. The vectors {|0〉, |1〉, . . . , |N〉} are naturally associated to
sites in the chain and give the canonical orthonormal basis of CN+1. They will be referred to
as elements of the position basis. The spectral problem for A reads

A|ωk〉=ωk|ωk〉 , (12)

where

|ωk〉=
N
∑

n=0

φn(ωk)|n〉 . (13)

Knowing that the entries of A are the recurrence coefficients of the q-Racah polynomials, one
deduces (see eq. (A.4)) that its eigenvalues ωk are

ωk = q−k + γδqk+1 . (14)

The wavefunctions φn(ωk) = 〈ωk|n〉 are given in terms of q-Racah polynomials Rn(ωk) [8]:

φn(ωk) = ε
n
p

Wk

n
∏

j=1

√

√

√

A j−1

C j
Rn(ωk) . (15)

The definition of Rn(ωk) and the normalisation factors Wk are given in appendix A. The latter
are chosen such that the wavefunctions φn(ωk) are orthonormal i.e.

N
∑

k=0

φn(ωk)φm(ωk) = δn,m , and
N
∑

n=0

φn(ωk)φn(ωk′) = δk,k′ . (16)
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From these wavefunctions, we can define new pairs of fermionic creation and annihilation
operators in terms of which the Hamiltonian is diagonal:

ÒH =
N
∑

k=0

ωk c̃†
k c̃k , k ∈ {0, 1, . . . , N} , (17)

where

c̃k =
N
∑

n=0

φn(ωk)cn , c̃†
k =

N
∑

n=0

φn(ωk)c
†
n . (18)

Note that the operators c̃†
k and ck are associated to the single particle excitations of the system,

with energies given by the spectrum of the matrix A. One may further observe that these
energies are invariant under arbitrary transformations of α, β and under

δ→ δκ , γ→ γκ−1 , κ ∈ R . (19)

This is not true of the coupling parameters Jn and local magnetic field µn which depend non-
trivially on (q,α,β ,γ,δ). Important properties characterizing these systems, like the entan-
glement entropy in the ground state, should thus depend on these parameters.

3 Entanglement entropy

Entanglement in a multipartite system A ∪ B is measured by the entanglement entropy SA,
defined as

SA = −trA (ρA lnρA) , (20)

where A is a subsystem of A∪ B with a reduced density matrix ρA given by the trace over the
degrees of freedom in B,

ρA = trB|Ω〉〉〈〈Ω| . (21)

In the following, we take A to be the first L+1 sites of the inhomogeneous free fermionic chain
introduced in the previous section. The states considered are obtained by filling up the first
K + 1 single particle states, taken as the Fermi sea,

|Ω〉〉=
K
∏

k=0

c̃†
k|0〉〉 , (22)

where |0〉〉 is the vacuum state annihilated by all operators c̃k. For ωk monotone in k, |Ω〉〉 de-
scribes the ground state of Hamiltonians obtained as affine transformations of (10). In other
words, it gives the state for which the single particle excitations with negative energy are filled.

As observed in [5], computing the entanglement entropy SA of free fermions can be done
by diagonalizing the truncated correlation matrix. Indeed, it is known that [26]

SA = −
∑

ℓ

cℓ ln cℓ + (1− cℓ) ln (1− cℓ) , (23)

where the coefficients cℓ are the eigenvalues of the (L+1)× (L+1) matrix C with entries Cnm
given by the 2-point correlation functions,

Cnm = 〈〈Ω|c†
ncm|Ω〉〉=

K
∑

k=0

φn(ωk)φm(ωk) , n, m ∈ {0, 1, . . . L} . (24)
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This is a submatrix of the complete correlation matrix of the ground state bC , i.e.

C = πAbCπA , bC =
K
∑

k=0

|ωk〉 〈ωk| , (25)

where πA is the projector onto the vector space associated to sites of subsystem A,

πA =
L
∑

n=0

|n〉 〈n| . (26)

The computation of the entanglement entropy is thus reduced to determining the eigenvalues
cℓ. With the help of the algebraic Heun operators, we shall see that the spectral problem for
the truncated correlation matrix can be treated in the algebraic Bethe Ansatz framework.

4 Algebraic Heun operator

In this section, we introduce a tridiagonal matrix that commutes with the truncated correlation
matrix. To do so, we define an operator A∗ which is diagonal in the position basis

A∗ |n〉= λn |n〉 , λn = q−n +αβqn+1 . (27)

Using the difference relation of the q-Racah polynomials and the expression (15), one finds
the tridiagonal action of A∗ on the eigenbasis of A,

A∗ |ωk〉= J̄k |ωk+1〉 − µ̄k |ωk〉+ J̄k−1 |ωk−1〉 . (28)

The coefficients J̄k and µ̄k are given in appendix A. The Heun operator T is then defined as

T = {A, A∗} − (λL +λL+1)A− (ωK +ωK+1)A
∗ , (29)

and has the property of commuting with both the projector πA and the complete correlation
matrix bC ,

[T,πA] = [T, bC] = 0 . (30)

This is shown easily by considering the commutators [T,πA] in the position basis and [T, bC] in
the energy basis. Given relation (25), T also commutes with the truncated correlation C and
thus share with it a common set of eigenvectors. This is a crucial observation, in particular
because the Heun operator T can be identified in the transfer matrix of integrable models and
can hence be diagonalized via the algebraic Bethe Ansatz [14,27].

4.1 Algebraic Bethe Ansatz

The matrices A and A∗ give a representation of the Askey-Wilson algebra [28,29]:

AAA∗ −
�

q+
1
q

�

AA∗A+ A∗AA= ξA+χA∗ +ηI , (31)

A∗A∗A−
�

q+
1
q

�

A∗AA∗ + AA∗A∗ = χ∗A+ ξA∗ +η∗I , (32)

where I is the N + 1 × N + 1 identity matrix and the constants ξ, χ, χ∗, η and η∗ can be
expressed in terms of the parameters in the Hamiltonian:

χ = −
γδ
�

q2 − 1
�2

q
, χ∗ = −

αβ
�

q2 − 1
�2

q
, (33)
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ξ= −(q− 1)2(α(βδ+ β + γ+ 1) + γ(βδ+δ+ 1) + βδ) , (34)

η= (q− 1)2(q+ 1) (αγ(βδ+δ+ 1) +αβδ+ γδ(βδ+ β + γ+ 1)) , (35)

η∗ = (q− 1)2(q+ 1)
�

α2β +α
�

β2δ+ β(γ+ 1)(δ+ 1) + γ
�

+ βγδ
�

. (36)

The so-called dynamical operators can be defined in terms of the generators of this algebra:

A(u, m) =
q−2L

(αβq2m+1 − 1)

�

qm+1{A, A∗}
(q+ 1)

−
�

αβq2m+2 + 1
�

A−

�

q2m+2 + γδu4
�

u2
A∗
�

+ f1(u, m)I ,

(37)
and

B(u, m) =
αβqm+2 + q−m−1

2(q+ 1)
{A, A∗} −

q−m−1 −αβqm+2

2(1− q)
[A, A∗]

−αβ(q+ 1)A−

�

q+αβγδu4
�

u2
A∗ + f2(u, m)I .

(38)

The functions f1(u, m) and f2(u, m) are given in the appendix. These operators verify

B(u, m+ 1)B(v, m) = B(v, m+ 1)B(u, m) , (39)

A(u, m+ 1)B(v, m) = f (u, v)B(v, m)A(u, m) + g(u, v, m)B(u, m)A(v, m)

+w(u, v, m)B(u, m)A(τv−1, m) ,
(40)

where τ =
Ç

q
αβγδ . The functions f (u, v), g(u, v, m) and w(u, v, m) are given in appendix A.

Relations (39)-(40) were verified using directly the Askey-Wilson relations (31)-(32). This
is similar to the method used in [18, 19] and distinct from the approach based on R and K
matrices [14,15]. The Heun operator (29) can be expressed in terms ofA(u, L) andA(τu−1, L)
as

T = r(u)A(u, L) + r(τu−1)A(τu−1, L)−
�

r(u) f1(u, L) + r
�

τu−1
�

f1
�

τu−1, L
��

I , (41)

where

r(u) =
qL(q+ 1)
αβγδu4 − q

�

α2β2γδu4q2L + 1−
�

γδqK+1 + q−K−1
�

αβu2qL
�

. (42)

Next, let us consider the vectors |ū〉 defined as

|ū〉= B(ū, L) |0〉 , ū= {u1, u2, . . . , uL} , (43)

where
B(ū, L) = B(u1, L − 1)B(u2, L − 2) . . .B(uL , 0) . (44)

Note that relation (39) implies that B(ū, L) does not depend on the ordering of the variables
ui . Since the vectors |ū〉 are obtained by applying L times a tridiagonal matrix on the vector
|0〉, they are contained in the vector space spanned by {|0〉 , |1〉 , . . . , |L〉}. As such, they are
eigenvectors of πA with eigenvalue 1,

πA |ū〉=
L
∑

i=0

|i〉 〈i|ū〉= |ū〉 . (45)

The aim is to show that for specific parameters ū, these vectors are also eigenvectors of T .
This requires two results. The first is the following relation between the dynamical operator
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A(u, m) and product of dynamical operators B(ū, L):

A(u, m)B(ū, L) =
L
∏

i=1

f (u, ui)B(ū, L)A(u, m− L)

+
L
∑

i=1

g(u, ui , m− 1)
L
∏

j=1
i ̸= j

f (ui , u j)B(ū̸=i , u, L)A(ui , m− L)

+
L
∑

i=1

w(u, ui , m− 1)
L
∏

j=1
i ̸= j

f (τu−1
i , u j)B(ū̸=i , u, L)A(τu−1

i , m− L) ,

(46)

where
B(ū̸=i , u, L) = B(u1, L − 1)B(u2, L − 2) . . .B(u, m− i) . . .B(uL , 0) . (47)

This relation is obtained by computing the terms i = 1 and by using the symmetry in the
indices ui induced by relation (39). The second required result is the action of A(u, 0) on the
vector |0〉. From the definition of A(u, 0) in terms of A and A∗, and the action (11)-(27) of
these operators on the position basis, it follows that

A(u, 0) |0〉= a(u) |0〉 , (48)

where

a(u) =

�

q−2L

(1−αβq)

�

2µ0λ0q
(q+ 1)

−µ0(αβq2 + 1) +
q2λ0

u2
+ γδu2λ0

�

+ f1(u, 0)

�

. (49)

In particular, we note that this action is diagonal. This feature shows that the modified algebraic
Bethe Ansatz is not necessary and that the model we deal with corresponds to the particular
case developed in [15]. From this observation and relation (46), it follows that

T |ū〉= Λ(ū) |ū〉+
L
∑

i=1

Ei(u, ū)B(ū̸=i , u, L) |0〉 , (50)

where

Λ(ū) = r(u)a(u)
L
∏

i=1

f (u, ui) + r(τu−1)a
�

τu−1
�

L
∏

i=1

f (τu−1, ui)

−
�

r(u) f1(u, L) + r
�

τu−1
�

f1
�

τu−1, L
��

,

(51)

and

Ei(u, ū) =
�

r(u)g(u, ui , L − 1) + r(τu−1)g(τu−1, ui , L − 1)
�

a(ui)
L
∏

j=1
i ̸= j

f (ui , u j)

+
�

r(τu−1)w(τu−1, ui , L − 1) + r(u)w(u, ui , L − 1)
�

a(τu−1
i )

L
∏

j=1
i ̸= j

f
�

τu−1
i , u j

�

.

(52)

Thus, for a set of parameters ū verifying Ei(u, ū) = 0, the vector |ū〉 = B(ū, L) |0〉 is an eigen-
vector of T with eigenvalues Λ(ū), i.e.

T |ū〉= Λ(ū) |ū〉 . (53)
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Since the Heun operator T does not depend on the parameter u, the same is true of its eigen-
values Λ(ū). In particular, we find by evaluating (51) at u = 0 that the eigenvalues can be
expressed as

Λ(ū) = −(ωK +ωK+1)λL −
µ0(q− 1)

q

�

αβq2 + 1+
4αβq2

αβq− 1

�

−
(q2 − 1)2

q(q+ 1)

� L
∑

i=1

Ui

�

, (54)

where Ui =
q
u2

i
+ αβγδu2

i . Factorizing terms in the variable u in the conditions Ei(u, ū) = 0,

these reduce to the following conditions on ū, referred to as the Bethe equations,

L
∏

j=1
i ̸= j

q
�

qu2
i − u2

j

��

αβγδu2
i u2

j − 1
�

�

qu2
j − u2

i

��

q2 −αβγδu2
i u2

j

� =

�

qK+1 −αβu2
i qL

� �

q2 −αβγδu4
i

� �

αβγδu2
i qK+L+1 − 1

�

αβq
�

qK+L+2 − u2
i

� �

αβγδu4
i − 1

� �

qL − γδu2
i qK

�

a(ui)
a(τu−1

i )
. (55)

To keep the notation simple, ū = {u1, u2, . . . , uL} will refer from now on to Bethe roots, i.e. to
solutions of the set of equations (55).

4.2 Diagonalization of the truncated correlation matrix

Since the Heun operator T commutes with the truncated correlation matrix and is non-
degenerate, its eigenvectors |ū〉 also diagonalize the matrix C ,

C |ū〉= c(ū) |ū〉 , c(ū) ∈ R . (56)

To obtain an explicit expression for the eigenvalues c(ū) in terms of the parameters ū, we
observe that the action of B(u, m) in the position basis is tridiagonal and given by

qm+1B(u, m) |n〉= Vn,m |n+ 1〉+ (Xn,m + Yn,mU) |n〉+ Zn,m |n− 1〉 , (57)

with U = q
u2 + αβγδu2. The coefficients Vn,m, Xn,m, Yn,m and Zn,m can be computed directly

from the definition (38) and the action of A and A∗ in the position basis (see appendix A). In
the case where β = 0, i.e. the dual q-Hahn special case of the q-Racah polynomials [8], these
coefficients simplify greatly,

Vn,m =
Jn

qn+1
, Xn,m = αγq

�

qm+1 − qn
�

, Yn,m = 1− qm+1−n, Zn,m = 0 . (58)

In particular, B(u, m) becomes a raising operator in the sense that 〈n− 1|B(u, m) |n〉= 0. This
allows to compute the wavefunction 〈n|ū〉 of Bethe vectors:

〈n|ū〉= q−L(L−1)/2

�L−n
∏

ℓ=1

1− qℓ
��n−1

∏

i=0

Ji

qi+1

� L−n
∑

r=0

�

αγq(1− qn+1)
q− 1

�L−n−r

Sr(Ū) , (59)

where Ū = {U1, U2, . . . , UL} with Ui = qu−2
i . The terms Sr(Ū) are symmetric polynomials of

degree r in the variables Ui defined by

Sr(Ū) =
∑

i1<i2<···<ir

Ui1 Ui2 . . . Uir , S0(Ū) = 1 . (60)

Then, one can use the representation of the truncated correlation matrix in the position basis
(24) to obtain a formula for its eigenvalues in terms of Bethe roots. For any n ∈ {0, 1, . . . L},
we find

c(ū) =
〈n|C |ū〉
〈n|ū〉

=
q−L(L−1)/2

〈n|ū〉

L
∑

r=0

br,nSr(Ū) , (61)
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where

br,n =
K
∑

k=0

L−r
∑

n′=0

φn(ωk)φn′(ωk)

 

L−n′
∏

ℓ=1

1− qℓ
! 

n′−1
∏

i=0

Ji

qi+1

!

�

αγq(1− qn′+1)
q− 1

�L−n′−r

. (62)

This is valid for parameters ū which are solutions of the Bethe equations (55). For β = 0, these
equations reduce to

L
∏

j=1
j ̸=i

�

u2
i −

u2
j

q

�

�

u2
i − qu2

j

� =
qK
�

q−αu2
i

� �

q− γu2
i

� �

q− γδu2
i

�

�

qK+L+2 − u2
i

� �

αγu2
i − 1

� �

γδu2
i qK − qL

� . (63)

5 TQ-relations and thermodynamic limit

Equations (54) and (61) show that the spectra of the Heun operator and of the truncated
correlation matrix can be obtained by solving Bethe equations. An alternative approach is
given by interpreting the expression (51) for the eigenvalues of T as a q-difference equation.
In the case β = 0, (51) can indeed be rewritten as

U2Q(U)Λ(ū) =
(q+ 1)(U −α)(U − γ)(U − γδ)

qL
Q(qU)− p(U)Q(U)

+ qL(q+ 1)(U − q−K−L−1)(U −αγq)(U − γδqK−L+1)Q(U/q) ,
(64)

where p(U) is the following polynomial in the variable U ,

p(U) = −
αγ2δ(q+ 1)2

qL
+
γ(q+ 1)U

qK+L

�

αγδq2K+L+2 + qK(αδ+α+ γδ+δ) +αqL
�

− 2q(αγ+α+ γδ+ γ)U2 + 2(q+ 1)U3 ,
(65)

and Q(U) is a polynomial of degree L, the zeros Ui of which are expressed in terms of entries
of a Bethe root ū= {u1, u2, . . . uL}:

Q(U) =
L
∏

i=1

(U − Ui) =
L
∑

i=1

(−1)L−iSL−i(Ū)U
i . (66)

Thus, one can use the zeros of polynomial solutions of equation (64) to identify Bethe roots.
This equation is referred to as the TQ-relation in the literature.

Let us now further fix1 δ = 0, γ ∈ [0, 1] and q < 1. Inserting the r.h.s of (66) in equation
(64) yields a three term recurrence relation for the symmetric polynomials Sn(Ū):

0= σn+1Sn+1 + (ρn +Λ(ū))Sn + εn−1Sn−1 , (67)

where
σn = (q+ 1)q−n + (q+ 1)qn − 2(q+ 1) , (68)

ρn = (q+ 1)qn−L−K
�

αγqK+L+1 +
1
q

�

+ (q+ 1)(α+ γ)q−n − 2q(αγ+α+ γ) , (69)

εn = −αγ(q+ 1)
�

q−K + q−L
�

+
αγ(q+ 1)

qK+L
qn +αγ(q+ 1)q−n . (70)

1The choice of parameters δ = 0, β = 0 corresponds to the affine q-Krawtchouk limit of the q-Racah polynomials
[8].
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Table 1: Eigenvalues of the Heun operator (N = 49, L = 9, K = 24, q = 0.8,
α = q−N−1, β = 0, γ = 0.5, δ = 0) obtained by three methods. The first column
are zeros of S−1(Ū) seen as a polynomial of degree L + 1 in Λ(ū). The polynomial
was obtained by solving the three term recurrence (67). The second column corre-
sponds to the approximation (72) of the spectrum found in the thermodynamic limit.
The third is the result of diagonalizing T using scipy’s linear algebra package [30].

Solutions of −ρn for Numerical

S−1(Ū) = 0 n ∈ {0, 1, . . . L} diagonalization of T

-778916 -778741 -778916

-592816 -592623 -592816

-444746 -444544 -444746

-327294 -327099 -327294

-234579 -234418 -234579

-161955 -161865 -161955

-105783 -105813 -105783

-63253.2 -63460.2 -63253.2

-32283.3 -32687.9 -32283.6

-11583.9 -11957.8 -11583.9

In the thermodynamic limit N → ∞, the parameter α = q−N−1, with 0 < q < 1, goes to
infinity and (67) becomes effectively a two term recurrence with solution

Sn = SL

L−1
∏

i=n

ρi+1 +Λ(ū)
εi

+O
�

α−1
�

. (71)

The condition that S−1(Ū) = 0 then requires the eigenvalues Λ(ū) of T to take certain values

Λ(ū) ∈
�

−ρn +O(α0) | n ∈ {0,1 . . . , L}
	

. (72)

The spectrum of the Heun operator given by this approximation is compared to spectra found
using other methods in Table 1. One notes that the values match up to two digits at N = 49.
This suggests that exact asymptotic results may be obtainable in the thermodynamic limit.

6 Conclusion

Computing bipartite entanglement for free fermionic chains amounts to determining the spec-
trum of a truncated correlation matrix. For systems associated to q-Racah polynomials, it has
been shown how this matrix can be diagonalized via the algebraic Bethe Ansatz. In particu-
lar, its eigenvalues and eigenvectors have been given in terms of solutions of Bethe equations.
The associated Bethe roots were also found to be related to zeros of polynomial solutions of a
q-difference equation, referred to as the TQ-relation. This led to an approximate expression
for the eigenvalues of the commuting tridiagonal matrix in the case δ = 0 and N →∞.

While these results do not provide an explicit formula for the bipartite entanglement, it
establishes a clear connection between a central problem in quantum many-body physics and
a set of tools coming from the study of integrable models. Future research should thus be di-
rected toward investigating, notably in their thermodynamic limit, the solutions of the Bethe
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equations and TQ-relation that were found. Derivation of asymptotic expressions for these
would provide the groundwork necessary to analyse the interplay between coupling inhomo-
geneities in free fermions chains and the presence of entanglement in the ground state.
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A Appendix

A.1 q -Racah polynomials

The q-Racah polynomials are defined by [8]

Rn(ωx) = 4φ3

�

q−n αβqn+1 q−x γδqx+1

αq βδq γq

�

�

�q; q
�

, (A.1)

with
ωx = q−x + γδqx+1 . (A.2)

The parameters are restricted by the truncation condition RN+1(x) = 0. For instance, one can
use α and fix

α= q−N−1 . (A.3)

These polynomials also satisfy the following recurrence relation

(ωx − 1− γδq)Rn(ωx) = AnRn+1(ωx)− (An + Cn)Rn(ωx) + CnRn−1(ωx) , (A.4)

where

An =

�

αqn+1 − 1
� �

γqn+1 − 1
� �

αβqn+1 − 1
� �

βδqn+1 − 1
�

(1−αβq2n+1)(1−αβq2n+2)
, (A.5)

Cn =
(βqn − 1) (αqn −δ) (αβqn − γ) (qn+1 − q)

(1−αβq2n)(1−αβq2n+1)
. (A.6)

The normalisation weight is

Wk =
(β−1γq,δq; q)N (γδq,αq,βδq,γq; q)k(1− γδq2k+1)

(γδq2,β−1; q)N (q,α−1γδq,β−1γq,δq; q)k(αβq)k(1− γδq)
. (A.7)

These polynomials also have a difference equation of the form (28), with coefficients given by

J̄k =

√

√

√(1−αqk+1)(1− βδqk+1)(1− γqk+1)(1− γδqk+1)
(1− γδq2k+1)(1− γδq2k+2)

×

√

√

√(1− qk+1)(1−α−1γδqk+1)(1− β−1γqk+1)(1−δqk+1)(αβq)
(1− γδq2k+2)(1− γδq2k+3)

,

(A.8)
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µ̄k =
(1−αqk+1)(1− βδqk+1)(1− γqk+1)(1− γδqk+1)

(1− γδq2k+1)(1− γδq2k+2)

+
q(1− qk)(1−δqk)(β − γqk)(α− γδqk)

(1− γδq2k)(1− γδq2k+1)
− 1−αβq .

(A.9)

A.2 Functions in the algebraic Bethe Ansatz

The functions in the definition of the dynamical operators are:

f1(u, m) =
2qm+1

�

q+αβγδu4
�

u2 (αβq2L+2m+1 − q2L)
−

u2η(q+ 1)q−2L+2

(q2 − 1)2 (q2 −αβγδu4)

+
(q+ 1)

(q2 − 1)2 (q2L −αβq2L+2m+1)

�

η∗(γδu4q−2L+1 − q2m+4)
(q2 −αβγδu4)

− 2ξqm+2

�

,

(A.10)

and

f2(u, m) =

�

αβq2L+2m+3 + q2L
� �

q+αβγδu4
�

u2qm+2L+1
+

�

η∗q2L+m+1 +αβξq2L+2m+3 + ξq2L
�

qm+2L(q− 1)2(q+ 1)
.

(A.11)
The functions in the relation between the dynamical operators are:

f (u, v) =

�

u2 − qv2
� �

αβγδu2v2 − q2
�

q (u2 − v2) (αβγδu2v2 − q)
, (A.12)

g(u, v, m) =
(q− 1)

�

q2 −αβγδv4
� �

αβ v2q2L+2m+3 − u2q2L
�

q (u2 − v2) (αβq2L+2m+3 − q2L) (q−αβγδv4)
, (A.13)

and

w(u, v, m) =
αβ(q− 1)

�

αβγδv4 − 1
� �

γδu2v2q2L − q2(L+m+2)
�

(q2L −αβq2L+2m+3) (q−αβγδv4) (q−αβγδu2v2)
. (A.14)

The coefficients giving the action of B(u, m) on vectors in the position basis are:

Vn,m = Jn

�

q−n−1 −αβqm+2 −αβqm+1 +α2β2q2m+n+4
�

, (A.15)

Xn,m = −
µnλn(αβq2m+3 + 1)

(q+ 1)
−
αβ(q+ 1)

q−m−1
µn +

(η∗q2L+m+1 +αβξq2L+2m+3 + ξq2L)
(q− 1)2(q+ 1)q2L−1

, (A.16)

Yn,m = −qm+1λn +

�

αβq2L+2m+3 + q2L
�

q2L
, (A.17)

and
Zn,m = Jn−1αβ

�

q2m+3−n + qn − qm+2 − qm+1
�

. (A.18)
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Abstract

We present a new approach to the consistent subtraction of a non power-counting renor-
malizable extension of the Abelian Higgs-Kibble (HK) model supplemented by a dim. 6
derivative-dependent operator controlled by the parameter z. A field-theoretic represen-
tation of the physical Higgs scalar by a gauge-invariant variable is used in order to for-
mulate the theory by exploiting a novel differential equation, controlling the dependence
of the quantized theory on z. These results pave the way to the consistent subtraction
by a finite number of physical parameters of some non-power-counting renormalizable
models possibly of direct relevance to the study of the Higgs potential at the LHC.
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1 Introduction

In the quest for new physics at the LHC a significant role has been recently played on the theo-
retical side by the Standard Model (SM) Effective Field Theories [1–3]. Deviations from the SM
Lagrangian are described by a set of gauge-invariant higher-dimensional operators suppressed
by some large energy scale Λ. The resulting theory is no more power-counting renormalizable
and therefore more and more ultraviolet (UV) divergences arise as more loops are included.
Their subtraction requires the introduction of more and more higher-dimensional operators
compatible with the symmetries of the model.

Power-counting renormalizable theories on the other hand are defined in terms of a finite
number of physical parameters in one-to-one correspondence with the finite number of oper-
ators required to subtract the UV divergences of the one-particle irreducible (1-PI) amplitudes
to all orders in the loop expansion (once linear wave-function renormalization has been taken
into account).

This is at variance with the increasing number of higher-dimensional operators required to
make effective field theories finite as higher perturbative orders are included. Consequently,
effective field theories preserve predictivity only up to the energy scale Λ: below Λ only a
finite number of higher dimensional operators are physically relevant and in this sense a finite
number of physical parameters control physical observables (up to the relevant energy scale).

The question of the minimal set of independent physical operators required to renormalize
an effective field theory is a subtle question. First of all one must take into account redundacies
associated with the equations of motion [4], or equivalently by generalized field redefinitions
that are in general non-polynomial and prove essential in order to consistently subtract UV
divergences by local counter-terms [5].

Moreover, it has been recently advocated [4,6] that additional relations between seemingly
independent UV divergent amplitudes are easier to derive within a particular choice of gauge-
invariant field coordinates [7–9].

For instance, in the usual formalism of the Abelian Higgs-Kibble model, the complex scalar
field φ = 1p

2
(v + σ + iχ) is used, v being the vacuum expectation value of φ, σ the field

describing the physical scalar mode and χ the pseudo-Goldstone field. φ transforms in the
fundamental representation of the gauge group U(1), δφ = ieαφ with α the infinitesimal
gauge transformation and e the U(1) gauge coupling constant.

One might also consider the alternative choice of using the gauge invariant combination

φ†φ −
v2

2
∼ vX2 ,

in order to represent the physical scalar mode (this is the so-called X -formalism, based on the
set of auxiliary fields X2 and the Lagrange multiplier X1).

The resulting theory has been described at length in [4,6,10–12] and its tree-level vertex
functional is reported in Eq.(A.1). It is physically equivalent to the Abelian Higgs-Kibble model,
after going on-shell with both X1 and X2.

At variance with the ordinary formalism, the set of functional identities of the theory in
the X -formalism is richer. For instance, 1-PI amplitudes involving at least one X1 or X2-fields
are uniquely fixed by the X1,2-functional equations in Eqs.(B.3,B.4) in terms of amplitudes
without.

More importantly, it turns out that the X2-equation of the Abelian Higgs-Kibble model
admits a unique deformation, compatible with all the symmetries of the theory and associated
with the addition to the classical action of a bilinear operator in X2, see the first term in the
second line of Eq.(A.1). At z = 0 we recover the power-counting renormalizable Abelian
Higgs-Kibble model, while at z ̸= 0 we obtain a non power-counting renormalizabile theory
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physically equivalent to the one generated by the introduction of the dim.6 operator

z
2
∂ µX2∂µX2 ∼

z
2v2
∂ µ(φ†φ)∂µ(φ

†φ) . (1)

A crucial remark is that in the X -formalism the parameter z enters classically only in the
quadratic part of the classical action, while in the standard approach it also appears in the
interaction vertices. This property allows one to derive in the X -formalism an extremely pow-
erful differential equation.

By solving the latter equation, one obtains a unique prescription for the amplitudes of the
non-power-counting renormalizable model at z ̸= 0 in terms of those at z = 0.

If the theory at z = 0 is power-counting renormalizable (as in the case we deal with in the
present paper, for the sake of definiteness), the model at z ̸= 0 is defined in terms of the same
(finite, to all orders in perturbation theory) number of physical parameters plus z.

If, on the other hand, the model at z = 0 is an effective field theory, the results of the
present paper show that the addition of the dim.6 interaction in Eq.(1) comes at no cost, since
the complete dependence of the amplitudes at z ̸= 0 is still uniquely determined algebraically
by the z-differential equation in terms of the amplitudes at z = 0.

The relevant parameters up to the scale energy Λ are those of the effective theory at z = 0
plus z. This is a highly non-trivial result that follows from the z-differential equation.

2 The z-differential equation

The starting point is the diagonalization of the quadratic part in the scalar sector, that can be
achieved by the field redefintion

σ = σ′ + X1 + X2 . (2)

The propagators read

∆σ′σ′ =
i

p2 −m2
, ∆X1X1

= −
i

p2 −m2
, ∆X2X2

=
i

(1+ z)p2 −M2
. (3)

In this basis the dependence on the parameter z only arises via the X2-propagator. Intro-
ducing then the differential operator

DM2

z = (1+ z)∂z +M2∂M2 , (4)

one finds that ∆X2X2
is an eigenvector of DM2

z with eigenvalue -1:

DM2

z ∆X2X2
(k2, M2) = −∆X2X2

(k2, M2) . (5)

The argument generalizes to diagrams with a given number of internal X2-lines. Let us
collectively denote with Φ the set of fields and external sources of the theory, and let us indicate
with pi (with i = 1, . . . , r) their external momenta, with Φi = Φ(pi) and pr = −

∑r−1
1 pi; in this

way a n-loop 1-PI Green’s function Γ (n)Φ1···Φr
with r Φi insertions can be decomposed as the sum of

all 1-PI diagrams with external legs Φ1 · · ·Φr with zero, one, two,..., ℓ internal X2-propagators,
i.e.,

Γ
(n)
Φ1···Φr

=
∑

ℓ≥0

Γ
(n;ℓ)
Φ1···Φr

. (6)

Then by applying the differential operator DM2

z we find

DM2

z Γ
(n;ℓ)
Φ1···Φr

= −ℓΓ (n;ℓ)
Φ1···Φr

=⇒ DM2

z Γ
(n)
Φ1···Φr

= −
∑

ℓ≥0

ℓΓ
(n;ℓ)
Φ1···Φr

. (7)
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Hence we see that the subdiagrams with a fixed number ℓ of internal X2-lines are eigen-
vectors of the DM2

z with eigenvalue ℓ. The most general solution to this equation (of the ho-
mogeneous Euler’s type) reads (indicating explicitly only the dependence on the parameters
z and M2)

Γ
(n;ℓ)
Φ1···Φr

(z, M2) =
1

(1+ z)ℓ
Γ
(n;ℓ)
Φ1···Φr

(0, M2/(1+ z)) . (8)

Thus, amplitudes at z ̸= 0 in each ℓ-sector are obtained from those at z = 0 by dividing them
by the (1+ z)ℓ factor and rescaling by (1+ z) the square of the Higgs mass M2.

Otherwise said, in the X -formalism the existence of the z-differential equation implies
that the deformed theory at z ̸= 0 can be fully characterized once one knows the boundary
conditions given by the amplitudes of the power-counting renormalizable theory at z = 0.

2.1 ST identities in the ℓ-sector

Another crucial property of the X -formalism is that the ST identities separately hold true in
each ℓ-sector. The proof of this statement can be found in [12] and relies on the gauge-
invariance of the X2-field.

At order n in the loop expansion we get a set of ST identities, one for each ℓ:

S0

�

Γ (n;ℓ)
�

+
n−1
∑

j=1

ℓ
∑

i=0

�

Γ ( j;i), Γ (n− j;ℓ−i)
�

= 0 . (9)

Such identities encode the conditions required to guarantee physical unitarity of the theory
(i.e., the cancellation of the intermediate ghost states). Since X2 is gauge-invariant, it is phys-
ically sensible that it does not participate to such cancellations and therefore that the quartet
mechanism [13–15] is at work separately for each sector with a given number ℓ of internal
X2-lines.

2.1.1 Normalization conditions

The normalization conditions that must be imposed in the theory at z = 0 can also be consis-
tently decomposed according to the degree induced by the number of internal X2-lines.

For instance, the on-mass shell normalization condition for the vector meson is obtained
by requiring that the position of the pole of the physical components of the vector meson does
not shift with respect to the one at tree level and that the residue of the propagator on the
pole is one, i.e.

Re ΣT (M
2
A) = 0 , Re

∂ΣT (p2)
∂ p2

�

�

�

�

p2=M2
A

= 0 . (10)

In the above equation we have denoted by ΣT the transverse component of the two-point 1-PI
gauge function:

ΓAµAν = gµν(p
2 −M2

A) +
�

gµν −
pµpν
p2

�

ΣT (p
2) +

pµpν

p2
ΣL(p

2) . (11)

These conditions can be matched by finite renormalizations involving the following ST (and
gauge-) invariant operators (we use the notation of Ref. [6]):

λ4

∫

d4 x (Dµφ)†Dµφ ⊃
λ4v
2

∫

d4 x A2
µ ,

λ8

2

∫

d4 x F2
µν ⊃ λ8

∫

d4 x Aµ(□gµν − ∂ µ∂ ν)Aν . (12)
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Now, since the ST identities hold true separately at each ℓ-order, we can project the normal-
ization condition Eq.(10) at the relevant ℓ-order and at order n in the loop expansion:

Re Σ(1;ℓ)
T (M2

A) + vλ(1;ℓ)
4 = 0 , Re

∂Σ
(1;ℓ)
T

∂ p2

�

�

�

�

�

p2=M2
A

− 2M2
Aλ
(1;ℓ)
8 = 0 . (13)

As can be seen from the above equation, on mass shell renormalization conditions respect the
layers in ℓ and consequently the z-differential equation.

Otherwise said, once the appropriate normalization conditions are enforced at order n in
the loop expansion at z = 0, Eq.(8) fixes the 1-PI amplitudes of the theory at z ̸= 0 in a unique
way.

3 Conclusion

We have obtained a differential equation that controls the deformation of the Abelian Higgs-
Kibble model induced by the dim.6 operator

z
2
∂ µX2∂µX2 ∼

z
2
∂ µ(φ†φ)∂µ(φ

†φ) .

The solution to the differential equation is uniquely defined in terms of the boundary condi-
tions of the (renormalized) amplitudes of the theory at z = 0. This allows one to define the
corresponding non-power-counting renormalizable theory in a way that it only depends on
the same number of physical parameters of the model at z = 0 (either the finite ones, to all
orders in perturbation theory, if the model at z = 0 is power-counting renormalizable, or those
relevant up to the energy scale Λ, if the model at z = 0 is an effective field theory), and z.

The results obtained so far for the Abelian gauge group can be generalized to the full elec-
troweak SU(2)×U(1) theory. This is of particular interest, since one could obtain an extension
of the SM and of Beyond-the-Standard-Model (BSM) theories by a derivative-dependent dim.6
operator, that still can be defined at the quantum level in a consistent way (to all orders in
z). Within this framework, applications to phenomenology should also be studied. In partic-
ular one could study the BSM corrections to the SM Higgs potential, that are expected to be
explored at the LHC experimental program.

Another interesting problem is whether the present construction can be extended to gauge-
invariant fields representing the gauge and fermion degrees of freedom. We hope to report on
these issues soon.
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A Classical vertex functional in the X-formalism

The classical vertex functional is given by:

Γ (0) =

∫

d4 x

�

−
1
4

FµνFµν + (D
µφ)†(Dµφ)−

M2 −m2

2
X 2

2 −
m2

2v2

�

φ†φ −
v2

2

�2

+
z
2
∂ µX2∂µX2 − c̄(□+m2)c +

1
v
(X1 + X2)(□+m2)

�

φ†φ −
v2

2
− vX2

�

+
ξb2

2
− b (∂ A+ ξevχ) + ω̄

�

□ω+ ξe2v(σ+ v)ω
�

+ c̄∗
�

φ†φ −
v2

2
− vX2

�

+σ∗(−eωχ) +χ∗eω(σ+ v)

�

. (A.1)

In the above equation Dµ is the covariant derivative

Dµ = ∂µ − ieAµ . (A.2)

The first line of Eq.(A.1) is the classical action of the Abelian Higgs-Kibble model. By going
on-shell with X1 and imposing the constraint

X2 =
1
v

�

φ†φ −
v2

2

�

, (A.3)

we recover the usual quartic Higgs potential with coupling ∼ − M2

2v2 . Indeed one can prove [6]
that the only physical parameter is M , m cancelling out in physical quantities. The first term
of the second line contains the deformation proportional to the parameter z. By going on-shell
with X1 we obtain the dimension-six derivative operator ∼ z

2v2 ∂
µ(φ†φ)∂µ(φ†φ), that breaks

the power-counting renormalizability of the theory. The second and third terms in the second
line of Eq.(A.1) implements off-shell in a BRST-invariant way the constraint in Eq.(A.3) via the
Lagrange multiplier X1. The X2-dependent term simplifies diagonalization of the quadratic
part via the transformation in Eq. (2).

X1- andσ′- propagators have a relative minus sign responsible for their mutual cancellation
inside loops, see Eq.(3), that holds true to all order by virtue of the constraint U(1) BRST
symmetry

SX1 = vc , Sc = 0 , S c̄ =
1
v

�

φ†φ −
v2

2
− vX2

�

, (A.4)

all other fields and external sources being invariant under S and c, c̄ being the constraint U(1)
ghost and antighost fields.

The third line implements the usual Rξ-gauge in a BRST-invariant way, ω̄,ω being the
antighost and ghost fields associated with the gauge group U(1) and b the Nakanishi-Lautrup
field. The U(1) BRST symmetry is defined as usual according to

sAµ = ∂µω , sφ = ieωφ , sσ = −eωχ , sχ = eω(σ+ v) , sω̄= b , sb = 0 , (A.5)

all other fields being invariant. In particular X2 is BRST-invariant. The cohomological BRST
analysis of the physical spectrum of the model is given in [12]. It turns out that the physical
modes are the three transverse components of the massive gauge field Aµ and one physical
scalar with tree-level mass M .

Finally the last line of Eq.(A.1) contains the external sources required to renormalize the
theory. Being coupled to the BRST variation respectively of c̄,σ and χ, they are the anti-
fields [16] of the BRST differentials S and s. Invariance of the classical vertex functional
under S and s is translated at the quantum level into the Slavnov-Taylor (ST) identities in
Eqs.(B.1) and (B.5).
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B Functional identities

The functional identities controlling the theory are listed below:

• The ST identity for the constraint BRST symmetry is

SC(Γ )≡
∫

d4 x
�

vc
δΓ

δX1
+
δΓ

δc̄∗
δΓ

δc̄

�

=

∫

d4 x
�

vc
δΓ

δX1
− (□+m2)c

δΓ

δc̄∗

�

= 0 , (B.1)

where in the latter equality we have used the fact that both the ghost c and the antighost
c̄ are free:

δΓ

δc̄
= −(□+m2)c ,

δΓ

δc
= (□+m2)c̄ . (B.2)

• The X1-equation of motion, that follows from Eq.(B.1) by using the fact that the ghost c
is free:

δΓ

δX1
=

1
v
(□+m2)

δΓ

δc̄∗
. (B.3)

• The X2-equation of motion:

δΓ

δX2
=

1
v
(□+m2)

δΓ

δc̄∗
− (□+m2)X1 − ((1+ z)□+M2)X2 − vc̄∗ . (B.4)

Notice that the z-term is the only one that affects the right-hand side of the above equa-
tion in a linear way (so that no new external source is required to control its renormal-
ization) and that contains at most two derivatives (in order to avoid inconsistencies of
higher derivative theories due to the appearance of negative norm states in the physical
spectrum).

• The ST identity associated to the gauge group BRST symmetry

S(Γ ) =
∫

d4 x

�

∂µω
δΓ

δAµ
+
δΓ

δσ∗
δΓ

δσ
+
δΓ

δχ∗
δΓ

δχ
+ b
δΓ

δω̄

�

= 0 . (B.5)

• The b-equation:
δΓ

δb
= ξb− ∂ A− ξevχ . (B.6)

• The antighost equation:
δΓ

δω̄
= □ω+ ξev

δΓ

δχ∗
. (B.7)

References

[1] W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavour
conservation, Nucl. Phys. B 268, 621 (1986), doi:10.1016/0550-3213(86)90262-2.

[2] R. Alonso, E. E. Jenkins, A. V. Manohar and M. Trott, Renormalization group evolution
of the Standard Model dimension six operators III: Gauge coupling dependence and phe-
nomenology, J. High Energy Phys. 04, 159 (2014), doi:10.1007/JHEP04(2014)159.

[3] I. Brivio and M. Trott, The Standard Model as an effective field theory, Phys. Rep. 793, 1
(2019), doi:10.1016/j.physrep.2018.11.002.

019.7

https://scipost.org
https://scipost.org/SciPostPhysProc.14.019
https://doi.org/10.1016/0550-3213(86)90262-2
https://doi.org/10.1007/JHEP04(2014)159
https://doi.org/10.1016/j.physrep.2018.11.002


SciPost Phys. Proc. 14, 019 (2023)

[4] D. Binosi and A. Quadri, Off-shell renormalization in the presence of dimension 6
derivative operators. Part I. General theory, J. High Energy Phys. 09, 032 (2019),
doi:10.1007/JHEP09(2019)032.

[5] J. Gomis and S. Weinberg, Are nonrenormalizable gauge theories renormalizable?, Nucl.
Phys. B 469, 473 (1996), doi:10.1016/0550-3213(96)00132-0.

[6] D. Binosi and A. Quadri, Off-shell renormalization in the presence of dimension
6 derivative operators. II. Ultraviolet coefficients, Eur. Phys. J. C 80, 807 (2020),
doi:10.1140/epjc/s10052-020-8349-0.

[7] J. Fröhlich, G. Morchio and F. Strocchi, Higgs phenomenon without symmetry breaking
order parameter, Nucl. Phys. B 190, 553 (1981), doi:10.1016/0550-3213(81)90448-X.

[8] J. Fröhlich, G. Morchio and F. Strocchi, Higgs phenomenon without a symmetry breaking
order parameter, Phys. Lett. B 97, 249 (1980), doi:10.1016/0370-2693(80)90594-8.

[9] A. Maas, Brout-Englert-Higgs physics: From foundations to phenomenology, Prog. Part.
Nucl. Phys. 106, 132 (2019), doi:10.1016/j.ppnp.2019.02.003.

[10] D. Binosi and A. Quadri, Off-shell renormalization in Higgs effective field theories, J. High
Energy Phys. 04, 050 (2018), doi:10.1007/JHEP04(2018)050.

[11] D. Binosi and A. Quadri, Off-shell renormalization in the presence of dimension 6 derivative
operators. Part III. Operator mixing and β functions, J. High Energy Phys. 05, 141 (2020),
doi:10.1007/JHEP05(2020)141.

[12] D. Binosi and A. Quadri, Renormalizable extension of the Abelian Higgs-Kibble
model with a dimension-six operator, Phys. Rev. D 106, 065022 (2022),
doi:10.1103/PhysRevD.106.065022.

[13] C. Becchi, A. Rouet and R. Stora, The Abelian Higgs Kibble model, unitarity of the S-
operator, Phys. Lett. B 52, 344 (1974), doi:10.1016/0370-2693(74)90058-6.

[14] G. Curci and R. Ferrari, An alternative approach to the proof of unitarity for gauge theories,
Nuovo Cimento A 35, 273 (1976), doi:10.1007/BF02730284.

[15] T. Kugo and I. Ojima, Manifestly covariant canonical formulation of Yang-Mills theories
physical state subsidiary conditions and physical S-matrix unitarity, Phys. Lett. B 73, 459
(1978), doi:10.1016/0370-2693(78)90765-7.

[16] J. Gomis, J. París and S. Samuel, Antibracket, antifields and gauge-theory quantization,
Phys. Rep. 259, 1 (1995), doi:10.1016/0370-1573(94)00112-G.

019.8

https://scipost.org
https://scipost.org/SciPostPhysProc.14.019
https://doi.org/10.1007/JHEP09(2019)032
https://doi.org/10.1016/0550-3213(96)00132-0
https://doi.org/10.1140/epjc/s10052-020-8349-0
https://doi.org/10.1016/0550-3213(81)90448-X
https://doi.org/10.1016/0370-2693(80)90594-8
https://doi.org/10.1016/j.ppnp.2019.02.003
https://doi.org/10.1007/JHEP04(2018)050
https://doi.org/10.1007/JHEP05(2020)141
https://doi.org/10.1103/PhysRevD.106.065022
https://doi.org/10.1016/0370-2693(74)90058-6
https://doi.org/10.1007/BF02730284
https://doi.org/10.1016/0370-2693(78)90765-7
https://doi.org/10.1016/0370-1573(94)00112-G


SciPost Phys. Proc. 14, 020 (2023)

The tower of Kontsevich deformations for Nambu-Poisson
structures on Rd: Dimension-specific micro-graph calculus

Ricardo Buring1◦ and Arthemy V. Kiselev2⋆§

1 Institut für Mathematik, Johannes Gutenberg–Universität,
Staudingerweg 9, D-55128 Mainz, Germany

2 Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence,
University of Groningen, P.O. Box 407, 9700 AK Groningen, The Netherlands

⋆ A.V.Kiselev@rug.nl

34th International Colloquium on Group Theoretical Methods in Physics
Strasbourg, 18-22 July 2022

doi:10.21468/SciPostPhysProc.14

Abstract

In Kontsevich’s graph calculus, internal vertices of directed graphs are inhabited by mul-
ti-vectors, e.g., Poisson bi-vectors; the Nambu-determinant Poisson brackets are differen-
tial-polynomial in the Casimir(s) and density ϱ times Levi-Civita symbol. We resolve the
old vertices into subgraphs such that every new internal vertex contains one Casimir or
one Levi-Civita symbol×ϱ. Using this micro-graph calculus, we show that Kontsevich’s
tetrahedral γ3-flow on the space of Nambu-determinant Poisson brackets over R3 is a
Poisson coboundary: we realize the trivializing vector field X⃗ overR3 using micro-graphs.
This X⃗ projects to the known trivializing vector field for the γ3-flow over R2.
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1 Introduction

Kontsevich introduced [5] a universal – for any affine Poisson manifold of dimension d – con-
struction of infinitesimal symmetries for the Jacobi identity: for suitable cocycles γ in the
graph complex, one obtains bi-vector flows Ṗ = Qγ([P]) with differential-polynomial right-
hand sides (with respect to components P i j(x ) of Poisson structures P ∈ Γ (

∧2 T M d
aff)). We

detect in [4] that for the tetrahedral graph cocycle γ3 from [5] and for the pentagon-wheel
graph cocycle γ5 (see [3]), the corresponding flows (see [1, 2]) have a well-defined restric-
tion to the subclass of Nambu-determinant Poisson brackets1 P(ϱ, [a]) on Rd at least in the
following three cases: (i) γ3-cocycle flow Ṗ =Qγ([P]) for P(ϱ, [a]) over R3, (ii) the same γ3-
cocycle and the flow of P(ϱ, [a1], [a2]) overR4, and (iii) the next, γ5-cocycle flow for P(ϱ, [a])
over R3.

To study the (non)triviality of Kontsevich’s graph flows in the second Poisson cohomology
group for Nambu–determinant brackets {·, ·}P(ϱ,[a]), we consider the coboundary equation,

Qγ([P])([ϱ], [a]) = [[P(ϱ, [a]), X⃗ ([ϱ], [a])]] , (1)

upon vector fields X⃗ ([ϱ], [a])with differential-polynomial coefficients overRd . We discovered
in [4] that the γ3-flow over R3 is trivial w.r.t. a unique solution X⃗ mod [[P, H([ϱ], [a])]]. In this
text we explain how, for γ = γ3 and d = 2, a solution of (1) is constructed using Kontsevich’s
graphs, and then, for d = 3, how the trivializing vector field X γ3 is found by using micro-graphs
that resolve ϱ(x ) ·Levi-Civita symbol against the Casimir(s) aℓ within copies of Nambu-deter-
minant Poisson brackets {·, ·}P(ϱ,[a]) = ϱ(x ) ·

∑d
i1,...,id=1 ϵ

ı⃗ · ∂i1(a1)· . . . · ∂id−2
(ad−2) · ∂id−1

⊗ ∂id
in the vertices of Kontsevich’s directed graphs for the flow Qγ([P]).

2 Preliminaries: The tetrahedral flow Ṗ = Qγ3
(P) over twofolds

Kontsevich’s directed graphs are built of n⩾ 0 wedges
L
←−•

R
−→, usually drawn in the upper half-

plane H2, over m⩾ 0 ordered sinks along R= ∂H2; tadpoles are allowed. Leibniz graphs are
akin: the out-degrees of all but one (or more) vertices equal 2 yet there is (at least) one aerial
vertex of out-degree 3 and its outgoing edges are ordered Left≺Middle≺ Right.2

We shall study only those flows Ṗ = Q([P]) on spaces of bi-vectors P ∈ Γ (
∧2 T M d<∞

aff )
which are encoded by Kontsevich’s graphs. From [5] (cf. [2]) we know that from suitable
cocycles γ in the Kontsevich graph complex, one obtains the flows3 Ṗ =Qγ([P])which preserve
the (sub)set of Poisson bi-vectors on M d

aff. The tetrahedron γ3 and pentagon-wheel cocycle γ5,
see [2], are examples of graph cocycles giving such flows.

1The Nambu-determinant Poisson brackets (with ϱ ̸≡ 1 and Casimir(s) aℓ) of f , g ∈ C1(Rd) are, e.g.,

{ f , g}P(ϱ,[a]) = ϱ(x , y, z) ·
�

�

�

�

ax fx gx
ay f y g y
az fz gz

�

�

�

�

, on R3 ∋ x = (x , y, z) ,

likewise { f , g}P(ϱ,[a1],[a2]) = ϱ(x
1, x2, x3, x4) · det

�

∂ (a1, a2, f , g)/∂ (x1, x2, x3, x4)
�

on R4, and so on; all such for-
mulas are tensorial w.r.t. coordinate transformations (as ϱ(x ) · ∂x1 ∧ . . .∧ ∂xd is a top-degree multivector on Rd).

2 For example, the tripod is a Leibniz graph; like every Leibniz graph, it expands to a linear combination of
Kontsevich graphs, namely to the Jacobiator 1

2 [[P, P]] for a bi-vector P whose copies are realized by wedges ( [1]).
3 The formula of Kontsevich’s graph flow Ṗ =Qγ([P]) can depend on a choice of representative γ for the graph

cohomology class [γ]. Fortunately, the vertex-edge bi-gradings (4,6) for γ3 and (6,10) for two graphs in γ5 are not
yet big enough to provide room for any nonzero coboundaries (from nonzero graphs on 3 vertices and 5 edges or
on 5 vertices and 9 edges, respectively). In other words, the known markers for [γ3] and [γ5] are in fact uniquely
defined up to a nonzero multiplicative constant; we prove this by listing all the admissible (non)zero “potentials”
and by taking their vertex-expanding differentials in the graph complex. This is why, in our present study of the γ3-
and γ5-flows on the spaces of Nambu–Poisson brackets, we do not care about a would-be response of trivializing
vector fields X γ in (1) to shifts of the marker cocycle γ within its graph cohomology class [γ].
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Example 1 ( [5] and [1]). The tetrahedral-graph flow Ṗ = Qγ(P) on the space of Poisson
bi-vectors P over any d-dimensional affine Poisson manifold M d⩾2

aff is encoded by the linear
combination of three directed graphs,4

Qγ3
= 1 ·
�

0,1;2,4;2,5;2,3
�

− 3 ·
�

0,3;1,4;2,5;2,3+ 0,3;4,5;1,2;2,4
�

, (2)

with a copy of the Poisson bi-vector in each internal vertex 2,3,4,5 from which two decorated
arrows, Left ≺ Right matching the bi-vector indices, are issued to the designated arrowhead
vertices. Sink vertices 0 and 1 contain the arguments of bi-vector Qγ3

(P); vertices 2,3,4,5 of
the tetrahedron γ3 itself are internal.

The graph construction of the γ3-flow Ṗ = Qγ3
(P) works in any dimension of the affine

Poisson manifold M d
aff at hand. Now if d = 2, this infinitesimal deformation of bi-vectors

on twofolds is known to be trivial in the second Poisson cohomology, thus amounting to an
infinitesimal change of local coordinates (performed along the integral trajectories of the triv-
ializing vector field X⃗ on M2

aff).

Proposition 1 ( [1, App. F]). 1. In dimension d = 2 (where every bi-vector P = ϱ(x , y)·(∂x⊗
∂y−∂y⊗∂x) is Poisson,5 in absence of nonzero Jacobiator tri-vectors), Kontsevich’s tetrahedral
flow Ṗ =Qγ3

(P), encoded by three graphs in (2), is Poisson-trivial,

Qγ3

�

P(ϱ)
�

− [[P(ϱ), X⃗ ]] = 0 ∈ Γ
�
∧2

T M2
aff

�

, X⃗ = X γ3(P) , X γ3 = p pp
?

�
R	

?
�
�

�
�I, (3)

with respect to the class of 1-vector X⃗ = ∂ j

�

∂k∂m(P i j) · ∂n(Pkℓ) · ∂ℓ(Pmn)
�

∂i (modulo Hamilto-
nian vector fields [[P(ϱ), H([ϱ])]]), encoded by the “sunflower” linear combination6 of Kon-
tsevich graphs X γ3 =

∑3
a=1

�

0, a;1,3;1,2
�

=
�

0,1;1,3;1,2
�

+
�

0,2;1,3;1,2
�

+
�

0,3;1,3;1,2
�

=
�

0,1;1,3;1,2
�

+ 2 ·
�

0,2;1,3;1,2
�

.
2. In dimension d = 2, Poisson-coboundary equation (3) is valid as an equality of bi-vectors

with differential-polynomial coefficients (w.r.t. ϱ in bi-vector P), but its left-hand side cannot
be expressed as a linear combination of zero Kontsevich graphs and Leibniz graphs (that is,
differential consequences of the Jacobi identity, see [1]).

Proof. Equality (3) in Part 1 of Proposition 1 is verified in d = 2 by straightforward calculation
with differential-polynomial coefficient (multi)vectors.

To explore why equality (3) is valid in d = 2, let us inspect whether it is the standard,
working in all dimensions d ⩾ 2, Leibniz-graph mechanism that would ensure the vanishing,
Qγ3

�

P(ϱ)
�

− [[P(ϱ), X⃗ ([ϱ])]]
.
= 0 for any ϱ(x , y), by force of the Jacobi identity realized by

Kontsevich graphs. (We claim that it is not only this mechanism which does the job.)
For this, we list all connected directed graphs built over two sinks of in-degree 1 from

one trident and two wedges, without co-directed double or triple edges, and with none or
one tadpole. (The Jacobiator vertex with three outgoing edges will be expanded to the linear

4The encoding of each Kontsevich directed graph is an ordered list of ordered pairs of target vertices for the
edges issued from the ordered set of arrowtails (here,

�

2,3,4,5
	

), that is of aerial vertices.
5For the same reason, the Poisson condition – trivial in d = 2 – is preserved by any Kontsevich bi-vector graph

(not necessarily obtained from a cocycle, on n vertices and 2n−2 edges, w. r. t. the graph differential [3,5]). Yet,
Proposition 1 condensed to Eq. (3) is not a tautology since the second Lichnerowicz–Poisson cohomology does not
vanish a priori over d = 2; see, e. g., Ph. Monnier Poisson cohomology in dimension two, Israel J. Math. 129 (2002)
189–207 (Preprint arXiv:math.DG/0005261).

6 The ‘sunflower’ 1-vector graph in Eq. (3) expands, by the Leibniz rule, to the linear combination of two
Kontsevich graphs, one of them with a 1-cycle (or tadpole). This nonzero graph with tadpole in X γ3 survives in
the bracket [[P, X γ3]], yet no tadpoles are present in the three graphs of the γ3-flow Qγ3

. The disappearance of the
tadpole from Qγ3

�

P(ϱ)
�

− [[P(ϱ), X⃗ ]] is due to a mechanism which will be explored.
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combination of three Kontsevich’s graphs, see [1].) There are three admissible Leibniz graphs
without tadpoles,

1. (3,4;2,4;0,1,2) , 2. (1,3;2,4;0,2,3) , 3. (1,4;2,4;0,2,3) ,

where 0,1 are the sinks, vertices 2,3 are wedge tops, and vertex 4 is the top of the trident.
Likewise, we have nine admissible Leibniz graphs with one tadpole and sinks of in-degree 1:

4. (2,4;2,4;0,1,2) , 5. (2,4;2,4;0,1,3) , 6. (2,3;2,4;0,1,2) ,
7. (2,3;2,4;0,1,3) , 8. (1,2;2,4;0,2,3) , 9. (1,3;2,3;0,2,3) ,

10. (1,4;2,3;0,2,3) , 11. (1,3;3,4;0,2,3) , 12. (1,4;3,4;0,2,3)

(There remain four connected Leibniz graphs with two tadpoles but they are irrelevant for our
present attempt to balance Eq. (3) using the topologies of Kontsevich graph expansions in the
right-hand side).

When the wedge graph P acts on the ‘sunflower’ 1-vector graph X γ3 , three graph topolo-
gies with one tadpole are produced, among others (the tadpole is absent from all the other
topologies that appear in [[P, X γ3]]):

A. (0,4;1,3;3,5;3,4) , B. (0,3;1,3;3,5;3,4) , C. (2,5;2,4;2,3;0,1) . (4)

In Kontsevich’s nonzero graph B, vertex 3 has in-degree four (tadpole counted). But no ex-
pansion – of Leibniz graph from the above list of twelve – into Kontsevich graphs results in a
graph with vertex of in-degree four. Independently, nonzero bi-vector graph C – with tadpole
on vertex 2 at distance two from either sink and with double edge 3⇄ 4 – is not obtained in
the Kontsevich graph expansion of any of the relevant bi-vector Leibniz graphs 4–7 from the
above list. Thirdly, only the Leibniz graph 8 reproduces nonzero graph A, but the Kontsevich
graph expansion of 8 contains five more graphs (with a tadpole at distance one from the sink),
none of which appears in the linear combination Qγ3

− [[P, X γ3]] of Kontsevich graphs. There-
fore, we have that Qγ3

− [[P, X γ3]] ̸= ◊
�

P, P, 1
2[[P, P]]
�

, for any values of coefficients ∈ R near
Leibniz graphs in the right-hand side. The proof is complete.

The fact of Poisson trivialization of the tetrahedral-graph flow Ṗ = Qγ3
(P) in dimension

two, P ∈ Γ
�∧2 T M2

aff

�

, impossible in this or any higher dimension d ⩾ 2 through the mecha-
nism of vanishing by force of the Jacobi identity as the only obstruction, implies the existence
of other analytic mechanism(s); those can work in combination with the former.

Remark 1. When all the sums over repeated indices, each running from 1 to
the finite dimension d = 2, are expanded in the left-hand side of the identity
Qγ3

�

P(ϱ)
�

− [[P(ϱ), X⃗
�

P(ϱ)
�

]] = 0 ∈ Γ
�∧2 T M2

aff

�

, the arithmetic cancellation mechanism
works several times: the l.-h.s. splits into sums which cancel out separately from each other.
For instance, when the Poisson differential [[P(ϱ), ·]] acts on X⃗ and this 1-vector gets into a
sink of the wedge graph of bi-vector, thus forming graphs A and B in particular (see Eq. (4)),
the wedge top coefficient ϱ has no derivative(s) falling on it. Yet no such terms occur at d = 2
in the graphs of Qγ3

with strictly positive in-degrees of internal vertices. Hence the two parts –
with(out) zero-order derivative of ϱ – of the differential-polynomial coefficient in the identity’s
l.-h.s. vanish simultaneously.

Remark 2 (on GL(∞)-invariants parent to GL(d)-invariants). Kontsevich’s construction of
tensors from Poisson bi-vectors by using graphs is well-behaved under affine coordinate
changes on the underlying manifold, thanks to contraction of upper indices of Poisson ten-
sors (P i j) in the arrowtail vertices and of lower indices in derivations at the edge arrowheads.
The Jacobians of coordinate changes then belong to the general linear group, while the affine
shifts are not felt at all by the index contractions. But, uniform over the dimensions d of affine
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Poisson manifolds, the graph technique builds invariants of linear representations for GL(∞).
Linearly independent as graph expressions, such invariants can be linearly tied after projection
to a given finite dimension d, where they become tensor-valued GL(d)-invariants.7

To conclude this section, we note that the original graph language of [5] for construction of
tensor-valued invariants of GL(∞) is no longer enough for the study of Poisson (non)triviality
for graph-cocycle flows on spaces of Poisson brackets over affine manifolds of given dimen-
sion d. To manage the bound d <∞, one must either take a quotient over the (unknown)
new linear relations between Kontsevich’s graphs, or work ab initio with GL(d)-invariants.

We note also that in a given dimension, the problem of Poisson (non)triviality for universal
flows (from [5] and subsequent work [2]) itself is meaningful: a priori nontrivial deformation
can become trivial for a class of Poisson geometries at given d. Let us verify the triviality of
the tetrahedral-graph flow Ṗ([ϱ], [a]) = Qγ3

�

P(ϱ, [a])
�

on the space of Nambu-determinant
Poisson bi-vectors P(ϱ, [a]) over an affine threefold R3.

3 Nambu-determinant Poisson brackets: The γ3-flow over R3

Definition 1. The Nambu-determinant Poisson bracket onRd⩾3 is the derived bi-vector P(ϱ, [a])
def
= [[[[. . . [[ϱ · ∂x1 ∧ . . .∧ ∂xd , a1]], . . .]], ad−2]], where ϱ(x ) · ∂x is a d-vector field and scalar
functions aℓ are Casimirs (1 ⩽ ℓ ⩽ d − 2). In global (e.g., Cartesian) coordinates x1, . . . , xd

on Rd , the Nambu bracket of f , g ∈ C1(Rd) is expressed by the formula

{ f , g}P(ϱ,[a]) = ϱ(x ) ·
∑d

i1...,id=1
ϵ ı⃗ · ∂i1(a1) · · ·∂id−2

(ad−2) · ∂id−1
( f ) · ∂id (g) , (5)

where ϵ ı⃗ = ϵi1,...,id is the Levi-Civita symbol on Rd : ϵσ(1,...,d) = (−)σ for σ ∈ Sd , else zero.8

Remark 3. Nambu–Poisson brackets on Rd⩾3 can be obtained from Nambu–Poisson brackets
on Rd+1 by taking ad−1 = ±xd+1 on Rd+1 and by excluding the last Cartesian coordinate xd+1

from the list of arguments for ϱ(x ) and a1, . . . , ad(x ). • By doing the above for d+1= 3, one
obtains a generic bi-vector P = ϱ(x1, x2)∂x1 ∧ ∂x2 , which is Poisson on R2, and the (Nambu)
Poisson bracket { f , g}(x , y) = ϱ(x , y) · ( fx · g y − f y · gx).

We recall from [4, §4.1] that, given a suitable graph cocycle γ (e.g., γ3 which we take here),
Kontsevich’s γ-flow Ṗ = Or⃗(γ)(P⊗#Vert(γ)) restricts to the set of Nambu–Poisson bi-vectors
P(ϱ, [a]) such that the velocity of a Casimir aℓ is still encoded by Formality graphs [4, Propo-
sition 2]: ȧℓ = Or⃗(γ)(P ⊗ · · · ⊗ P ⊗ aℓ), whence the velocity ϱ̇([ϱ], [a]) is expressed from the
known ȧ and Ṗ (see [4, Corollary 3]). The Leibniz rule, balancing Ṗ with ϱ̇, ȧ for P linear in ϱ
and the first jets of all aℓ, is then a tautology.

Independently, if Y⃗ is any C1-vector field on Rd with Nambu–Poisson bi-vectors P(ϱ, [a]),
then the evolution LY⃗ (aℓ) = [[Y⃗ , aℓ]] of scalar functions and LY⃗ (ϱ · ∂x ) = [[Y⃗ ,ϱ · ∂x ]] of d-

7The main example is given by the linear independence (modulo zero graphs and Leibniz graphs) of three
Kontsevich graphs in the γ3-flow and, on the other hand, of the Poisson-exact bi-vector graphs [[P, X γ3]] with the
‘sunflower’ 1-vector X γ3 : an insoluble equation for graphs, Qγ3

− [[P, X γ3]] = 0, turns at d = 2 into an identity
of bi-vector’s differential-polynomial coefficients, Qγ3

�

P(ϱ)
�

− [[P(ϱ), X⃗
�

P(ϱ)
�

]] ≡ 0, for the Poisson structure
P(ϱ) = ϱ(x , y) ·

�

∂x ⊗ ∂y − ∂y ⊗ ∂x

�

in every chart of the affine twofold M2
aff.

8The usual view of Nambu–Poisson bracket (5) on Rd is that the Jacobian determinant is multiplied by an
arbitrary factor ϱ(x1, . . . , x d)which behaves appropriately under coordinate changes x ⇄ x′. Our viewpoint is that
ϱ(x )∂x1 ∧ . . .∧∂xd is a top-degree multi-vector on Rd for any d ⩾ 2, so that for all dimensions greater than two, the
Nambu-determinant Poisson bi-vector is derived: P(ϱ, [a]) = [[. . . [[ϱ∂x , a1]] . . . , ad−2]] with d−2 Casimirs a. That
is, Nambu structures generalize the bi-vector ϱ(x , y) · (∂x ⊗∂y −∂y ⊗∂x ) from R2 to Rd for d > 2. The Casimirs aℓ
Poisson-commute with any f ∈ C1(Rd); the symplectic leaves are intersections of level sets aℓ = const(ℓ) ∈ R, so
that for any d ⩾ 2 these leaves are at most two-dimensional.

020.5

https://scipost.org
https://scipost.org/SciPostPhysProc.14.020


SciPost Phys. Proc. 14, 020 (2023)

vectors correlates, by the Leibniz-rule shape of the Jacobi identity for the Schouten bracket
[[·, ·]], with evolution LY⃗ (P) = [[Y⃗ , P]] of Nambu bi-vector P = [[ϱ · ∂x , · · ·a · · ·]], see [4, §2.1].

Theorem 2 ( [4]). In dimension d = 3, the tetrahedral-graph flow Ṗ = Qγ3
(P) on the space of

Poisson bi-vectors P has a well-defined restriction to the subspace of Nambu-determinant
Poisson bi-vectors P(ϱ, [a]) on R3, and this restriction is Poisson-cohomology trivial:
Ṗ([ϱ], [a]) = [[P(ϱ, [a]), X⃗ γ3([ϱ], [a])]]. The equivalence class X⃗ γ3 mod [[P, H(ϱ, a)]] of trivi-
alizing vector field is represented by the vector X⃗ =

∑

ı⃗, ȷ⃗,k⃗ ϵ
ı⃗ϵ ȷ⃗ϵk⃗ · X ı⃗ ȷ⃗ k⃗ with

X ı⃗ ȷ⃗ k⃗ = 12ϱϱxk2ϱx i1 x j1 axk3 ax i2 x j2 ax i3 x j3 · ∂ /∂ xk1 + 48ϱϱx j3ϱx i1 x j1 axk3 ax i2 x j2 ax i3 xk1 · ∂ /∂ xk2

+ 8ϱx j2ϱx i1 xk1ϱx i2 xk2 ax i3 ax j3 axk3 · ∂ /∂ x j1 − 40ϱx i3ϱx j2ϱx i1 xk1 ax j3 axk3 ax i2 xk2 · ∂ /∂ x j1

+ 8ϱx i3ϱx j2ϱxk3 ax j3 ax i1 xk1 ax i2 xk2 · ∂ /∂ x j1 + 24ϱx j2ϱxk3ϱx i1 xk1 ax i3 ax j3 ax j1 xk2 · ∂ /∂ x i2

− 12ϱ2ϱxk2 ax i1 x j1 ax i2 x j2 ax i3 x j3 xk3 · ∂ /∂ xk1 + 24ϱϱx j2ϱxk1 axk2 ax i1 x j1 ax i3 x j3 xk3 · ∂ /∂ x i2

− 36ϱϱx i2ϱx j2 axk2 ax i1 x j1 ax i3 x j3 xk3 · ∂ /∂ xk1 + 8ϱx i2ϱx j1ϱxk1 ax j2 axk2 ax i3 x j3 xk3 · ∂ /∂ x i1

− 8ϱx j1ϱxk1ϱx i3 x j3 xk3 ax i2 ax j2 axk2 · ∂ /∂ x i1 ,

where ı⃗ = (i1, i2, i3), ȷ⃗= ( j1, j2, j3), k⃗ = (k1, k2, k3) and ϵpqr is the Levi-Civita symbol on R3.

Our next finding in [4, Theorem 8] is that for the graph cocycle γ3 and d = 3, the action
of vector field X⃗ (which trivializes the γ3-flow Ṗ = Qγ3

([P]) = [[P, X⃗ ]] of Nambu brackets P
on R3) upon P(ϱ, [a]) factors through the initially known – from γ3 – velocities of a and ϱ:
having solved (1) for X⃗ , we then verified that ȧ = [[a, X⃗ ]] and ϱ̇ · ∂x = [[ϱ · ∂x , X⃗ ]].

By using this factorization – i.e. the lifting of the sought vector field’s action on the elements
of P(ϱ, [a]) – the other way round, we create an economical scheme to inspect the existence of
trivializing vector field X⃗ for larger problems (i.e. for bigger graph cocycles or higher dimension
d ⩾ 3). When this shortcut works, so that X⃗ is found, it saves much effort. Otherwise, to
establish the (non)existence of X⃗ one deals with a larger PDE, namely Eq. (1).

Definition 2. Fix the dimension d ⩾ 2. A micro-graph is a directed graph built over
m ⩾ 0 sinks, over n ⩾ 0 aerial vertices with out-degree d and ordering of outgoing edges,
and over n items of (d − 2)-tuples of aerial vertices with in-degree ⩾ 1 and no outgoing
edges. • The correspondence between micro-graphs and differential-polynomial expressions
in ϱ, a1, . . . , ad−2 and the content of sink(s) is defined in the same way as the mapping of Kon-
tsevich’s graphs to multi-differential operators on C∞(M d

aff), see [4, §2.2] or [5]. • Same as
for Kontsevich graphs, a micro-graph is zero if it admits a sign-reversing automorphism, i.e. a
symmetry which acts by parity-odd permutation on the ordered set of edges. But now, in finite
dimension d of M d

aff, a micro-graph is vanishing if the differential polynomial (in ϱ and a1,
. . ., ad−2), obtained by expanding all the sums over indices that decorate the edges, vanishes
identically.9

Example 2. Nambu–Poisson brackets P(ϱ, [a1], . . . , [ad−2]) on Rd are realized using micro-
graphs, namely by resolving ϱ(x ) ·ϵi1,...,id in one vertex against d−2 vertices with the Casimirs
a1, . . . , ad−2. The out-degree of vertex with ϱ(x ) · ϵ ı⃗ equals d; the in-degree of each vertex
with a Casimir equals 1 and its out-degree is zero: the Casimir vertices are terminal (not to be
confused with the two sinks, of in-degree 1, for the Poisson bracket arguments). The ordered
d-tuple of edges is decorated with summation indices: for the Levi-Civita symbol ϵi1,...,id in
their common arrowtail vertex, the range is 1⩽ iℓ ⩽ d for 1⩽ ℓ⩽ d.

Remark 4. If the wedge tops contain Nambu–Poisson bi-vectors P(ϱ, [a]) on Rd , every Kontse-
vich graph expands to a linear combination of micro-graphs: the arrow(s) originally in-coming

9There are nonzero but still vanishing micro-graphs.
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to an aerial vertex with a copy of P, now work(s) by the Leibniz rule over the d − 1 vertices,
with ϱ · ϵ ı⃗ and with a1, . . . , ad−2, in the subgraphs P(ϱ, [a1], . . . , [ad−2]) of the micro-graph.10

Example 3. In d = 3, the micro-graph expansion of Qγ3
(P) for P(ϱ, [a]) over R3 consists of

directed graphs on 2 sinks for f and g, on four terminal vertices – for copies of the Casimir a –
without outgoing arrows, and on four vertices for ϱ · ϵi jk with three ordered outgoing edges.
In every micro-graph in bi-vector Qγ3

(P) there are 12 edges, with exactly one going towards f
and one to g in the sinks. To have a solution X⃗ of the equation Qγ3

(P(ϱ, [a])) = [[P, X⃗ ]] using
micro-graphs that encode X⃗ ([ϱ], [a]), we thus need micro-graphs on one sink, three terminal
vertices with a, and three trident vertices for ϱ · ϵi jk. Of the nine edges in each micro-graph,
exactly one goes to the sink, so that X⃗ is a 1-vector.

Example 4. In d = 3, two Kontsevich’s graphs of the ‘sunflower’ 1-vector (which trivializes
the restriction of tetrahedral-graph flow (2) to the space of bi-vectors on an affine twofold)
expand to a linear combination of 42 one-vector micro-graphs over one sink, three trident
vertices, three terminal vertices, and 3× 3 = 9 edges (one into the sink). A tadpole is met in
10= 3+ 3+ 4 such micro-graphs, and the other 32= 8× 4 have none.

Let us illustrate how the shortcut scheme works. We now tune a 1-vector field X⃗ (ϱ, [a])
for the flow Ṗ =Qγ3

([P]) of P(ϱ, [a]) over R3 such that ȧ = [[a, X⃗ ]] and ϱ̇ · ∂x = [[ϱ · ∂x , X⃗ ]],
whence we verify that Ṗ = [[P, X⃗ ([ϱ], [a])]] ∈ im∂P for the Nambu-determinant class of Pois-
son brackets on R3.

We first generate all suitable unlabeled micro-graphs (i.e. without distinguishing which
sinks are for Casimirs) without tadpoles and with exactly one tadpole. Next, by deciding on
the run which of the four sinks is the argument of 1-vector, we produce 366 1-vector fields with
differential-polynomial coefficients in ϱ and a, encoded by micro-graphs. Some of the coeffi-
cients are identically zero when the sums over three triples of indices in Levi-Civita symbols
are fully expanded; there remain 244 nonvanishing marker micro-graphs in the ansatz for the
trivializing vector field X⃗ . Now, we do not attempt to solve the big problem Qγ3

(P) = [[P, X⃗ ]]
directly with respect to the 244 coefficients of nonvanishing marker micro-graphs. Instead, let
us find a vector field X⃗ , realized by 1-vector micro-graphs X γ, which reproduces the known
velocities [4, Eq. (11)] of ϱ and Casimir a, that is, we solve the equations ȧ = −[[X⃗ , a]] and
ϱ̇ ∂x ∧ ∂y ∧ ∂z = [[ϱ∂x ∧ ∂y ∧ ∂z , X⃗ ]] with respect to the coefficients in the micro-graph ansatz
for X γ. To determine exactly the number of equations in either linear algebraic system we
keep track of the number of differential monomials appearing when X⃗ acts on either a or ϱ
as above, and we recall also the differential monomials which already appeared in ȧ and ϱ̇
in the left-hand sides, that is in [4, Eq. (11)]. In this way, we detect that the linear algebraic
system for ȧ contains 2961 equations and the system for ϱ̇ contains 6679 equations. Each
equation is a balance of the coefficient of one differential monomial. We now merge these two
systems of linear algebraic equations upon the coefficients of micro-graphs in the ansatz for
the trivializing vector field X⃗ , and we find a solution. Only 11 coefficients are nonzero. The
analytic formula of this vector field is reported in Theorem 2. The three equalities, namely
ȧ = −[[X⃗ , a]] and ϱ̇ ∂x ∧ ∂y ∧ ∂z = [[ϱ∂x ∧ ∂y ∧ ∂z , X⃗ ]] implying Qγ3

(P) = [[P, X⃗ ]], are verified
immediately. Here is the encoding11 of the weighted sum X γ of these 11 micro-graphs which

10But not every micro-graph is obtained from a Kontsevich graph by resolving the old aerial vertices into sub-
graphs. This is what makes interesting our graphical rephrasing of the Poisson (non)triviality problem for the
restriction of Kontsevich graph flows to the class of Nambu-determinant Poisson brackets.

11Vertices are labelled and the sink is indicated; for each micro-graph, its directed edges are listed in due ordering:
e.g., (6,6) is the tadpole 6→ 6 and (0,4), (0,5), (0,6) is a trident Left≺Middle≺ Right.
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realize the trivializing vector field X⃗ for the tetrahedral flow Qγ3
(P) = [[P, X⃗ ]] on the space of

Nambu–Poisson structures over R3:

16 * [(0,4), (0,5), (0,6), (5,0), (5,1), (5,6), (6,0), (6,2), (6,3)] (sink 2),

24 * [(0,4), (0,5), (0,6), (5,0), (5,1), (5,6), (6,1), (6,2), (6,3)] (sink 2),

16 * [(0,4), (0,5), (0,6), (5,0), (5,1), (5,2), (6,1), (6,3), (6,5)] (sink 2),

-16 * [(0,4), (0,5), (0,6), (5,0), (5,1), (5,2), (6,1), (6,3), (6,5)] (sink 4),

12 * [(0,4), (0,5), (0,6), (5,1), (5,2), (5,6), (6,1), (6,2), (6,3)] (sink 3),

-12 * [(0,4), (0,5), (0,6), (5,1), (5,2), (5,6), (6,1), (6,2), (6,3)] (sink 4),

24 * [(4,0), (4,1), (4,6), (5,0), (5,1), (5,2), (6,0), (6,2), (6,3)] (sink 3),

-24 * [(4,0), (4,1), (4,6), (5,0), (5,2), (5,4), (6,0), (6,1), (6,3)] (sink 2),

8 * [(4,0), (4,1), (4,5), (5,0), (5,2), (5,6), (6,0), (6,3), (6,4)] (sink 1),

-8 * [(4,0), (4,1), (4,5), (5,2), (5,3), (5,6), (6,0), (6,1), (6,4)] (sink 2),

8 * [(0,4), (0,5), (0,6), (5,0), (5,1), (5,6), (6,2), (6,3), (6,6)] (sink 2).

Remark 5. At the level of micro-graphs, the solution X γ3 contains a tadpole, i.e. a 1-cycle, in the
last graph. In terms of differential polynomials this means the presence of a deriative ∂x i acting
on the coefficient ϱ(x ) near the Levi-Civita symbol ϵi jk containing the index i of the base coor-
dinate x i in that derivative; that is, the last term in the vector field X⃗ contains ∂x i (ϱ(x )) ·ϵi jk.

Proposition 3. Without tadpoles in the micro-graph ansatz X γ3 , there is no solution X⃗ to the
trivialization problem Qγ3

(P(ϱ, [a])) = [[P, X⃗ ]] at the level of differential polynomials.12

Remark 6. If d = 2 and (Nambu–)Poisson brackets on R2 are { f , g}(x , y) = ϱ ·( fx · g y− f y · gx)
as in Remark 3, the only possible Kontsevich ‘sunflower’ graphs, built from n = 3 wedges
over one sink (see (3)), tautologically expand to a nontrivial linear combination of nonzero
micro-graphs on three aerial vertices with ϱ(x , y) · ϵiα jα , 1 ⩽ α ⩽ 3. Independently, the
linear combination X γ of micro-graphs that encode the trivializing vector field X⃗ ([ϱ], [a]) for
Kontsevich’s γ3-flow for Nambu bi-vectors P(ϱ, [a]) on R3 ∋ (x , y, z), see Theorem 2, under
the reduction a := z andϱ = ϱ(x , y) becomes a well-defined vector field on the planeR2 ⊂ R3:
the z-component of X⃗ ([ϱ(x , y)], [z]) vanishes. Let us compare the two vector fields on R2.

Proposition 4. The old ‘sunflower’ vector field which trivializes the tetrahedral γ3-flow for
all Poisson brackets on R2 coincides with the new vector field X⃗ ([ϱ(x , y)], [a = z]) from the
trivialization of γ3-flow for the Nambu brackets P(ϱ, [a]) on R3 (both viewed as 1-vector
fields on R2 with differential coefficients in [ϱ]). • Yet the linear combination X γ3

3 of micro-
graphs over d = 3 contains not only and not all the expansions of Kontsevich’s graphs from the
‘sunflower’ 1-vector into micro-graphs over d = 3.

Proof. The micro-graph expansion of the ‘sunflower’ graph is not enough in d = 3 because,
in particular, the before-last micro-graph in X γ3

3 , namely (−8) · [(4,0),(4,1),(4,5),(5,2),(5,3),
(5,6),(6,0),(6,1),(6,4)] with trident vertices 4,5,6, sink 2, and terminal vertices 0,1,3, does
not originate from either graph in the ‘sunflower’ X γ3

2 . Indeed, the above micro-graph contains
a 3-cycle 4→ 5→ 6→ 4 but no edge from 6 to either 5 or its Casimir 3 in a would-be expansion
of P(ϱ, [a]) with 5 in the trident top.13

Let us examine how, by which mechanism(s), Eq. (1) is verified for the tetrahedral cocy-
cle γ3 and the respective flow of Nambu brackets on R3.

12By setting to zero the coefficients of micro-graphs with one tadpole, that is by excluding all the differential
polynomials in ϱ and a which stem from those micro-graphs with a tadpole, we detect that the linear algebraic
system for the coefficients of micro-graphs without tadpoles has no solution at all.

13Not all of the micro-graphs appearing in the expansion of Kontsevich’s graphs X γ3
d=2 mod [[P, H]] are needed

for a solution X γ3
3 , see Example 4 and the eleven micro-graphs on p. 8.
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Lemma 5. If d = 3 and P(ϱ, [a]) is Nambu, the Jacobiator tri-vector graph Jac(P) remains a
nontrivial linear combination, Jac(P)([ϱ], [a]), of 3 or 6 nonvanishing micro-graphs, each on
m= 3 sinks of in-degree 1, on two trident vertices with ϱ ·ϵiα1 iα2 iα3 , and on two terminal vertices
of in-degrees 1 and 2 (if ϱ ≡ const) or (1,1) and (1, 2) if ϱ ̸≡ const.

Proposition 6. The trivialization mechanism, Qγ3
(P(ϱ, [a]))−[[P(ϱ, [a]), X⃗ γ3

3 ([ϱ], [a])]]
.
= 0,

for the tetrahedral-graph flow on the space of Nambu-determinant Poisson bi-vectors P(ϱ, [a])
over R3 and for the linear combination of micro-graphs X γ3

3 , does not amount only to the Leib-
niz (micro)graphs and zero (micro)graphs in the right-hand side of coboundary equation (1).

Proof. Suppose for contradiction that a linear combination ◊ of Leibniz and zero micro-graphs
turns the coboundary equation, Qγ3

− [[P, X γ3]] = ◊
�

[ϱ], [a], 1
2[[P, P]]
�

, into an equality of bi-
vector micro-graphs. By setting the Casimir a := z we fix the values of indices decorating
the arrows which run into the terminal vertices a; now for ϱ(x , y) independent of z, the
rest of each micro-graph becomes a Kontsevich graph over d = 2. Zero micro-graphs from
dimension 3 remain zero over dimension 2. This dimensional reduction would yield a Leibniz-
graph realization of the corresponding r.-h.s. for the two-dimensional problem from Part 2 of
Proposition 1. But this is impossible; therefore, at least one new mechanism of differential
polynomials’ vanishing is at work.

Conclusion

Kontsevich’s symmetries Ṗ =Qγ(P) of the Jacobi identity 1
2[[P, P]] = 0 are produced from suit-

able graph cocycles γ as described in [2, 5]. We study the (non)triviality of these flows w.r.t.
the Poisson differential ∂P = [[P, ·]]. The original formalism of [5] yields tensorial GL(∞)-
invariants; but in finite dimension d of Poisson manifolds, these tensors, encoded by Kon-
tsevich’s graphs, can become linearly dependent, whence the ‘incidental’ trivializations (e.g.,
in d = 2). The graph language can be adapted to the subclass of Nambu-determinant Pois-
son brackets P(ϱ, [a]); Kontsevich’s graph-cocycle flows do restrict to the Nambu subclass
(see [4]). The new calculus of micro-graphs is good for encoding known flows and vector
fields. Still the core task of this research is finding these fields X⃗

�

[ϱ], [a]
�

or proving their
non-existence over Rd .

The calculus of micro-graphs is (almost) well-behaved14 under the dimensional reduction
d 7→ d − 1 by the loss of one Casimir ad−2 := xd and last coordinate xd in ϱ and all other
Casimirs aℓ, ℓ < d − 2. The forward move, d 7→ d + 1, is not well defined. A priori there is
no guarantee that any solution X γd+1 exists at all: the dimensions d0 < d0 + 1 can mark the
threshold where the GL(∞)-invariants from Kontsevich’s graphs lose their linear dependence
in lower dimensions d ⩽ d0, and the flow Ṗ

�

[ϱ], [a1], . . . , [ad−1]
�

=Qγd+1

�

P(ϱ, [a])
�

becomes
Poisson-nontrivial is dimension d0 + 1 and onwards.

Lemma 7. Suppose there exists a trivializing vector field X γd+1 for a γ-flow of P(ϱ, [a])
over Rd+1, and this solution projects – when a1 := x3, . . ., ad−1 := xd+1 – onto the known
linear combination X γd=2 of Kontsevich’s graphs. Then X γd+1 contains (at least) those micro-
graphs from the expansion of X γd=2 over d+1 in which all the old edges between Poisson struc-
tures P(ϱ, [a]) head to arrowtail vertices for ϱ but not to terminal vertices for the Casimirs aℓ.

Indeed, it is the differential polynomials from these micro-graphs which, staying nonzero,
retract to the bottom-most solution.

14The projection – from micro-graphs to differential-polynomial coefficients (in ϱ and aℓ) of multi-vectors – has
a kernel which contains, as a strict subset, the space of Leibniz and zero (micro)graphs, but does not amount only
to it. Can the dimension reduction result in an identically zero vector field X⃗ γd−1([ϱ], [a]) ≡ 0⃗ on Rd−1 ? That is,
can a tower of micro-graph solutions X γd⩾d0

start at bottom dimension d0 > 2 above the main case of R2 ?
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Remark 7. Another constraint – upon the derivative order profiles in X i([ϱ], [a]), hence in
[[P, X⃗ ]] – comes from the bi-vector Qγ3

(P(ϱ, [a])) with known differential-polynomial coeffi-
cients. In effect, terms in X i can contain only those orders of derivatives which, under [[P, ·]],
reproduce the actually existing profiles of derivatives in Qγ3

([ϱ], [a]).

Open problem 1. Is there a dimension d+1<∞ at which the tetrahedral-graph flow on the
space of Nambu structures over Rd+1 becomes nontrivial in the second Poisson cohomology?
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A (Non)triviality of γ3-flow for Nambu–Poisson brackets on R4

From [4] we know that Kontsevich’s tetrahedral γ3-flow restricts to the space of Nambu-
determinant Poisson bi-vectors P(ϱ, [a1], [a2]) over R4: the differential-polynomial veloci-
ties ϱ̇ and ȧ1, ȧ2 inducing the graph cocycle evolution Ṗ([ϱ], [a1], [a2]) are stored exter-
nally.15 The evolutions ȧ1, ȧ2(ϱ, [a1], [a2]) are realized by Kontsevich graphs Or⃗(γ3)(P⊗P⊗P
⊗aℓ), hence they are immediately expanded to micro-graph realizations. The evolution ϱ̇([ϱ],
[a1], [a2]) can then be expressed by using micro-graphs with minimal effort.

The problem of Poisson (non)triviality of the tetrahedral γ3-flow for Nambu brackets in
dimension d = 4 is open. At the level of micro-graphs and Nambu-determinant Poisson struc-
tures P(ϱ, [a1], [a2]) overR4, a solution X γ of (1) for the graph cocycle γ3 would be realized by
micro-graphs possibly with tadpoles, on one sink of in-degree 1, three vertices of out-degree 4,
and two triples of terminal vertices for Casimirs a1, a1, a1 and a2, a2, a2.

Proposition 8. • There are 1,079 isomorphism classes of directed graphs on one sink, three
vertices of out-degree four, six terminal vertices, and at most one tadpole (of them, 352 are
without a tadpole and 727 have one tadpole).
• Taking those graphs containing a vertex of in-degree one (for the sink), and dynamically
appointing the Casimirs from the multi-set {a1, a1, a1, a2, a2, a2} to the six terminal vertices of
the above graphs, we obtain 38,120 micro-graphs.
• Excluding repetitions in the above set of micro-graphs (e.g., if those micro-graphs are isomor-
phic), still not excluding micro-graphs which equal minus themselves under a symmetry (auto-
morphism of micro-graph with outgoing edge ordering and known location of a1’s and a2’s) we
obtain 19,957 micro-graphs in the ansatz for X γ that would encode the trivializing vector field
solutions, if any, of the coboundary equation Qγ3

�

P(ϱ, [a1], [a2])
�

= [[P, X⃗ γ3
4 ([ϱ], [a1], [a2])]].

15https://rburing.nl/gcaops/adot_rhodot_g3_4D.txt
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• Of these 19, 957 micro-graphs, one tadpole is present in 13, 653 micro-graphs, and there are
no tadpoles in 6, 304 micro-graphs.

Construction sketch. The representatives of isomorphism classes of graphs without tadpoles
are generated by the nauty command-line call geng 10 9:12 | directg -e12 | pickg
-d0 -m7 -D4 -M3 [7]. Likewise, the graphs with one tadpole are generated by first pro-
ducing graphs with one edge fewer, using geng 10 0:12 | directg -e11 | pickg -d0
-m7 -D4, and adding a tadpole to the lonely vertex of out-degree 3 in each graph. For the
appointment of Casimirs to 6 vertices in all different ways, one uses an efficient algorithm to
generate the 20 permutations of the multi-set {a1, a1, a1, a2, a2, a2}.

Proposition 9 (R. Buring, PhD thesis (2022)). If d = 2, the Poisson cocycles Qγ(P) for graph
cocycles γ ∈ {γ3,γ5,γ7} are Poisson-trivial: Qγ(P) = [[P, X⃗ γ2(P)]]. Every such vector field
X⃗ γ2(P) is Hamiltonian w.r.t. the standard symplectic structure ω = dx ∧ dy on R2 and Hamil-
tonian Hγ(P). The differential polynomials Hγ(P) are encoded by sums of Kontsevich graphs.

The case of γ3 was known to Kontsevich [5], and the respective Hamiltonian was found
by Bouisaghouane (see arXiv:1702.06044 [math.DG]). The cases of γ5 and chosen repre-
sentative for the graph cocycle γ7 are new.

Example 5. Let P = u∂x ∧ ∂y be the generic Poisson bi-vector on R2; we have
Hγ3 = 8u2

yux x − 16uxuyux y + 8u2
xuy y and Hγ5 = 6u2

yux xu2
x y − 12uxuyu3

x y − 6u2
yu2

x xuy y

+ 12uxuyux xux yuy y + 6u2
xu2

x yuy y − 6u2
xux xu2

y y − 2u3
yux yux x x + 2uxu2

yuy yux x x + 2u3
yux xux x y

+ 2uxu2
yux yux x y − 4u2

xuyuy yux x y − 4uxu2
yux xux y y + 2u2

xuyux yux y y + 2u3
xuy yux y y

+ 2u2
xuyux xuy y y − 2u3

xux yuy y y − 2u4
yux x x x + 8uxu3

yux x x y − 12u2
xu2

yux x y y + 8u3
xuyux y y y

− 2u4
xuy y y y .
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Abstract

Using the Lieb–Mattis ordering theorem of electronic energy levels, we identify and con-
struct the Hilbert space of the low energy sector of U(N) quantum Hall/Heisenberg fer-
romagnets at filling factor M for L Landau/lattice sites. The carrier Hilbert space of ir-
reducible representations of U(N) is described by rectangular Young tableaux of M rows
and L columns, and associated with Grassmannian phase spaces U(N)/U(M)×U(N−M).
Replacing U(N)-spin operators by their expectation values in a Grassmannian coherent
state allows for a semi-classical treatment of the low energy U(N)-spin-wave coherent
excitations (skyrmions) of U(N) quantum Hall ferromagnets in terms of Grasmannian
nonlinear sigma models.
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1 Introduction

The magnetic interaction between adjacent 〈α,β〉 dipoles is described by the U(2) (two-
component electrons) Quantum Heisenberg Model Hamiltonian

H = −
1
2

∑

〈α,β〉

Jxσx(α)σx(β) +Jyσy(α)σy(β) +Jzσz(α)σz(β) , (1)

with σx ,y,z(α) Pauli matrices at site α and Jx ,y,z coupling constants. For positive J , the domi-
nant coupling between two dipoles may cause nearest-neighbors 〈α,β〉 to have lowest energy
when they are aligned (ferromagnetic case). The generalization of this model to N -component
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electrons arises in, for example, the two-body exchange interaction for N -component planar
electrons in a perpendicular magnetic field [1], which adopts the form of a U(N) Quantum
Hall Ferromagnet (QHF) Hamiltonian on a square lattice

H = −J
∑

〈α,β〉

N
∑

i, j=1

Si j(α)S ji(β) , (2)

written in terms of U(N)-spin operators

Si j(α) = c†
i (α)c j(α) ,

�

Si j(α), Skl(β)
�

= δαβ
�

δ jkSil(β)−δilSk j(β)
�

, (3)

realized in terms of creation c†
i (α) and annihilation ci(α) operators of an electron with com-

ponent i, j ∈ {1, . . . , N} in a given Landau/lattice site α ∈ {1, . . . , L} of a given Landau level
(namely, the lowest one). The sum over 〈α,β〉 extends over all near-neighbor Landau/lattice
sites, and J is the exchange coupling constant (the spin stiffness for the XY model).

In particular, the electrons become multicomponent when, for example, in addition to the
usual two spin components ↑ and ↓, they acquire extra “pseudospin” internal components
associated with: (a) layer (for multilayer arrangements), (b) valley (like in graphene and
other 2D Dirac materials), (c) sub-lattice, etc. In the case of a bilayer quantum Hall system in
the lowest Landau level, one Landau site can accommodate N = 4 internal states/components
|i〉, i = 1,2, 3,4 (“flavors”)

|1〉= | ↑ t〉 , |2〉= | ↑ b〉 , |3〉= | ↓ t〉 , |4〉= | ↓ b〉 , (4)

where t and b make reference to the “top” and “bottom” layers, respectively. Since the electron
field has N = 4 degenerate components, the bilayer system possesses an underlying U(4)
symmetry. Likewise, the ℓ-layer case carries a U(2ℓ) symmetry.

For N -component electrons, the Pauli exclusion principle allows M ≤ N electrons per Lan-
dau/lattice site (the filling factor). Selecting a ground state (|0〉F denotes de Fock vacuum)

|Φ0〉= ΠL
α=1Π

M
i=1c†

i (α)|0〉F , (5)

which fills all L lattice sites with the first M internal levels i = 1, . . . , M ≤ N , spontaneously
breaks the U(N) symmetry (SSB) since a general unitary transformation mixes the first M
“spontaneously chosen” occupied internal levels with the N−M unoccupied ones. The ground
state |Φ0〉 is still invariant under the stability subgroup U(M) × U(N − M) of transforma-
tions among the M occupied levels and the N − M unoccupied levels, respectively. There-
fore, the transformations that do not leave |Φ0〉 invariant are parametrized by the Grassman-
nian coset GN

M = U(N)/U(M) × U(N − M), which reduces to the well known Bloch sphere
S2 = U(2)/U(1) × U(1) for N = 2 spin components and M = 1 electron per Landau site
(“symmetric multi-qubits” [2]).

In this article, we aim to describe the carrier Hilbert space associated with these U(N)
representations, their coherent states [3], and the classical limit. The structure of the Hilbert
space for a U(N) QHF with L Landau/lattice sites and filling factor M is sketched in Section 2.
U(N) irreducible representations (IRs) are classified with Young diagrams. Lieb-Mattis order-
ing of electronic energy levels (based on the pouring principle for Young diagrams) identifies
rectangular Young diagrams of L columns and M rows as the carrier Hilbert space of the lower
energy sector. We also provide a Fock (boson and fermion) representation of basis states al-
ternative to the Young tableau representation.

In the classical/continuum limit L→∞ (large U(N)-spin representations or large number
of lattice sites), the U(N)-spin operators Si j become c-numbers, and the low energy U(N)-spin-
wave coherent excitations are named “skyrmions” [4–6]. These coherent excitations turn out
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to be governed by a ferromagnetic order parameter associated with this SSB and labeled by
(N − M) × M complex matrices Z parametrizing the complex Grassmannian manifold GN

M
in Section 3. In fact, Grassmannian nonlinear sigma models (NLσM) describe the classical
dynamics associated with these SU(N) quantum spin chains [7–12], generalizing the SU(2)
NLσM for the continuum dynamics of Heisenberg (anti)ferromagnets [13–15]. In references
such as [9,10], N represents the number of fermion “flavors”, whereas L is referred to as the
number of “colours” nc .

2 Lieb-Mattis theorem and low energy U(N) ferromagnetism

Given the Fourier transform

Si j(q) =
L
∑

α=1

eiqαSi j(α) , (6)

the long-wavelength (low momentum q ≃ 0) ground state excitations of QHFs are described
by the collective operators

Si j(0) =
L
∑

α=1

Si j(α) , (7)

which are invariant under site permutations α ↔ α′. The kind of IRs of U(N) related to
translation invariance are those described by rectangular Young diagrams of M rows and L
columns

�

LM
�

= M

�

L
︷ ︸︸ ︷

...
: : :

...
. (8)

This means that physical states are symmetric (bosonic) under permutations of the L lattice
sites and antisymmetric (fermionic) under permutation of the M electrons (the filling fac-
tor) at each lattice site. This reasoning gives an introductory and heuristic proof of the main
Proposition 2.

As an interesting comment, in the quantum Hall effect approach, each electron occupies
on average a surface area of 2πℓ2B (a Landau site, with ℓB the magnetic length) that is pierced
by one magnetic flux quantum φ0 = 2πħh/e. This image allows for a dual bosonic Schwinger
realization of collective U(N)-spin operators

Si j =
M
∑

µ=1

a†
iµa jµ , i, j = 1, . . . , N , (9)

this time in terms of creation a†
iµ and annihilation a jµ boson operators of magnetic flux quanta

attached to the electron µ = 1, . . . , M with component i = 1, . . . , N . From the usual bosonic
commutation relations [aiµ, a†

jν] = δi jδµν we recover the U(N)-spin commutation
relations (3). We shall not further pursue this bosonic picture here. For more information,
we address the reader to the Reference [16].

The Hilbert space of a U(N) QHF with L Landau/lattice sites at integer filling factor M
is the
�N

M

�L
-dimensional L-fold tensor product space H⊗L

N

�

1M
�

=
⊗L
α=1 H

α
N [1

M ]. In Young
diagram notation

M

�

: ⊗ L times. . . ⊗ : ↔
�

1M
�⊗L
=
�

1M
�

⊗ L. . . ⊗
�

1M
�

. (10)
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Basis vectors of HαN [1
M ] are the M -particle Slater determinants (for M = 1 we have “quNits”,

as a N -ary quantum-digit generalization of qubits) written in Fock and Young tableau notation
as

ΠM
µ=1c†

iµ
(α)|0〉F =

i1
:

iM

, (11)

obtained by filling out columns of the corresponding Young diagram with components
iµ ∈ {1, . . . , N} in strictly increasing order i1 < · · · < iM . One can see that there are exactly
�N

M

�

different arrangements of this kind (the dimension of HαN [1
M ]). This tensor product rep-

resentation of U(N) is reducible. For example, the Clebsch-Gordan decomposition of a tensor
product of L = 2 IRs of U(N) of shape [1M ], with filling factor M = 2 and N ≥ 4 components,
is represented by the following Young diagrams

⊗ = ⊕ ⊕ ↔ [12]⊗ [12] = [22]⊕ [2, 12]⊕ [14] , (12)

where we have highlighted in red the rectangular case [22] for later discussion. The P(= M L)-
particle ground state (5) can be written in Young tableau notation

|Φ0〉= ΠL
α=1Π

M
i=1c†

i (α)|0〉F =
1 ... 1
: : :

M ... M
, (13)

and then it belongs to the carrier Hilbert space HN [LM ] of the rectangular IR [LM ] with di-
mension

D[LM ] =

∏N
i=N−M+1

�i+L−1
i−1

�

∏M
i=2

�i+L−1
i−1

�

M=1
−→
�

L + N − 1
L

�

N=2
−→ L + 1 . (14)

Note thatH2[L1] is just the usual (2 j+1)-dimensional Hilbert space for the angular momentum
j = L/2 representation of SU(2). We denote Young diagrams of P = M L boxes/particles by (a
partition of P)

h= [h1, . . . , hN ] =

h1
︷ ︸︸ ︷

... ... ... ... ...
: : : : :

...

h1 ≥ · · · ≥ hN ,
h1 + · · ·+ hN = P .

(15)

The shorthand [h, M. . ., h, 0, . . . , 0] = [hM ] is often used. Before presenting the central proposi-
tion of this work, we should define the concept of “dominance order ⪰” of Young diagrams of
P particles as: h dominates h′ (h is “more symmetric” than h′) if

[h1, . . . , hN ]⪰ [h′1, . . . , h′N ]⇔ h1 + · · ·+ hk ≥ h′1 + · · ·+ h′k ∀ k . (16)

Lieb-Mattis’ theorem [17] states that, under general conditions on the symmetric Hamiltonian
of the system, if h⪰ h′ then E(h)< E(h′), with E(h) the ground state energy inside each IR h
of U(N). Then we can establish the following

Proposition: The rectangular Young diagram of shape [LM ] dominates all Young di-
agrams arising in the Clebsch-Gordan direct sum decomposition of the L-fold tensor prod-
uct (10).

Therefore, the ground state will always belong to the rectangular [LM ] sector. For in-
stance, the rectangular sector [22] ⪰ [2,12] ⪰ [14] dominates in the Clebsch-Gordan decom-
position (12). Intuitively, dominance means that one can go from h to h′ by moving a certain
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number of boxes from upper rows to lower rows, so that h is “more symmetric”. Therefore,
we shall concentrate on the low-energy carrier Hilbert space HN [LM ] of the rectangular IR
[LM ] to which the ground state |Φ0〉 in (5) belongs. In particular, we shall construct coher-
ent (Skyrmion) ground state excitations. For the role of other mixed permutation symmetry
sectors we address the reader to [18].

3 Grassmannian coherent states and nonlinear sigma models

Grassmannian (fermionic) coherent states can be seen as U(N) rotations/excitations over the
ground state |Φ0〉

|Z〉L =
exp
�

∑

1≤ j≤M ,M+1≤i≤N+M Zi jSi j

�

|Φ0〉
p

det(1M + Z†Z)
, (17)

created by appying U(N)-spin collective Si j , i > j, ladder operators. These Grassmannian co-
herent states are then labeled by (N−M)×M complex matrices Z . For N = 2 spin components,
↑ and ↓, and M = 1 we recover spin j = L/2 (atomic) coherent states

|z〉L =
ezS21 |Φ0〉
p

1+ |z|2
= (1+ |z|2)− j

j
∑

m=− j

√

√

�

2 j
j −m

�

z j−m| j, m〉 , (18)

where we have spanned in terms of the usual angular momentum (Dicke) states
{| j, m〉, m = − j, . . . , j}, with |Φ0〉 = | j,− j〉 and z = tan(θ/2)eiφ is the sthereographic pro-
jection of the Bloch sphere S2 onto the complex plane C. Actually, atomic coherent states can
also be written as a tensor product of qubits

|z〉L =
�

cos(θ/2)| ↑〉+ sin(θ/2)eiφ | ↓〉
︸ ︷︷ ︸

|z〉

�⊗L
= |z〉⊗L . (19)

For L = 2⇒ j = L/2= 1, we identify the spin triplet | j, m〉 states

|1,1〉= | ↑↑〉 , |1, 0〉=
| ↑↓〉+ | ↓↑〉
p

2
, |1,−1〉= | ↓↓〉 . (20)

For N = 4 and filling factor M = 1 we have

|Z〉L =
[|1〉+ z2|2〉+ z3|3〉+ z4|4〉]⊗L

(1+ |z2|2 + |z3|2 + |z4|2)L/2
, (21)

where Z = (1, z2, z3, z4)t denotes a point on the complex projective space
CP3 = U(4)/U(1)×U(3) or the Grassmannian G4

1.
In order to study the semi-classical/thermodynamical limit L→∞ of U(N) QHF, one has

to replace U(N)-spin operators Si j by their coherent state expectation values 〈Z |Si j|Z〉, which
play the role of a matrix order parameter

S(Z)≡ 2
L
〈Z |
�

S −
L
2
1N
�

|Z〉L = Q(Z)†EMQ(Z) , (22)

EM = diag(1, M. . . 1,−1, N−M. . . ,−1) , (23)

with

Q(Z) =

�

∆1 −Z†∆2

Z∆1 ∆2

�

, (24)
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∆1 = (1M + Z†Z)−1/2 , ∆2 = (1N−M + Z Z†)−1/2 . (25)

The low energy physics of the U(N) QHF [when considering only nearest-neighbor inter-
actions Jαβ = J δα,β±1 in the exchange Hamiltonian (1)] is described by a NLσM field theory
with action in the continuum limit (L→∞ and lattice constant ℓ→ 0)

A[Z] =

∫

d x0d x1d x2

�

tr(EMQ†∂x0
Q) +J tr(∇⃗S · ∇⃗S)

�

, (26)

where ∂x0
≡ ∂0 means partial derivative with respect to time t = x0, ∇⃗= (∂x1

,∂x2
)≡ (∂1,∂2) is

the gradient and ∇⃗S ·∇⃗S is the scalar product. The first (kinetic) term of the action is the Berry
term, provided by the coherent state representation of the path integral quantization. The
second term describes the energy cost when the order parameter S is not uniform (see [7–12]
and [16] for more information). The topological current

Jµ =
i

16π
ϵµνλtr(S∂νS∂λS) (27)

(ϵ is the Levi-Civita antisymmetric symbol in 1+2 dimensions), leads to the topological (Pon-
tryagin) charge or Skyrmion number

C =
∫

d x1d x2J0 . (28)

See e.g. Ref. [12] for more information.

4 Conclusion

We have presented several group-theoretical tools to study interacting N -component fermions
on a lattice, like U(N) quantum Hall ferromagnets arising from two-body exchange interactions
of N -component fermions. In particular, we have restricted ourselves to the lower energy
permutation symmetry sector (according to the Lieb-Mattis theorem) corresponding to fermion
mixtures described by rectangular Young diagrams with M rows (the filling factor) and L
columns (Landau/lattice sites).

The “spontaneously chosen” ground state |Φ0〉 breaks the original U(N) symmetry and the
associated U(N) ferromagnetic order parameter S [the expectation value of collective U(N)-
spin operators S in a Grassmannian coherent state |Z〉] describes coherent state excitations
(“Skyrmions”) in the semi-classical L → ∞ limit, whose dynamics is governed by a Grass-
mannian nonlinear sigma model.

The subject of SU(N) fermions and SU(N) magnetism has been recently further fueled
in condensed matter physics with exciting advances in cooling, trapping and manipulating
fermionic alkaline-earth atoms trapped in optical lattices (see e.g. [19, 20] for a realization
of a SU(N) generalization of the Hubbard model). Multilayer quantum Hall arrangements,
bearing larger U(N) symmetries, also display interesting new physics (see [21] for the bilayer
case); Such is the case of superconducting properties of twisted bilayer (and trilayer) graphene
predicted by [22] and observed by [23]. Furthermore, magnetic Skyrmion materials display a
robust topological magnetic structure, being a candidate for the next generation of spintronic
memory devices.
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1 Introduction

Among the infinite-dimensional groups and algebras motivated by physical problems, the Vira-
soro, Kac-Moody, current and W -algebras and their representations are the most relevant rep-
resentatives, and constitute a fundamental tool in several theories, such as Conformal Field
Theory, gauge and string theories or SUGRA models (see [1–3] and references therein). It
turns out that Kac-Moody algebras, as well as the associated Virasoro algebras, provide a nat-
ural framework for the unification of symmetry and locality properties [4]. Basing on different
physical assumptions, several generalisations of these algebraic structures have been proposed,
usually from an analytic point of view, rather than on the axiomatic construction of these en-
tities [5]. In this context, the quasisimple Lie algebras [6], generalised Kac-Moody algebras
based on geometrical properties of closed surfaces [7] as well as several hierarchies of centrally
extended algebras are worthy to be mentioned [8–11].

In most of these constructions, the one-dimensional sphere S1 plays a relevant role, a fact
that suggests that, for other physical models involving more than one degree of freedom and
related to some basis manifold, a similar procedure can be proposed, provided that the man-
ifold is either compact or presents some peculiar properties that guarantee convergence of
integrals. This situation was the starting point for the general procedure initiated in [12],
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where a systematic construction of generalised Kac-Moody algebras based on compact man-
ifolds M related to either a Lie group or an appropriate homogeneous space was proposed.
Under these assumptions, harmonic functions on the manifold can be described in terms of the
representation theory of the corresponding Lie group, allowing us, in particular, to identify a
complete set of Hermitean labelling operators. An important difference of this generalisation
with respect to the well-known class of usual Kac-Moody algebras and other generalisations
resides in the fact that our construction, based on the Fourier expansion on compact manifolds,
does not imply in general the existence of simple roots, even if a root structure can always be
identified.

Besides the interest of these generalised Kac-Moody algebras from the mathematical point
of view of, as this kind of algebras is naturally related related to higher-dimensional compact
manifolds, the question of their relevance in theories involving higher dimensional space-times
such as Kaluza-Klein theories, supergravity, etc is of certainly of physical interest.

2 The algorithmic construction of generalised Kac-Moody alge-
bras

The construction of generalised Kac-Moody algebras proposed in [12] for the case of manifolds
associated to either a compact Lie group Gc or a coset space Gc/H (via the exponential map, see
[12] for details) starts with a simple compact1 Lie algebra g, a given basis {Ta, a = 1, · · · , dimg}
with structure tensor

�

Ta, Tb

�

= i fab
c Tc ,

and Killing form
¬

Ta, Tb

¶

0
= gab ≡ Tr
�

ad(Ta)ad(Tb)
�

. (1)

Denoting by V the volume elements of the associated compact n = (p + q)−dimensional
manifold M (with M≃ Gc or M≃ Gc/H, we consider a local coordinate frame yA = (ϕi , ur)
with 1≤ i ≤ p, 1≤ r ≤ q, such that the condition

∫

M
dµ(M) = 1

V

∫

M
dpϕ dqu= 1

holds. On M we consider the set of square integrable functions periodic in all ϕ−directions,
but non-periodic in the u−directions. The space L2(M) admits a complete orthonormal Hilbert
basis

B =
¦

ρI(ϕ, u) , I ∈ I
©

, (2)

with respect to the Hermitean scalar product on L2(M), where I denotes a minimal (finite)
set of labels required to identify the states unambiguously [13]. In these conditions, we define
a space of smooth mappings from M into g as

g(M) =
¦

TaI = TaρI(ϕ, u) , a = 1, . . . , dimg , I ∈ I
©

.

On this space, that inherits the structure of a Lie algebra, the Lie brackets are well defined and
adopt the generic form

�

TaI , TbJ

�

= i fab
ccI J

K TcK , (3)

1This analysis can of course be extended to any simple (real or complex) Lie algebra. However, only in the case
of compact Lie algebras, the representation theory has been analysed (see below).
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where the coefficients cI J
K are those of the Fourier expansion of products of elements in the

basis B. For the case where the manifold M is related to a compact Lie groups Gc , these can
be associated to the Clebsch-Gordan coefficients of Gc . In particular, the Killing form in g(M)
is given by

¬

X , Y
¶

1
=

∫

M
dµ(M)
¬

X , Y
¶

0
, X , Y ∈ g(M) (4)

(with
¬

X , Y
¶

0
being the Killing form in (1)), from which the relations

ρI(ϕ, u) = ηI Jρ
J (ϕ, u) ,
¬

TaI , TbJ

¶

1
= gabηI J ,

follow at once. The first relation simply means that ρJ ∈ L2(M), and thus extends in the basis
B given by (2).

In a second step, the existence of central extensions for the preceding algebras is analyzed. Fol-
lowing a general approach based on cohomological methods, the central extension is obtained
through the 2-cocycle

ωC(X , Y ) =

∫

M




X ,∂iY dϕi + ∂sY dus
�

0 ∧ γ , (5)

with γ being a closed (n− 1)-current associated to a closed loop C . In this context, it should
be taken into account that central extensions are associated to compact one-dimensional sub-
manifolds of M, i.e. curves, and that the procedure cannot be extrapolated to maps from
higher-dimensional manifolds onto M [14]. Specifically, we consider

γ(A) = (−1)AkAdy1 ∧ · · · ∧ dyA−1 ∧ dyA+1 ∧ · · ·dyn , A= 1, · · · , n , kA ∈ R .

This leads to the identity

ω(A)(TaI , TbJ ) = kAgab

∫

M
dµ(M) ρI(ϕ, u)∂AρJ (ϕ, u) = kAgabdAIJ , (6)

hence for the centrally extended algebra g(M) we get the commutator

�

TaI , TbJ

�

= i fab
ccI J

K TcK + gab

n
∑

A=1

kAdAIJ . (7)

It is not casual that this algebra has a deep similitude with the current algebra defined through

�

Ta(y), Ta′(y
′)
�

= i faa′
bTb(y)δ

n(y − y ′)− i
n
∑

A=1

kA∂Aδ
n
�

y − y ′
�

, (8)

and possessing Schwinger terms. Actually, centrally extended extensions of the generalised
Kac-Moody algebras associated to the compact manifolds S2 and S1 × S1 were determined
in [15] by means of current algebras, showing the validity of the procedure.

In a third step, derivations ∂A of the generalised Kac-Moody algebra g(M) are considered.
This is a technically delicate step, as the variables ϕ are periodic, whereas the variables u do
not exhibit periodicity properties. In other words, the operators d j = −i∂ϕ j are (commuting)
Hermitean, while the operators ds = −i∂us are not Hermitean. In order to obtain a complete
set of commuting Hermitean operators, we use the identification of the manifold M with a
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compact Lie group (coset space). To this extent, an embedding gc ⊆ gm of gc into a higher-
rank Lie algebra gm is used, with gc the Lie algebra of Gc , and such that the basis functions of
(2) belong to an irreducible unitary representation of gm. The generators of the latter can be
realised as Hermitean differential operators acting naturally on the manifold; in particular, the
elements h1, · · · , hk of the Cartan subalgebra of gm (where k is the rank of gm), are realised as
the Hermitean operators

h j = −i f A
j (y)∂A , 1≤ j ≤ k .

A particularity of these operators is that the boundary term associated to all u−directions van-
ishes. Among the operators

�

d1, · · · , dp, h1, · · · , hk

	

we determine a maximal set of commuting
operators

Dj = −i f A
j (y)∂A , j = 1, · · · , r ,

that satisfy the constraints

∂A f A
j (y) = 0 , and f r

j |= 0 , j = 1, · · · , r , (9)

related to Hermiticity. In these expressions, f r
j | represent the boundary terms associated to all

u−directions that must vanish. Note further that when M= Tn, as all directions are periodic,
we have r = n, but for a generic n−dimensional manifold M we have r < n. It can be easily
shown that the Di act diagonally on the functions ρI , leading to an eigenvalue problem

Dj(ρI(y)) = I( j)ρI(y) ,

with I( j) the corresponding eigenvalue.

The Hermitean operators Dj and central extensions of the generalised Kac-Moody algebra are
deeply related through the closed (n− 1)−forms ( j = 1, · · · , r)

γ j = k j

n
∑

A=1

(−1)A f A
j (y) dy1 ∧ · · · ∧ dyA−1 ∧ dyA+1 ∧ · · · ∧ dyn , j = 1, . . . , r , k j ∈ R , (10)

with corresponding 2-cocycles given by (see equation (6))

ωk(TaI , TbJ ) = kkJ(k)gabηI J . (11)

Summarising, the generalised Kac-Moody algebra bg(M) associated to the compact Lie algebra
g and the compact manifold M is determined by the following data

1. Generators TaI belonging to g(M);

2. Commuting Hermitean operators D1, · · · , Dr ;

3. Central charges k1, · · · , kr associated to the Hermitean operators.

If I( j) denotes the eigenvalue of Dj (see (10)), the non-vanishing brackets of the generalised
Kac-Moody algebra associated to M are

�

TaI , TbJ

�

= i fab
ccI J

K TcK + gabηI J

r
∑

j=1

k j I( j) ,

�

Dj , TaI

�

= I( j)TaI , (12)

where I( j) is the eigenvalue of Dj . Recall again that the central charges and the Hermitian
operators are both associated to the closed (n− 1)−form given by (10).

As shown in [12], the choice of Gc = U(1)n leads to a generalised Kac-Moody algebra that
structurally coincides with the generalised algebras based on the torusTn studied and analyzed
in [6], and that actually correspond to specific cases of the wide class of so-called ‘quasi-simple
Lie algebras’.
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3 Identification of roots in bg(M)
The fourth step is devoted to the identification of a root structure based on equation (12) as-
sociated to generalised Kac-Moody algebras. Supposed that the initial simple Lie algebra g has
rank ℓ and let Σ denotes the root system with respect to the Cartan subalgebra H i , i = 1, · · · ,ℓ,
we consider the root operators Eα,α ∈ Σ in the Cartan-Weyl basis. Defining

ĝ(M) = Span
¦

TaI , Dj , k j , a = 1, · · · , dimg, I ∈ I, j = 1, · · · , r
©

, (13)

the Cartan subalgebra of the latter is spanned by H i , Dj and k j (i = 1, . . . ,ℓ, j = 1, · · · , r).
Taking the Cartan-Weyl basis H i

I , EαI and the Killing form as defined in (4), application of the
procedure described in [16] shows that the Killing form of ĝ(M) satisfies

¬

TaI , TbJ

¶

= ηI J gab ,
¬

Dj , TaI

¶

=
¬

k j , TaI

¶

= 0 ,
¬

ki , k j

¶

=
¬

Di , Dj

¶

= 0 ,
¬

Di , k j

¶

= δi
j .

(14)

From this we get the (infinite-dimensional) root spaces (where n= (n1, · · · , nr))

g(α,n) =
¦

EαI , with I(1) = n1, · · · , I(r) = nr

©

, α ∈ Σ , n1, · · · , nr ∈ Z ,

g(0,n) =
¦

H i
I , with I(1) = n1, · · · , I(r) = nr

©

, n1, · · · , nr ∈ Z ,
(15)

with commutation relations
�

g(0,n),g(α,m)
�

⊂ g(α,m+n) ,
�

g(α,m),g(β ,n)
�

⊂ g(α+β ,m+n) , α+ β ∈ Σ .

An important difference with respect to the usual Kac-Moody algebras is that, in this case, the
commutator between elements depends also on the representation theory of Gc , specifically
in connection with the Clebsch-Gordan coefficients cI J

K . This shows that the construction
goes beyond the traditional root theory, as it also involves the so-called labelling problem for
embedded algebras [13].

Explicit construction of these generalised structures was obtained in [12] for the case of
manifolds isomorphic to the spheres Sn, specifically for the values n = 2 with SU(2)/U(1),
n= 3 for SU(2) and SO(4)/SO(3), n= 5 for SU(3)/SU(2) and n= 6 for G2/SU(3).

Concerning the representation theory of generalised Kac-Moody algebras, the case of the
n-dimensional torus Tn has been inspected in some detail in [12], corresponding to the Lie
group U(1)n. An extrapolation to other more complicated manifolds is a delicate task, the
technical difficulties of which have not yet been solved satisfactorily. However, for the two-
dimensional case and the manifolds T2 and S2, an alternative ansatz has been proposed in
[17] and [18], based on the observation that the Kac-Moody and the corresponding Virasoro
algebras associated to these manifolds can be constructed naturally from the usual Kac-Moody
and Virasoro algebras. More specifically, in this case we have assumed that the Laurent modes
of the usual Kac-Moody and Virasoro algebras can themselves be (Fourier) developed in an
adapted manner on the two-sphere and the two-torus, respectively [17]. This assumption
enabled us to reproduce the generalised Kac-Moody algebras associated to S2 or T2, in a semi-
direct product with a subalgebra of vector fields of the two-torus and the two-sphere

Vir(M)⋉ bg(M) , with M= S1 , or T2 . (16)

The algebras Vir(M) can been seen as extensions of the Virasoro algebras in these cases. The
interesting observation of this construction is that it leads naturally to central extensions. The
fermions [17] and boson [18] realisations subsequently obtained lead automatically to a Fock
space construction and thus to a unitary representation bounded from below. In the case of
the bosonic construction, we have introduced vertex operators along the lines of the vertex
operator in string theory [19,20].
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4 Concluding remarks and future prospects

We have reported on recent work concerning on the construction of generalised Kac-Moody
algebras for the class of compact Lie groups and certain coset spaces determined by a closed
subgroup, and the analysis of some of its main features that may be of interest in physical
applications, such as the existence of a root system and central extensions. The procedure can
formally be developed for any compact manifold or homogeneous space of the specified type,
with the main difficulties being of computational nature. Whether this class of extensions
fits naturally in the description of physical phenomenology, is a problem that has still to be
explored in more detail.

The next natural step, besides specific applications, consists in proposing an analogous
construction for the case where the basis manifold M is no more compact. Some results
in this direction actually exist, such as the work [9], but a general approach has not been
formulated yet. Among the obstructions observed in this general frame, the acute divergence
problems that arise in the integration theory of non-compact manifolds, as well as the technical
difficulties emerging in the cohomological formulation of central extensions (see equation (5)),
are the most relevant. Inspection of several examples suggest that additional techniques have
to be considered to cover this case appropriately, in order to obtain a description the validity of
which is not restricted to very particular manifolds. A successful approach in this sense could
possibly be of interest in the context of M−theory or supergravity models, studying whether
there is a connection between the central extensions of the generalised Kac-Moody algebra
and super-membrane solutions in extended SUGRA.

The fermionic [17] and bosonic [18] construction obtained in the case of S2 and T2 can
be easily extended to the n−tori Tn. This extension leads to a hierarchy of algebras (with the
notations of (16))

Vir(Tn)⋉ bg(Tn) ⊂ Vir(Tn−1)⋉ bg(Tn−1) ⊂ · · · ⊂ Vir⋉ bg , (17)

where at the last stage we have the usual Virasoro and Kac-Moody algebras. This series of
embeddings could play a role in toroidal compactifications, a very important notion in higher
dimensional supergravity.
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Abstract

A generalisation of Euclidean and pseudo-Euclidean groups is presented, where the Weyl-
Heisenberg groups, well known in quantum mechanics, are involved. A new family of
groups is obtained including all the above-mentioned groups as subgroups. Symmetries,
like self-similarity and invariance with respect to the orientation of the axes, are properly
included in the structure of this new family of groups. Generalized Hermite functions on
multidimensional spaces, which serve as orthogonal bases of Hilbert spaces supporting
unitary irreducible representations of these new groups, are introduced.
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1 Introduction

It is well-known the interest of the Heisenberg-Weyl (HW) group in physics, mainly in Quan-
tum Mechanics (QM). The indetermination principle, fundamental in QM, is closely linked
to this group and the Fourier transform (FT) [1, 2]. It is also related with the Gabor formal-
ism [3] on the theory of wavelets, where an uncertainty principle for time-frequency operators
appears [4]. On the other hand, (the affine spaces) Euclidean, Rn, or pseudo-Euclidean spaces,
Rp,q (p + q = n), are the arena of the physical events, where their invariance properties are
described by the Euclidean type groups En = Rn ⊙ SO(n) or Ep,q = Rp,q ⊙ SO(p, q), respec-
tively. The HW and Euclidean groups are involved in relevant invariance properties used in the
study of the physical systems. Thus, we can mention, first of all, the pairs of sets of conjugate
variables, connected through the HW group, that allows us to get equivalent physical descrip-
tions either in the position or in the momentum representations. The freedom of the choice
of the origin in each coordinate system (either position or momenta) that it is know as “ho-
mogeneity” and it is related to both kind of groups. The freedom to choose the unit of length
or “self-similarity”, that can be implemented via dilations. And finally the freedom to select
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the orientation of the unit vectors for the orthogonal bases of the physical space (“invariance
from orientation”). In these last two cases the Euclidean groups are involved in. However, all
these invariances are not completely independent because the FT, which matches coordinate
and momentum representations [5], does not allow to fix independently self-similarity and
orientation. Both family of groups are independent although some times they appear together
in the implementation of the invariances above mentioned, that we consider as a whole.

Recently in [6] we have studied the case related with R, It has been the point of departure
for a generalization of our analysis to Rn and Rp,q realized in [7]. Here the Euclidean-like
groups En and Ep,q and the HW groups Hn and Hp,q (where Rn ⊂ Hn has been replaced by
Rp,q) have been enlarged to the groups Kn and Kp,q that contain the Euclidean groups and
the HW groups as subgroups. Tentatives in this direction has been done but with different
motivations and only considering the cases with positively defined metric [8–10].

Here, we present the lower dimensional cases (1D and 2D) in Sections 2 and 3, respectively.
The representations of the groups here studied are supported by square integrable functions.
The fact that the Hermite functions (HF) constitute a (discrete) basis of L2(R) (see Subsection
2.2) allows us to introduce in Subsection 3.4 a generalization of the HF in order to describe
the above mentioned invariance in 2D. We end with a Section 4 devoted to conclusions.

2 Heisenberg-Weyl groups in the real line R

2.1 The Heisenberg-Weyl group H1

The HW group in 1D can be realized on the coordinate space R providing the basic commu-
tation relations of QM as [x , p] ≡ [x ,−iħh ∂

∂ x ] = iħh. A matrix representation of H1 in terms of
real 3× 3 upper triangular matrices of the group M3(R) [11] is given by

H1[a, b, c] =





1 a c
0 1 b
0 0 1



 , a, b, c ∈ R . (1)

Self-similarity and orientation are included by extending H1 to a new group K1 realized as

K1[a, b, c, k] =





1 a c
0 k b
0 0 1



 , a, b, c ∈ R, k ∈ R∗ . (2)

Obviously, the group laws in both cases are obtained through matrix multiplication.
The group K1 has two connected components: the connected component of the identity

(Ko
1 ) characterized by k > 0; and a 2nd component with k < 0 (K1

1 ).
The parameters a, b, c of H1 (and K1) are in correspondence to the three generators X , P, I

of the Lie algebra of H1 (and K1), Lie[H1] (Lie[K1]), respectively; and the generator D as-
sociated to k only belongs to Lie[K1]. The explicit form of these generators in (1) and (2)
is

X =
∂ K1[. . . ]
∂ a

�

�

�

�

Id
=





0 1 0
0 0 0
0 0 0



 , P =
∂ K1[. . . ]
∂ b

�

�

�

�

Id
=





0 0 0
0 0 1
0 0 0



 ,

I =
∂ K1[. . . ]
∂ c

�

�

�

�

Id
=





0 0 1
0 0 0
0 0 0



 , D =
∂ K1[. . . ]
∂ k

�

�

�

�

Id
=





0 0 0
0 1 0
0 0 0



 ,

(3)
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with Id the identity element. The commutation relations for both Lie algebras are

[X , P] = I , [D, X ] = −X , [D, P] = P , [I ,• ] = 0 . (4)

The real line R is a metric space that supports two continuous conjugate (in the sense of
position-momentum conjugation) bases for L2(R) : {|x〉}x∈R and {|p〉}p∈R obtained by means
of the generalized eigenvectors of the operators X and P, i.e., X |x〉= x |x〉 , P |p〉= p |p〉 . The
basis elements of {|x〉}x∈R satisfy (and similarly for {|p〉}p∈R)

〈 x |x ′ 〉=
p

2π δ(x − x ′) ,
1
p

2π

∫

R
d x |x〉〈x |= I . (5)

As we mention before these generalized bases are well defined on certain extensions of the
Hilbert space (the Gel’fand triplets or the rigged Hilbert spaces) [12].

As is well known the Fourier transform (FT) and its inverse (IFT) connect both bases [5]

F T [|x〉, x , p] =
1
p

2π

∫

R
d x eipx |x〉 = |p〉 , I F T [|p〉, p, x] =

1
p

2π

∫

R
dp e−ipx |p〉 = |x〉 .

(6)
There exists a representation of H1 by unbounded operators on L2(R), where P and X may

be represented by

[P f ](x) = −i
d

d x
f (x) , [X f ](x) = x f (x) , f (x) ∈ L2(R) , (7)

satisfying [X , P] = I . We also may choose another representation of P and X on an ab-
stract infinite dimensional separable Hilbert space H. Since there is always a unitary map
U : H→ L2(R), the commutation relation between P and X on L2(R) is translated to H. In
order to simplify the notation we also denote the operators on H by P and X .

The relationship between the elements | f 〉 ∈H and f (x) ∈ L2(R) is given by [5]

| f 〉=
1
p

2π

∫

R
d x f (x) |x〉=

1
p

2π

∫

R
dp f̂ (−p) |p〉 , (8)

with f (x) = 〈x | f 〉, f̂ (p) = F T[ f (x); x , p] and f̂ (−p) = 〈p| f 〉. Remember that only the vectors
| f 〉 belonging to a dense space in H (i.e., the space of test vectors) can be written as (8).

The action of the group elements e−iP b and e−iX a on the continuous bases is given by

e−iP b |x〉= |x + b〉 , e−iX a |p〉= |p− a〉 , ∀a, b ∈ R . (9)

From these relations we conclude that {|x〉} ({|p〉}) is equivalent to {|x + b〉} ({|p− a〉}).
These bases support each an infinite dimensional unitary irreducible representation (UIR)

of H1, Uh(g), h ∈ R∗ [6,13],

Uh(g)≡ Uh(c, a, b) := eihcI eih(aX−bP) = eih(c−ab/2)I eihaX e−ihbP . (10)

For instance, in the cases of {|x〉} as well as L2(R) the action is given by

Uh(g) |x〉= eihc eiha(x+b/2) |x + b〉 , (Uh(g) f ) (x) = eihc eiha(x−b/2) f (x − b) . (11)

We mentioned before that H1 does not exhaust the invariances of the real line if we add the
hypothesis of self-similarity and orientation and we have to considerer K1. Since {|x〉} ({|p〉})
is equivalent to {|k x〉}

�

{|k′ p〉}
�

and from (6) we find that k′ = k−1 ∈ R∗. In other words, R
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supports a UIR, Uh,C , of K1. For the connected component Ko
1 of K1 and for the dilations we

use the formula (53) of [6] obtaining that eidD |x〉= ed/2 |ed x〉. Therefore,

Uh,C( g̃) |x〉= ed/2 eih(c+C) eiha(ed x+b/2) |ed x + b〉 , g̃ = (a, b, c, d) ∈ Ko
1 , (12)

where C ∈ R denotes the eigenvalues of the quadratic Casimir of Ko
1 , C = X P − I D. When we

consider also the dilations with k < 0 we introduce the (unitary) parity operator P (x →−x)
and we obtain in a unified manner that

Uh,C( g̃,α) |x〉= Uh,C( g̃) |xα〉= ed/2 eih(c+C) eiha(ed xa+b/2) |ed xα + b〉 , (13)

where α stands either for the identity (xI = x) and ( g̃,I) ∈ Ko
1 or the parity (xP = −x) and

( g̃,P) ∈ K1
1 . We can rewrite (13) in terms of k ∈ R∗ with |k|= ed and d ∈ R as

Uh,C(c, a, b, k) |x〉=
Æ

|k| eih(c+C) eiha(k x+b/2) |k x + b〉 . (14)

The corresponding action on the functions of L2(R) is given by

�

Uh,C( g̃,α) f
�

(x) =
1
p

|k|
eih(c+C) ei h a(x−b/2) f

�

k−1 (x − b)
�

. (15)

2.2 The Hermite functions appear on the scene

It is well known that the FT of the Hermite Functions {ψm(x)}m∈N are also HF, i.e.

F T[ψm(x), x , p] = imψm(p) , I F T[ψm(p), p, x] = (−i)mψm(x) . (16)

Hence, both are complete orthonormal bases in L2(R) [14].
Invariance properties of K1 are implemented to a generalization of the HF obtained using

the UIR’s of K1 (13) in position coordinates x (and similarly for p) as follows

χm(x , a, b, k) := |k|1/2 e−ia(k x+b/2)ψm(k x + b) , a, b ∈ R , k ∈ R∗ . (17)

In this way we obtain two families of functions depending on 3 real parameters (a, b, k)

{χm(x , a, b, k)} , {χm(p, a, b, k)} , ∀ k ̸= 0, a, b ∈ R . (18)

Orthonormal and completeness relations of the HF induce similar relations for these families
of generalized HF, so they are also orthonormal bases in L2(R). However, these generalized
HF are not eigenfunctions of the FT and its inverse, contrarily to the ordinary HF (16)

F T[χm(x , a, b, k), x , p] = im χm(p, b,−a, k−1) ,

I F T[χm(p, a, b, k), p, x] = (−i)m χm(x ,−b, a, k−1) .
(19)

3 Euclidean and pseudo-Euclidean plane cases

In this Section we will consider the 2D configuration spaces: the Euclidean plane (R2) and the
pseudo-Euclidean plane (R1,1) with metrics of signature (+,+) and (+,−), respectively.
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3.1 The groups H2 and K2 on the plane

The HW group on 2D, H2, admits a finite representation by real 4× 4 matrices as

H2[a,b, c] =





1 aT c
0 I2 b
0 0T 1



≡







1 a1 a2 c
0 1 0 b1
0 0 1 b2
0 0 0 1






, a1, a2, b1, b2, c ∈ R . (20)

This group can be enlarged by adding the group of proper rotations SO(2) and the dilations
on the plane, R∗, so as to obtain the group K2

K2[a,b, c, k, R(θ )] =





1 aT c
0 k R(θ ) b
0 0T 1



 , R(θ ) =

�

cosθ − sinθ
sinθ cosθ

�

∈ SO(2) , (21)

with θ ∈ [0,2π) and k ∈ R∗. The group law is obtained by matrix multiplication, as usual,

K2[a,b, c, k, R] · K2[a
′,b′, c′, k′, R′] = K2[a

′ + k′R′ T a, b+ kRb′, c + c′ + a · b′, kk′, R R′] , (22)

where R R′ ≡ R(θ )R(θ ′) = R(θ + θ ′) .

3.2 The groups H1,1 and K1,1 on the pseudo-plane

A new generalization of H2, H1,1, can be obtain by replacing R2 by R(1,1). It formally is like H2
(20) but replacing SO(2) by SO0(1,1)), the connected component of the identity of SO(1, 1).
The group K1,1 comes from H1,1 by adding R∗,

K1,1[a,b, c, k,Λ(η)] =





1 aT c
0 kΛ(η) b
0 0T 1



 , Λ(η) =

�

coshη sinhη
sinhη coshη

�

∈ SO0(1,1) , (23)

with η ∈ R and k ∈ R∗. The group law for K1,1 is similar to that of K2 (22), provided R is
replaced by Λ. Note that K2 has only a connected component while K1,1 has two.

3.3 The Lie algebras of K2 and K1,1

Both algebras are 7D with infinitesimal generators X1, X2, P1, P2, I , D and, moreover, J for
Lie[K2] and K for Lie[K1,1]. A 4× 4 matrix realization of the generators is

Xα =
∂ K−
∂ aα

�

�

�

�

Id
=





0 αT 0
0 O2 0
0 0T 0



 , Pα =





0 0T 0
0 O2 α
0 0T 0



 ,

I =
∂ K−
∂ c

�

�

�

�

Id
=





0 0T c
0 O2 0
0 0T 0



 , D =





0 0T 0
0 I2 0
0 0T 0



 ,

(24)

where α is either the column vector (1, 0)T for α = 1 or (0, 1)T for α = 2 and O2 is the 2× 2
zero matrix. The generators J and K are represented as

J =
∂ K−
∂ θ

�

�

�

�

Id
=





0 0T 0
0 −iσ2 0
0 0T 0



 , K =
∂ K−
∂ η

�

�

�

�

Id
=





0 0T 0
0 σ1 0
0 0T 0



 , (25)
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where σi are Pauli matrices. The non-vanishing commutation relations are

[Xα, Pβ] = δαβ I , [D, Xα] = −Xα , [D, Pα] = +Pα , (26)

together with these for Lie[K(2)]

[J , Xα] = εαβ Xβ , [J , Pα] = εαβ Pβ , (27)

where εαβ is the skew-symmetric tensor, and these ones for Lie[K(1, 1)]

[K , Xα] = (−1)α εαβ Xβ , [K , Pα] = (−1)α+1 εαβ Pβ . (28)

3.4 Bases on the plane and the hyperplane

Now we will consider together the 2D real affine space X associated to either the vector space
R2 or R1,1 and the Hilbert space L2(X) on which we define the position operator X≡ (X1, X2)
and their conjugate momentum operator P≡ (P1, P2). These operators act on the eigenvectors
|x〉 (≡ |x1, x2〉= |x1〉⊗|x2〉) and |p〉, respectively, as Xα |x〉= xα|x〉 and Pα |p〉= pα|p〉 ,α= 1,2 .
These eigenvectors are transformed into each other by means of Fourier type transformations
(6) but in 2D

|p〉=
1

2π

∫

X
dx eip·x |x〉 , |x〉=

1
2π

∫

X
dp e−ip·x |p〉 . (29)

As for the 1D case (9) we have similar relations: e−ib·P |x〉 = |x+ b〉 and e−ia·X |p〉 = |p− a〉
(a,b ∈ X) . Hence the basis {|x〉} is equivalent to {|x+b〉} and the same for {|p〉} and {|p−a〉}.

The use of the 2D FT serves us to realize that the five operators given by X, P and I deter-
mine a UIR representation of H2 or H1,1 by exponentiation.

Let H be an abstract infinite-D separable Hilbert space and S : H→ L2(X) a unitary map.
If | f 〉 ∈H and S | f 〉= f (x) we have the following relation in a suitable dense subspace of H

| f 〉=
∫

X
dx f (x) |x〉 , f (x) = 〈x| f 〉 . (30)

The action of an element of K2 (or K1,1) on X implies that |x〉 transforms as

|x〉 → |x′〉= |k| eih(c+C+a·b/2) eiha·(kΛx+b) |kΛx+ b〉 , (31)

see (10), (13) and (14). This action allows to calculate the action of a UIR on L2(X)

(U(g) f )(x) = |k|−1 eic e−ik−1a·Λ−1(x−b) f (k−1Λ−1(x− b)) . (32)

The interested reader can easily compute similar expressions for |p〉 and f (p).

3.5 Bases on L2(X)

The HFs ψα(xα) determine an orthonormal basis on L2(R) (Subsection 2.2). So the functions

Ψm(x) :=ψm1
(x1)ψm2

(x2) , m= (m1, m2) ∈ N2 , (33)

constitute an orthonormal basis on L2(X), i.e. for any f (x) ∈ L2(X) we have that

f (x) =
∞
∑

m∈N2

cmΨm(x)≡
∞
∑

m1=0

∞
∑

m2=0

cm1,m2 ψm1
(x1)ψm2

(x2) , cm1,m2 ∈ C . (34)
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The double HF or the 2D HF functions Ψm(x) verify the following relations
∫

R2

dx [Ψm′(x)]
∗ Ψm(x) = δm,m′ ≡ δm1,m′1

δm2,m′2
,

∑

m∈N2

[Ψm(x)]
∗ Ψm(y) = δ(x− y)≡ δ(x1 − y1)δ(x2 − y2) .

(35)

They are real functions and eigenfunctions of the FT and of its inverse, i.e.,

F T [Ψm(x);x;p] = i em Ψm(p) , I F T [Ψm(p);p;x] = (−i)em Ψm(x) , em :=
∑

α

mα . (36)

In this 2D case we can profit from the invariance properties of 2D HF to construct a represen-
tation of the groups K2 (or K1,1) supported on a set of generalized HF. We start by defining

Xm(x,a,b, k,Λ) := |k| e−i a(kΛx+b/2)Ψm(kΛx+ b) . (37)

Now we are able to obtain an explicit form of the 2D generalized HF in terms of the 1D
generalized HF, (17) and (18), as

Xm(x,a,b, k,Λ) = χm1
((Λx)1, a1, b1, k)χm2

((Λx)2, a2, b2, k) , (38)

where (Λx)α denotes la α-th contravariant component of the vector Λx.
The 2D GHF determine an orthonormal basis on L2(X) since

∫

R2

dxXm(x,a,b, k,Λ) [Xm′(x,a,b, k,Λ)]∗ = δm,m′ ,
∑

m∈N2

Xm(x,a,b, k,Λ) [Xm(y,a,b, k,Λ)]∗ = δ(x− y) .
(39)

In addition, for the FT in 2D and its inverse we have the following relations:

F T [Xm(x,a,b, k,Λ) ; x,p] = i em [Xm(p,b,−a, k−1,Λ−1T ) ,

I F T [Xm(p,a,b, k,Λ) ;p;x] = (−i)em Xm(x,b,−a, k−1,Λ−1T ) .
(40)

4 Conclusion

We present a revision of some generalizations of the Euclidean groups [8–10] by considering
as an ensemble the equivalence of conjugate variables, and the properties of homogeneity,
self-similarity and invariance from orientation that are present in the description of physical
systems. The group extensions of the Euclidean-like groups by the HW group give rise to new
groups that amalgamate the symmetries associated to both groups together with the invari-
ances that we have just mentioned above. Moreover these groups Kp,q (with q+ p = n) admit
a representation in terms of (n+ 2)× (n+ 2) matrices. In particular, we have displayed here
the low dimensional cases (1D and 2D). The nD case can be easily implemented from the 2D
case [7]. Thus, the elements of the n-D Heisenberg-Weyl group are given (see expression (20))
by

Hp,q[a,b, c]≡





1 aT c
0 In b
0 0T 1



 , a,b ∈ R(p,q) , c ∈ R . (41)
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Now according to (21) and (23) we can write the matrix elements of the new group Kp,q as

Kp,q[a,b, c, k,Λ]≡





1 aT c
0 kΛ b
0 0T 1



 , a,b ∈ R(p,q) , k ∈ R∗ , Λ ∈ SO(p, q) . (42)

Since the HF are an orthogonal basis of L2(R1) a basis on L2(Rp,q) is obtained in terms of
nD HF, which can be easily obtained taking into account formula (33). The function spaces
L2(Rp,q) support a UIR of the group Kp,q, that allows us to define a new set of orthonormal
functions, the nD generalized Hermite functions following the expressions (37) and (38).

The existence of both discrete and continuous bases supporting representations of Kp,q lead
us to introduce a generalization of the Hilbert spaces: the rigged Hilbert spaces (or Gel’fand
triplets) [12]. Then the infinitesimal generators of Kp,q realized by self-adjoint operators on
L2(Rp,q) are, generally, unbounded become bounded (continuous) operators (on two different
locally convex topologies) using these rigged Hilbert spaces [7].

The nD Hermite functions appear in many quantum systems with quadratic Hamiltoni-
ans [15, 16], hence our results could be of interest, for instance, in Quantum Optics (photon
distribution on multimodes mixed states [17]), in multidimensional signals analysis (decompo-
sition of signals in terms of wavelets involves Fourier transform or Gabor transform [3,18,19])
and in vision studies [20–22].
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Abstract

We define new velocity and acceleration having dimension of (Leng t h)α/(Time) and
(Leng t h)α/(Time)2, respectively, based on the fractional addition rule. We discuss the
formulation of fractional Newton mechanics, Galilean relativity and special relativity
in the same setting. We show the conservation of the fractional energy, characterize
the Lorentz transformation and group, and derive the expressions of the energy and
momentum. The two body decay is discussed as a concrete illustration.
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1 Introduction

This work is based on pseudo analysis (see [6] and [7], and references therein for a review). It
is a generalization of the classical analysis, where instead of the field of real numbers a semiring
is taken on a real interval [a, b] ⊂ [−∞,+∞] endowed with pseudo-addition ⊕ and pseudo-
multiplication ⊗. It has different applications in mathematics and physics, e.g. in modeling
nonlinearity, uncertainty in optimization problems, nonlinear partial differential equations,
nonlinear difference equations, optimal control, fuzzy systems, decision making, game theory,
etc. It also gives solutions in the forms, which are not achieved by other approaches, e.g.,
Bellman difference equation, Hamilton Jacobi equation with non-smooth Hamiltonians.
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Definition 1.1. The pseudo binary operations are defined by the help of a monotonous bijec-
tive map f , called their generator, as:

x ⊕ f y = f −1 ( f (x) + f (y)) , x ⊖ f y = f −1( f (x)− f (y)) , (1)

x ⊗ f y = f −1 ( f (x) f (y)) , and x ⊘ f y = f −1( f (x)/ f (y)) , (2)

xn ⊕ f ym = xn + ym , xn ⊖ f ym = xn − ym , (3)

xn ⊗ f ym = xn ym , and xn ⊘ f ym = xn/ym , (4)

�

x ⊕ f y
�n
=

n
∑

k=0

�

n
k

�

xk yn−k ,
�

x ⊖ f y
�n
=

n
∑

k=0

�

n
k

�

(−1)k xk yn−k , (5)

�

x ⊗ f y
�n
= (x y)n , and

�

x ⊘ f y
�n
= (x/y)n . (6)

It can be easily checked that the operation ⊕ f and ⊗ f satisfy the commutativity and as-
sociativity properties. Through the map f , we can perform many deformed binary opera-
tions [2,8]. The velocity addition formula can be recovered by using the pseudo-analysis, (see
Chung et al. [4] about some applications of the pseudo-binary operations). The pseudo binary
operations were also used to construct the q-additive entropy theory [1].

Recently, in 2019, Chung and Hassanabadi [4] considered a special choice of f ,

f (x) = |x |α−1 x , α > 0 , (7)

so that the deformed multiplication and deformed division may be the same as the ordinary
ones. Using this, these authors studied the anomalous diffusion process by using the α-
deformed mechanics which possesses the α-translation in space x → x ⊕δx . The α-deformed
binary operations, i. e. α-addition, α-subtraction, α-multiplication and α-division take the
form:

a⊕α b = |a|a|α−1 + b|b|α−1|1/α−1
�

a|a|α−1 + b|b|α−1
�

, (8)

a⊖α b = |a|a|α−1 − b|b|α−1|1/α−1
�

a|a|α−1 − b|b|α−1
�

, (9)

a⊗α b = ab , a⊘α b =
a
b

. (10)

Interestingly, the multiplication and division are invariant under α-deformation.
In this same spirit, in 2022, Hounkonnou et al proved that a Minkowski phase space en-

dowed with a bracket relatively to a conformable (α-deformed) differential realizes a con-
formable Poisson algebra, confering a bi-Hamiltonian structure to the resulting manifold.
They deduced that the related α-Hamiltonian vector field for a free particle is an infinitesi-
mal Noether symmetry and computed the corresponding α−deformed recursion operator [5].

The present paper is organized as follows. In Section 2, we derive the Newton law of
α−deformed Newton mechanics. Section 3 is devoted to the characterization of α-deformed
Galilean relativity. The α-deformed Galilei group is described, and energy conservation law is
deduced. In Section 4, we study the special relativity with α-translation symmetry. Section 5
deals with an analysis of two body decay.
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2 α-deformed Newton mechanics

In an ordinary Newtonian mechanics in one dimension, the Newton velocity is defined as

v =
d x
d t

. (11)

The infinitesimal displacement is invariant under spatial translation x → x + δx and the in-
finitesimal time interval is invariant under temporal translation t → t +δt. If we impose new
translation symmetry based on α-addition rule, we need to change the definition of velocity
so that it may possess this new symmetry. Here we impose two translation symmetries: the
α-translation in position, x → x ⊕α δx , and α-translation in time, t → t ⊕α δt.

Note in 2019, Chung and Hassanabadi [4] defined the deformed velocity, which is invariant
under α-translation in position and ordinary translation in time. Their average velocity is given
by

vave =
fα(x ′ ⊖α x)

t ′ − t
=
∆αx
∆t

=
|x ′|α−1 x ′ − |x |α−1 x

t ′ − t
. (12)

Taking t ′→ t, we obtain the velocity:

v =
dαx
d t
= α|x |α−1 d x

d t
. (13)

If we impose the α-translation in both time and position, we have to change the definition of
the velocity. In this case, the average α-velocity is furnished by the expression

vα,ave =
fα(x ′ ⊖α x)
f (t ′ ⊖α t)

=
∆αx
∆α t

=
|x ′|α−1 x − |x |α−1 x
|t ′|α−1 t ′ − |t|α−1 t

. (14)

Taking t ′→ t leads to the α-velocity:

vα =
dαx
dα t

= t1−α|x |α−1 d x
d t

. (15)

Because vα is α-translation invariant, the α-acceleration is defined as

aα =
dvα
dα t
=

1
α

t1−α dvα
d t

. (16)

Since the α-velocity and α-acceleration have dimension [Leng th]α/[Time]α and dimension
[Leng th]α/[Time]2α, respectively, the Newton equation is obtained by the relation

|F |α−1F = mαaα , or equivalently , F = m|aα|
1
α−1aα . (17)

In mechanics with α-translation symmetry, the α-velocity and α-acceleration have the frac-
tional dimensions which are different from the ordinary case α = 1. But, for the force, we
assumed that it has the same dimension as in the α= 1−mechanics.

3 α-deformed Galilean relativity

Based on the new definition of α-velocity and α-acceleration, we define the α-inertial frames
of reference possessing the property that a body with zero net force acting upon these frames
does not α-accelerate; that is, such a body is at rest or moving at a constant α-velocity. Here
we assume the physical laws must be the same in all α-inertial frames of reference. Now let us
consider two inertial frames S(t, x) and S′(t ′, x ′) moving at a relative constant α-velocity uα
with x-axes. The Newton equation is invariant under the transformations

v′α = vα − uα , v′α =
dαx ′

dα t
, x ′ = x ⊖α |uα|

1
α−1uα t , t ′ = t . (18)
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3.1 α-deformed Galilei group

Based on the α-operations for matrices, we can rewrite the coordinate transformations of the
Newton equation as:

�

x ′

t ′

�

= Tα(uα)⊗α

�

x
t

�

=

�

1 −|uα|
1
α−1uα

0 1

�

⊗α

�

x
t

�

. (19)

The transformation matrix Tα(uα) forms a Lie group with the α-multiplication. The following
properties are indeed satisfied:

• Tα(uα)⊗α Tα(vα) = Tα(uα + vα).

• The α-multiplication is associative.

• The identity is Tα(0).

• The inverse is Tα(−uα).

3.2 Energy conservation

Because d x is not invariant under the α-translation, we use α-translational invariant infinites-
imal displacement to get dαx = α|x |α−1d x and define the work,

|W |α−1W = −
∫

dαx |F |α−1F , (20)

having the same dimension as in theα= 1−mechanics. We define the potential energy through
the conservative force,

|F |α−1F = −
dαU
dαx

= −|x |1−α|U |α−1 dU
d x

. (21)

Thus, for the conservative force, we have

|W1→2|α−1W1→2 = −
�

|U2|α−1U2 − |U1|α−1U1

�

. (22)

Inserting the Newton equation obtained previously (see (17)) into (20), we get

|W1→2|α−1W1→2 = K2 − K1 , (23)

where the kinetic energy is given by

K =
1
2

mαv2
α . (24)

Considering the dimension, the conservation of energy is provided by

|E|α−1E = K + |U |α−1U =
1
2

mαv2
α + |U |

α−1U =
p2
α

2mα
+ |U |α−1U , (25)

where the linear momentum is expressed as pα = mαvα. The energy has the same dimension
as in the α= 1−mechanics, while the linear momentum has fractional dimension.
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4 Special relativity with α-translation symmetry

The 3-position in non-relativistic mechanics is changed into 4-position (or event) in the rel-
ativistic mechanics. Let us consider the event P(c t, x , y, z), where c is the Newton speed of
light, (i. e. speed with α= 1). Based on the definition of α-translation invariant infinitesimal
displacement and α-translation invariant infinitesimal time interval, the α-translation invari-
ant distance (α-distance) of infinitesimally close space-time events denoted by dsα is given
by

dαs2 = c2αdα t2 − dαx2 − dα y2 − dαz2 . (26)

The α-deformed proper time τα is

dατ
2 =

dαs2

c2α
. (27)

4.1 α-Lorentz transformations

The α-Lorentz transformations making invariant the space-time interval

(∆αs)2 =
�

cα(|t|α−1 t)
�2 −
�

(|x |α−1 x)
�2

, (28)

are given by
|x |α−1 x = cα|t ′|α−1 t ′shα(ψ) + |x ′|α−1 x ′chα(ψ) , (29)

cα|t|α−1 t = cα|t ′|α−1 t ′chα(ψ) + |x ′|α−1 x ′shα(ψ) , (30)

where the little α-deformed hyperbolic functions are defined by

shα(ψ) :=
1
2
(eα(ψ)− eα(−ψ)) = sinh(|ψ|α−1ψ) , (31)

chα(ψ) :=
1
2
(eα(ψ) + eα(−ψ)) = cosh(|ψ|α−1ψ) , (32)

thα(ψ) :=
shα(ψ)
chα(ψ)

= tanh(|ψ|α−1ψ) , eα(x) := e|x |
α−1 x . (33)

The little α-deformed hyperbolic functions obey the relations

ch2
α(ψ)− sh2

α(ψ) = 1 . (34)

In terms of the α-deformed binary operations, we get

x = c t ′Shα(ψ)⊕ x ′Chα(ψ) , c t = c t ′Chα(ψ)⊕ x ′Shα(ψ) , (35)

where the big α-deformed hyperbolic functions are

Chα(ψ) := |chα(ψ)|
1
α−1 chα(ψ) , Shα(ψ) := |shα(ψ)|

1
α−1 shα(ψ) , (36)

Thα(ψ) :=
Shα(ψ)
Chα(ψ)

, (37)

obeying |Chα(ψ)|2⊖|Shα(ψ)|2 = 1. Consider in the coordinate system (c t, x) the origin of the
coordinate system (c t ′, x ′). Then, x ′ = 0, and

x = c t ′Shα(ψ) , c t = c t ′Chα(ψ) . (38)

Dividing the two equations gives

x
ct
= Thα(ψ) , or

|x |α−1 x
cα|t|α−1 t

= thα(ψ) . (39)
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Since |x |
α−1 x
|t|α−1 t = vα is the relative uniform α-velocity of the two systems, we identify the physical

meaning of the imaginary "rotation angle ψ" as

thα(ψ) =
vα
cα
= βα . (40)

Using the following identities

chα(ψ) = γα , shα(ψ) = γαβα , where γα =
1
Æ

1− β2
α

, (41)

we obtain the α-deformed Lorentz transformation of the form

|x |α−1 x = γα
�

|x ′|α−1 x ′ + vα|t ′|α−1 t ′
�

, |t|α−1 t = γα
�

|t ′|α−1 t ′ +
vα
c2α
|x ′|α−1 x ′
�

. (42)

Expressing the spatial and temporal coordinates in terms of the α-deformed binary operations,
we get

x = Γα(x
′ ⊕ v1/α

α t ′) , t = Γα

�

t ′ ⊕
v1/α
α

c2
x ′
�

, where Γα = γ
1/α
α = (1− βα)

− 1
2α . (43)

If we set

uα =

�

|x |α−1

|t|α−1

�

d x
d t

, u′α =

�

|x ′|α−1

|t ′|α−1

�

d x ′

d t ′
, (44)

the addition of α-velocity becomes

uα =
u′α + vα
1+ vαuα

c2α

. (45)

If we regard the α-speed of light as cα, the eq.(44) shows that the α-speed of light remains
invariant, and, hence, the speed of light also remains invariant under the α-deformed Lorentz
transformation.

4.2 α-Lorentz group

Now, let us introduce the four α-velocity. For that, we change the notation as:

c t = x0 , x = x1 , y = x2 , z = x3 . (46)

Then, the four α-velocity is given by

ua
α =
|xa|α−1d xa

(d̃τ)α
, or explicitly , u0

α = cαγα , ui
α = v i

αγα , i = 1,2, 3 . (47)

Therefore, we have
ηabua

αub
α = c2α. (48)

4.3 Energy and α-momentum

The four α-momentum is defined as

pa
α = mαua

α , (49)

explicitly giving

p0
α = mαcαγα , pi

α = mαv i
αγα , and thus ηabpa

αpb
α = m2αc2α . (50)
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Here, we have pa
α ̸= (E/c, p⃗α) because the energy in α-deformed mechanics has the same unit

as in the undeformed case. Therefore, we set

pa
α =
��

E
c

�α

, p⃗α

�

. (51)

Thus, the eq.(50) gives

E2α = c2α|p⃗α|2 +m2αc4α , and when |v⃗α| ≪ cα , Eα ≈
|p⃗α|2

2mα
, (52)

which is the same as the non-relativistic case.

5 Two body decay

The simplest particle reaction is the two-body decay of unstable particles. A well known exam-
ple from nuclear physics is the alpha decay of heavy nuclei. In particle physics, one observes,
for instance, decays of charged pions or kaons into muons and neutrinos, or decays of neutral
kaons into pairs of pions, etc. Consider the decay of a particle of mass M which is initially at
rest. Its four α-momentum is P = (Mα, 0⃗), where we set c = 1.

This reference frame is called the centre-of mass frame (CMS). Denote the four α-momenta
of the two daughter particles by p1 = (Eα1 , p⃗α,1), p2 = (Eα2 , p⃗α,2). From the momentum conser-
vation, we get

p⃗α,1 + p⃗α,2 = 0 . (53)

The energy conservation is

Mα =
q

|p⃗α,1|2 +m2α
1 +
q

|p⃗α,2|2 +m2α
2 . (54)

If we set
p = |p⃗α,1|= |p⃗α,2| , (55)

we have

p =
1

2Mα

r

�

M2α −
�

mα1 −mα2
�2��

M2α −
�

mα1 +mα2
�2�

. (56)

Thus, we have
M ≥ m1 ⊕α m2 . (57)

6 Conclusion

This work has focused on the formulation of Newton mechanics, Galilean relativity, and special
relativity in α-deformed binary operation setting. The Galilei and Lorentz groups have been
explored, but there still remain other interesting aspects and finer questions relating to the
analysis of their corresponding Lie algebras and interrelationships, which cannot be discussed
within the framework of this short article without leaving the reader hungry. Such a study is
currently under consideration and will be covered in detail in the forthcoming paper.
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Abstract

Having been led by hadron interactions and low-energy photoproduction to SU(4) and
non-compact SU∗(4) symmetry, the general background turned out to be projective ge-
ometry (PG) of P3, or when considering line and Complex geometry to include gauge
theory, aspects of P5. Point calculus and its dual completion by planes introduced qua-
ternary (quadratic) ‘invariants’ xµxµ = 0 and pµpµ = 0, and put focus on the interme-
diary form (x u) and its treatment. Here, the major result is the identification of the
symmetric 20 of SU(4) comprising nucleon and Delta states as related to the quaternary
cubic forms discussed by Hilbert in his work on full invariant systems. So PG determines
geometrically the scene by representations (reps) and invariant theory without having
to force affine restrictions and additional (spinorial or gauge) rep theory.
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1 Introduction

When analyzing low-energy hadronic experiments and their degrees of freedom in the con-
text of effective chiral theories, it turned out that with respect to the pion-nucleon-delta
system SU(4) linear states were able to describe the fermionic N - and ∆-states and their
properties linearly. Explicitly, by starting over from current algebra and spectral descrip-
tions (i.e. Goldberger-Treiman, PCAC,. . . [2]), Sudarshan [24] proposed to saturate the Adler-
Weisberger sum rule [1], [26] of the (axial) charge commutators by quasi-particle calculations
based on usual spin-isospin states. Thus, by requiring that the quasi-particle ansatz

N ′dyn = λNstat +
p

1−λ2

∫

π(x)N(x)d4 x , (1)

describes the axial coupling g2
A, we’ve showed that the ‘dynamic’ states N ′dyn fit perfectly to the

members of the (linear) threefold symmetric rep 20 of SU(4) [6], [7], [8], built symmetrically
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out of three fundamental reps 4. The light non-strange mesons π, ω, and ρ fit into the linear
SU(4) rep 15, and due to SU(4) ∼= A3 it is evident from the Dynkin diagram that we can
‘embed’ (or identify) two commuting (chiral) SU(2) groups, A1 ⊗ A1. But because SU(4) still
yields well-defined 3-projections of spin and isospin, we cannot only treat the various actions of
SU(2)×SU(2) or the ‘spontaneously broken symmetry’ SU(2)×SU(2)/SU(2) of the (nonlinear)
chiral approaches – this rep theory can also handle partially conserved axial currents (‘PCAC’)
in terms of the SU(2) pion field(s). Moreover, in contrary to somewhat tedious and ‘higher
order’ calculations in effective chiral approaches, the threshold production amplitude of π0 on
the nucleon (the interactions of 20 with 15 when reduced to the observed ‘spin-isospin states’)
yields strong suppression in first order by superselection rules. Last not least, pion scattering on
the nucleon when treated by SU(4) reps yields small charge dependence (‘isospin breaking’).
With respect to usual quark descriptions, it is noteworthy that 20 in the spinorial rep yields
three symmetric constituents while 15 comprises the fundamental rep 4 and its conjugate 4∗.

So the manifest question ‘Why this?’ lead us to a series of papers (see refs in [13])
to discuss SU(4) and the non-compact group SU∗(4), their common maximal compact sub-
group USp(4) and certain aspects of the associated Riemannian spaces AII∼SU∗(4)/USp(4)
and CI∼USp(4)/SU(2)×U(1). Here, however, it is time to step back from the transformation
groups and related mathematical constructions, and to recall some old relations of Lie theory
with physical and geometrical aspects.

An essential ‘in-between’ has been achieved by considering line geometry which allowed
to associate reps of gauge bosons and reps of line Complexe [11], and to identify Lorentz
transformations in Special Relativity as a special transformations of the Plücker-Klein quadric
M4

2 onto itself [13]. This emphasized the importance of treating line Complexe in P5 and their
‘reduction’ via the Plücker-Klein quadric to line sets in P3 so that in terms of (line) geometry
of P3 the symplectic transformations reflect mappings of Complexe onto each other, and the
Lorentz (point) transformations of Special Relativity ensure ‘invariance of line geometry’ by
restricting the Complexe to transformations of the Plücker-Klein quadric ( [13], IV.C).

This concept on the one hand paved the path to identify the photon rep with a special
line Complex, and it pointed to a possible geometrical/physical background of the 5-dim coset
space SU∗(4)/USp(4), a rank-1 irreducible globally symmetric Riemannian space AII [9], and
the occurrence of symplectic symmetries. On the other hand, it pointed to the necessary treat-
ment of line Complexe, line sets, Congruences or ray systems, and associated reps from scratch.
The 10-dim rank-2 CI-space can be represented once more by SU(2)×U(1) symmetric cosets
which yield a simple background when restricting PG to affine geometry.

Needless to say, that besides the abstraction of ‘a point x ’ and the associated evangelism
of (Lagrangean) point motion, we have to consider its dual – the plane u – in P3 as well, or
– as a substitute of both – quadratic line geometry (lines being dual to lines in P3) and using
Hamilton’s approach. So in all cases, reps of ‘non-local’ or ‘extended’ objects like lines or planes
enter rep theory, although in PG of P3 we can still found on their linearity. More generally,
all such identifications require a priori a stricter treatment of the reps by (Lie) transformation
theory and of their geometry, and a common treatment of lines versus points and planes (which
compels a thorough discussion of conjugation, or duality, too!). In other words, as long as we
treat linear reps and symmetries, we should apply projective geometry (PG) from scratch in
order to derive and treat two aspects consistently: the breakdown to affine geometry by fixing
an ‘absolute plane’ in order to connect geometrically to Weyl’s concepts and gauge symmetries
used throughout field and quantum theories, and the metric aspects from the viewpoint of
Cayley and Klein with respect to a given (invariant) polar system (‘absolute quadric’) and the
respective transformation groups.
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Figure 1: Symmetric 20; left: construction by 4 of SU(4) [8], F.6; right: subdivision
by Hilbert [16], §19.

2 The results

Now, instead of taking the long approach to answer ‘why’ SU(4) obviously works with respect
to hadron reps and symmetries, we argue ‘top down’ using both our construction scheme of
SU(4) reps, and especially of 20 (see details in [8], app. F.6), as well as Hilbert’s (almost
forgotten) foundations on invariant systems [16].

Whereas due to the rank-3 group A3 the root system can be ‘rotated’ to P3 and serve as a
coordinate system by identifying 4 with the fundamental tetrahedron, the construction of 20
yields a ‘threefold’ tetrahedron subdivided by ‘4’s, see fig. 1, left. The individual states of 20
are given and discussed e.g. in [6], [7], and [8].

But using the symmetry group SU(4) requires a treatment of its invariant theory, especially
of the full invariant system. As such, being concerned to construct the full invariant system
with respect to (quaternary) linear transformations, we can use Hilbert’s approach [16] and
the related forms. The approach to rep theory via forms is suitable because the transformation
determinant is 1, so all occurring determinant powers throughout invariant theory are 1, too,
i.e. the respective forms are not altered by additional determinant factors.

Citing Hilbert’s construction scheme ( [16], §19), we find:1 ‘(. . . ) For example, to construct
the quaternary forms of the 3rd order, we construct a regular tetrahedron in 3-space with edge
length 3, then divide each edge into three equal pieces and draw through the partial points two
parallel planes to each of the four side faces; these planes cut the tetrahedron into regular tetra-
hedra with edge length 1. Each corner point (n1, n2, n3, n4) of these tetrahedra corresponds to a
member of the quaternary cubic form. (. . . )’.

So while we have constructed the rep 20 (fig. 1, left) in a bottom-up approach by means of
roots and the fundamental tetrahedron 4 [8], Hilbert subdivides ‘top-down’ the ‘large’ tetra-
hedron (fig. 1, right) and identifies each of the 20 intersection/corner points (n1,n2,n3,n4)
with a member of the quaternary cubic form, i.e. with one member of 20, or what we denoted
initially by a ‘Chiron’ [6], [7]. Based on our construction scheme, besides the bridge to well-
established classical invariant theory, we thus have a symbolism at hand to treat the geometry
of P3 in terms of quaternary forms. From the physical point of view, when recalling the historic
and ongoing quest for hadronic states and equations of motions (see e.g. [22] and references
where one tries to separate spin content), we have identified the irrep 20 yielding physical
as well as geometrical background while additionally subordinating into the algebraic frame-
work of invariant theory.2 Whereas synthetic geometry proposes additional rich background
and strategy (see e.g. [20] or [21] §2ff.), the analytical frameworks and tools beyond just lin-
ear algebra, affine geometry and gauge theory still have to be established consistently. Please
note also with respect to physics and affine geometry, that by means of the structures above,

1ibd. p. 366, translated from German. . .
2In other words, the symmetric threefold ‘spinorial’ structure of 20 is based on nothing but the very origins of

invariant theory of transformation groups without the need to introduce additional ‘gauge glue’.
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it is straightforward to introduce quaternary barycentric coordinates. As such, masses and
mass relations are linked to geometrical properties, especially with respect to the interior of
the convex hull like in the case of 20, and – appropriately normalized – the four ‘coordinates’
sum up to 1. Here, the major result is the geometrical identification of 20 in SU(4) with reps
of cubics, which is a dead giveaway with respect to PG and higher order representations [21].

3 The context

Carrying forward the results of the last section, we can test the symbolism with respect to
P3 if we identify the four members of 4 with points, i.e. the rep 4 with the quaternary point
coordinates xα. So with respect to quaternary forms when multiplying two (a priori different)
point reps 4∼ , we expect a bilinear (symmetric) form (or the polarized form of a quadric)
with dim 10 for the symmetric part, and a line rep of dim 6 for the antisymmetric part. The

symbolism yields ⊗ = ⊕ = 10 ⊕ 6, and from both approaches it is evident

that the limit x → y ‘destroys’ the antisymmetric part, and the quadric ‘survives’. Formally,
we can introduce a bilinear form B(x , y) so that the set of points {y|B(x , y) = 0} defines ‘the
polar’ of x , or an associated linear map mB : V → V ∗ by B(x , y) = 〈mb x , y〉, and by symmetry
〈mb x , y〉 = 〈mb y, x〉. So even analytically, we have tools to treat linear mappings as well
as quadrics in V and V ∗ (by the adjoint map m∗b and the induced quadratic form). To grasp
the physical notation, we can use the ‘old geometrical’ notion of points x and planes u, and
their ‘products’ (aαxα)n ≡ (ax)n, (bu)n, as well as x · u ≡ (xu), higher orders thereof and
appropriate forms.3 So from the symbolism above, 10 relates to the (symmetric) quaternary
quadric whereas 6 relates to (antisymmetric) line reps (which by appropriate complexification
of the Plücker coordinates or using Klein’s linear Complexe [12] can serve as of SO(6)).

If we look for the conjugate of 4, SU(4) requires the conjugate rep ∗ to transform
according to the threefold antisymmetric rep. Written in terms of determinants, it is easy
to see that ∗ has to represent quaternary plane coordinates of 3-space. SU(4) yields
∗ ⊗ = 15 ⊕ [0] where the [0] represents a vanishing 4 × 4-determinant (or a point-

plane incidence (ux) = 0). On the same footing, using ∗ as rep for three linear independent
points (‘a plane’), non-vanishing 15 associates a 4th point aα to the plane uα = εαβγδxβ yγzδ,
and aαuα = εαβγδaαxβ yγzδ represents a determinant, or geometrically a tetrahedron (‘vol-
ume’). This requires a thorough discussion of (ux) ≡ ux (or uαxβ , or (ax)(bu) ≡ ax bu) in
quaternary invariant theory.4

Note, however, that this symbolism works by means of the initial analytic rep of linearly
transforming point and plane coordinates in R3, or P3, and their respective analytic reps by
forms, not as a feature of space geometry itself.

4 The background

Now please recall, that given an irreducible polynomial f ∈ K[xα] and a related hypersurface
V , in order to define a tangential plane (and the tangential space) of V at a regular point p,
we can invoke the hyperplane definition

¦

ν ∈ Kn|
∑

να
∂ f
∂ xα
(p) = 0
©

describing a plane normal
to ∇ f (p). The same mechanism in (finite) geometry can be achieved by considering null

3While we have discussed (bu)2 in relation to Dirac’s linearization of pµpµ (see e.g. [12]), (bu)n in general relates
to moments of order n and the tetrahedral Complex; due to the 8-page limit here, we postpone this discussion.

4To pursue the combinatorial aspects in contemporary considerations, one can follow Rota (see e.g. [14], [18],
[15], however, according to his foreword in the reprint of Study’s marvellous work [23] it is worth considering the
classical path, too, as well as Study’s geometrical concepts [23].
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Figure 2: Left: Quaternionic action induced by rays and lines; right: line vs. ray
intersections with quadric.

systems [13]. So we have to treat two ‘competing’ descriptions, ‘moving’ the tangential plane
with respect to the quadric and the (‘orthogonal’) null plane with respect to motions along
the normal and their so(4) Lie algebra [13]. Whereas for the tangential discussion and two
point x , y of the quadric, we can use the incidence relations (ux) = (u′ y) = 0, a (null) plane
uα = Aαβ xβ in general will be mapped to the (null) plane of a different linear Complex,
u′α = Bαβ yβ . So relating A and B requires symplectic transformation groups.

Formally, if in the special incident/tangential case we represent the plane by u= 1
2(u

p+uN )
where up denotes the polar/tangential part and uN the null plane, we can express the ‘parts’ of
the plane according to uµ→ ∂ ′µ ∼

1
2(∂µ+Aµνxν), A describes the 6-dim antisymmetric rep of the

null system, or the rep of a (general) linear Complex. Now expressing A via its dual/conjugate
Ac , i.e. Aµν ∼ εµναβAc

αβ
, we find the plane rep uN

µ ∼ εµναβAc
αβ

xν. Here, the ε-‘tensor’ formally
ensures the threefold antisymmetry of the coordinate expression, and moreover, it ensures
the point-plane incidence (xu) = 0. For electromagnetism and the electromagnetic field, an
(affine) replacement Aµν → Fµν has been discussed in [25] by 3-vectors E⃗, B⃗, M⃗ and H⃗ to
derive Maxwell’s equations. So the difference in the tangent planes can be seen as a necessary
rotation (or readjustment) of the null lines (i.e. of moments), and symbolically as ∂ ′µ = ∂µ+ũN

µ ,
i.e. by correcting the plane appropriately. The Jacobian J benefits from the polar decomposi-

tion, i.e. for x ′α = fα(xβ) = Aαβ xβ and S2 = xα fα(xβ), we find ∂ fα
∂ xβ
=
∂ x ′α
∂ xβ
= Aαβ ∼= Jαβ .

So using a sphere to represent the quadric above (and to connect to what Weyl5 and Wigner
understood as features of quantum theories), we want to emphasize the underlying line geo-
metric picture. By considering the sphere as a hull with center common to the center of a ray
or line bundle (see fig. 2, right), this introduces immediately two well-known algebraic reps.
In the first approach, we can define operators on the sphere S2 to shift the point p quarterwise
along the great circles while inherently respecting the quadric constraint of the sphere. It is
easy to see that these quarterwise transformation operators fulfill the quaternion algebra (see
fig. 2, left), where −k P = N = ji P ←→ i j = k, i jk = −1. The negative squares map the
points to their ‘antipodes’ on the sphere, i.e. using this quadratic algebra, we have an operator
system at hand which respects the (invariant) geometry of the surface by means of appropriate
transformations of points. In general, we can use the quadratic algebras (or especially Clifford
algebras or hypercomplex number systems) to represent the three possible signatures of the
various real cases of quadrics when the base elements square to q2

N = ±1, 0, i.e. also in the
hyperbolic and parabolic cases. For rays or oriented lines this approach yields a 2π-periodicity,
i.e. q4 = 1 or reps in terms of sin() or cos(), whereas lines yield π-periodicity and tan(). So al-
ready this simple classical picture analytically introduces ‘quantum notion’, and if e.g. instead
of three rays we use three lines, the spherical triangle has a ‘mirror image’ on the opposite side
of the sphere.6 So instead of a single quaternionic rep (or SU(2)), we can discuss a twofold

5Recall e.g. [27], III § 16: the system space of quantum mechanics is a ray space, no vector space.
6In PG, we can also perform the shift of the center from 0 to∞ easily (or an appropriate change of points in
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quaternionic rep transformed by SL(1,H)×SL(1,H) (or SU(2)×SU(2)), SL(1,H)×SL(1,H), or
coverings like SL(2,H) or S(SL(1,H)×SL(1,H)).

The second associated algebraic rep, Study’s kinematical mapping,7 uses a similar reason-
ing to treat SU(2)×SU(2), where in addition special emphasis is given to projections onto the
conic in the equatorial plane. Like in the first picture by using the equatorial great circle, we
can thus switch to an alternative, rational parametrization of the (planar) conic, Φ :R→R2,
by means of t →

�

2t
t2+1 , t2−1

t2+1

�

which recovers the ‘spinor’ introduction (see e.g. [10], III.C and
III.F). By recalling the projective generation of a conic by two line pencils, we can introduce the
respective pencil coordinates so that the theory of binary forms applies and Clebsch-Gordan
decompositions enter naturally. So these examples reveal an obvious mismatch on the inter-
pretations of algebraic reps vs. physical notion, and more important and induced by the focus
on point calculus, between the number of different physical processes and the amount of al-
legedly independent algebraical descriptions. Here, based on the additional geometrical hint
by Hilbert and invariant theory above, in the next section we follow Plücker, Klein and Lie and
introduce another linear geometrical object, ‘the plane’, to keep in touch with PG and classical
(quaternary) invariant theory of P3. Evidently, this well-defined geometrical notion is able to
treat certain tensorial notions common in contemporary (‘quantum’) rep theory.

5 Some consequences

Thus, relying on point reps xα, the geometrical rep theory of P3 has to be completed by dual
plane reps uα, also in order to complete invariant theory.8 We have discussed above few com-
binatorial aspects of a symbolism, so before entering algebraical details on invariant systems
comprising x2, u2, x · u, etc., it is worth to scrutinize plane reps u∼ ∗ and their use.

Now, while from classical geometry we know various forms of plane reps in R3, in the
usual (metric) interpretation when given e.g. in the Hesse form ni x i − d = 0 (and which
relates to our tangential definition above), n⃗ describes the normal vector to the plane and d
the distance of the plane with respect to the origin. If we formally introduce homogeneous
point coordinates, x⃗ i →

x i
x0

, and rewrite the form by ni x i − d x0 = 0 = uαxα = (ux), we
thus have metric interpretations of the formal ‘plane’ coordinates uα. Exhausting (or even
overexciting) this formalism, we can think of the plane as a tangential plane to a sphere at
distance d, and if we assume propagating spherical waves with velocity c and time t, then
d = c t corresponds formally to the ‘energy component’ u0.9

Here, as a further aspect with respect to the use of exponentials, their partial differenti-
ation and ‘plane waves’ in physics, we want to use ‘intermediary forms’10 (ux). From above
it is obvious, that this ‘distance’ measurement of points with respect to planes can be used to
define the point coordinates, however, one has to work out the dependence from the usual
metric terminology e.g. in the definition of the (Euclidean) coordinates or the distances. To
approach this problem, we can go back to the Cayley-Klein approach, and define the distance
d of two points q1 and q2 by dist(q1, q2) ∼ −2i log DV (q1, q2, R, S) with intersections R, S on
the absolute quadric; DV denotes the anharmonic ratio. If we rewrite the distance d of a point
x to a plane p by d = dist(q1, q2), then id = i x · p ∼ log DV (q1, q2, R, S). Exponentiation

the anharmonic ratio), and discuss the associated orientation(s) of the second ‘projected triangle’.
7See e.g. [17], Abb. 87, see also Study’s transfer principle and dual numbers [5], §103.
8Here, we exclude line and Complex reps and their use in force systems, kinematics and gauge theory.
9So based on this identification, care has to be taken when discussing linear roots of quadrics in order to not

produce ‘anti-particles’ with opposite sign in the component u0.
10german: ‘Zwischenformen’; invariants using both variables and their duals when set to zero represent projec-

tive relations.
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results in exp(id) = exp(i x · p) ∼ DV (q1, q2, R, S) which yields some insight into the ‘plane
wave’-approaches, ‘second quantization’, ‘exponential forms’, etc. in the affine setup x0 = 1.
Whereas the rhs, DV (q1, q2, R, S), is a priori well-defined in PG of P3 for general projective
generalization and accessible by von Staudt’s ‘Würfe’ or derived concepts like binary forms or
Hesse transfer, a naive ‘relativistic’ expansion x i → xα, pi → pα has to be treated carefully. It is
obvious that these well-defined, projective properties ‘scatter’ to individual analytical expan-
sion of exponentials on the lhs, or parts of such series, a fortiori with respect to non-commuting
parameters, higher orders or necessary applications of Baker-Campbell-Hausdorff formulæ. As
such, it is easier to start from an intermediary form (x p) and apply quaternary invariant the-
ory from scratch; its exponentiation forces the use of expansions, power series, ordering and
grouping schemes, and their respective comparison(s), i.e. it discharges into series of (ux)n.
The lhs thus complies with the operator and expansion methodology of usual invariant theory.

Now, whereas in the Cayley-Klein approach we can rely on the logarithm to produce metric
and additive quantities from the DV and from PG, the rhs here ‘lives’ in pure and strict PG. So
we can use the (partial) differential operators to restore the linearity and the ‘vector’ properties
of the originally linear vectors x and p if we use ‘new forms’ exp(i(x p)). Then, the action of ∂µ
reproduces ‘contravariant’ linear elements, ∂µ exp(i(x p)) ∼ ipµ exp(i(x p)), so that effectively
pµ ∼ −i∂µ provides a ‘quantization’. To a certain extent, differential operations in this rep
theory thus replace linear operators or vector space behaviour from general PG. To get rid
of the ‘new forms’, however, people have had to introduce additional rules and frameworks,
e.g. the necessary 1-operator in terms of ‘delta functions’, ‘integration’ over homogeneous point
variables xµ, etc. (see e.g. [19], [3], [4], . . . ). Because such reasoning leads us back to enrich
the intermediary form and its exponential by additional invariants and possible exponentials,
we are faced with the original problem (see above or [16]) of determining the full invariant
system either analytically in terms of points and planes, or with respect to (quadratic) line
geometry and its relations to Complex geometry in P5.

6 Conclusion

By identifying the physical rep 20 geometrically as cubic by means of Hilbert’s construc-
tion [16], we have strengthened the foundations of our SU(4) Ansatz within PG. Although it
is hard to recover physically relevant concepts from today’s jungle of physical and algebraical
phenomenology and empiricism, starting over from quaternary invariant theory provides a
reliable basis and stable guidelines. By means of point and plane reps of P3, we can treat in-
variants (especially covariants) where already the linear and quadratic orders have enormous
physical relevance. Using PG and invariant theory to start over again seems to establish correct
descriptions and an ordering scheme, the more as P5 provides subtle and profound Complex
background as well as important transformation theory and relevant mappings to P3.
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1 Introduction

Ladder operators are objects of fundamental importance in the context of exactly solvable
quantum systems. While they connect adjacent eigenspaces of the Hamiltonian, they appear
as key operators in the definition of coherent and squeezed states extensively studied for their
properties in quantum optics, for instance [1]. Ladder operators also participate in describing
the underlying structure of the system through the spectrum generating algebra (SGA) [2].
For the most common one-dimensional (1D) exactly solvable systems (harmonic oscillator,
infinite square well, Morse, etc.), a systematic method has been developed to obtain a realiza-
tion of the ladder operators as first-order differential operators [2]. However, more elaborated
one-dimensional exactly solvable systems like the Rosen-Morse system fall outside the range
of application of this algebraic method. This system, originally introduced as a model to study
vibrations of polyatomic molecules, has been studied in different contexts recently [3–6]. In-
deed, two different ladder operators realizations have been proposed in the literature, both as
higher-order differential operators [4,5]. The first of which was motivated by an analogy with
classical mechanics [6]; while the second arises purely from quantum mechanics through the
concept of shape invariance in supersymmetric quantum mechanics (SUSYQM) [7].

In this paper, we investigate why realization as first-order differential operators of Rosen-
Morse ladder operators cannot be achieved with the standard algebraic method. We find that
the rational dependence of the bounded eigenstates parameters on the excitation number is
crucial in providing an explanation. Moreover, the Rosen-Morse system is a generalization of
the Pöschl-Teller system for which first-order ladder operators are known [8]. We then address
the natural question of relating these sets of ladder operators. Starting from the most recent
set of higher-order Rosen-Morse ladder operators, we explicitly show how they reduce to the
known first-order realization in the Pöschl-Teller limit.

The present work is linked to the study of ladder operators in the context of SUSYQM and
of exactly solvable systems of the Pöschl-Teller type on a larger scale. Indeed, ladder operators
have been constructed and studied for rational extensions of the harmonic oscillator [9, 10]
and of the Rosen-Morse I and II systems [4], among others. Besides, reflectionless cases of the
Pöschl-Teller systems investigated in the following paper intervene in the context of soliton
physics and have shown to exhibit non-linear supersymmetries [11, 12] similar to that of the
rational extensions.

The plan of the paper is as follows. In Section 2, we review the Rosen-Morse and Pöschl-
Teller exactly solvable systems. Then, we introduce ladder operators in Section 3 together
with the algebraic method for obtaining realizations as first-order differential operators. The
resulting ladder operators are presented for the Pöschl-Teller while the failure of the method is
demonstrated for the general Rosen-Morse system. In Section 4, the construction of the most
recent realization of higher-order ladder operators for the Rosen-Morse system is exposed.
Then, we show explicitly in Section 5 how the higher-order ladder operators for the Rosen-
Morse system reduce to their usual first-order realization in the Pöschl-Teller case. We make
final conclusions in Section 6.

2 The Rosen-Morse and Pöschl-Teller systems

The (hyperbolic) Rosen-Morse (RM) [13] system is an exactly solvable quantum system with
Hamiltonian labelled by the parameters s and λ:

Hs,λ = −
d2

dx2
+ 2λ tanh(x)− s(s+ 1) sech2(x) , x ∈ R , s > 0 , 0≤ λ < s2 . (1)
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This system is also named Rosen-Morse II in the literature, as opposed to its trigonomet-
ric analogue (Rosen-Morse I) [14]. The particular case λ = 0 is the Pöschl-Teller (PT) sys-
tem [2,15]. The normalizable eigenstates solving the time-independent Schrödinger equation
Hs,λψs,λ(n) = Es,λ(n)ψs,λ(n) are given in terms of the Jacobi polynomials P(α,β)

n (y) [19]:

ψs,λ(n; x) = Ms,λ(n) cosh−(s−n)(x)e−
λx
s−n P

(as,λ(n),bs,λ(n))
n (tanh(x)) , (2)

where the parameters are

as,λ(n) = s− n+
λ

s− n
, bs,λ(n) = s− n−

λ

s− n
, (3)

and Ms,λ(n) is a normalization constant. There exists a finite number of bounded eigenstates
and the associated energies are rational in the excitation:

Es,λ(n) = −(s− n)2 −
λ2

(s− n)2
, n= 0,1, . . . , nmax < s−

p

λ . (4)

The energies are related to the parameters through Es,λ(n) = −[a2
s,λ(n) + b2

s,λ(n)]/2. In the
Pöschl-Teller case, as,0(n) = bs,0(n) are linear in n and the eigenstates can be expressed in
terms of the associated Legendre polynomials Pµl (y) [19]. Moreover, the energy spectrum
becomes quadratic in n.

3 Ladder operators and the algebraic method

In this work we define ladder operators
�

A±(n)
	nmax

n=0 for a given Hamiltonian H by the following
action on the bounded eigenstates:

A±(n)ψ(n; x)∝ψ(n± 1; x) , A−(0)ψ(0; x) = 0 . (5)

Here, nmax is either finite or infinite depending on H. They connect eigenspaces of adjacent
energies: A+(n) is referred to as a raising operator and A−(n) is a lowering operator. This
definition allows for different realizations of the ladder operators for a unique given system.
Indeed, the proportionality constant can be chosen arbitrarily either to close an algebra or to
construct certain types of coherent states, for instance. In the Rosen-Morse case, the bounded
spectrum is finite and the action A+(nmax)ψ(nmax; x) yields an unbounded state; we refer to [4]
for more details.

For numerous exactly solvable systems (harmonic oscillator, infinitely deep square-well,
Morse potential, etc.), there exists a standard technique to realize the ladder operators as first-
order differential operators using the action on the eigenstates. This technique is sometimes
referred to as the algebraic method in the literature [16, 17]. In particular, it has shown to
be efficient for the Pöschl-Teller system. Starting with the assumption that A±(n) may be
realized as

A±(n) = g±(n; x) + f ±(n; x)
d

dx
, (6)

we act on an eigenstate ψ(n; x) in order to get (5). The result is well-known and detailed in
this case (see [2] , for example). Indeed, ladder operators are found to be given as

A±PT (n)∝−(s− n) sinh(x)± cosh(x)
d

dx
. (7)

Let us now try to apply this technique to the Rosen-Morse case. We will show that it fails to
obtain (5) in a straight way.
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The idea is first to act with a derivative on the eigenstate, and then to use functional
relations among the eigenstates to express the result in terms of the adjacent eigenstates. We
take the usual change of variable z = tanh(x) and act with d

dx = sech2(x) d
dz on an eigenstate

of (2). This yields

d
dx
ψs,λ(n; x) =
�

−(s− n)
sinh x
cosh x

−
λ

s− n

�

ψs,λ(n; x)

+ Ms,λ(n) cosh−(s−n)(x)e−
λx
s−n sech2(x)

d
dz

P
(as,λ(n),bs,λ(n))
n (z) .

(8)

Now, one wants to make use of the functional relation [18]

d
dz

P
(as,λ(n),bs,λ(n))
n (z) =

2s− n+ 1
2

P
(as,λ(n)+1,bs,λ(n)+1)
n−1 (z) , (9)

to recover P
(as,λ(n−1),bs,λ(n−1))
n−1 (z) in order to have ψs,λ(n− 1; x) in (8). However, recalling the

expression (3) for as,λ(n) and bs,λ(n), this is only possible in the Pöschl-Teller case:

as,λ(n) + 1= as,λ(n− 1)

bs,λ(n) + 1= bs,λ(n− 1)

�

⇐⇒ λ= 0 . (10)

Therefore, one cannot recover the eigenstate ψs,λ(n− 1; x) using this relation in the general
Rosen-Morse setting. In fact, the problem comes directly from the rational dependence of the
parameters as,λ(n) and bs,λ(n) with respect to the excitation number n. Indeed, the functional

relations that share the Jacobi polynomials P(α,β)
n (z) only allow integer shifts of the parameters

α and β [19]. The same problem occurs when trying to recover ψs,λ(n+ 1; x) instead. Con-
sequently, the algebraic method fails to provide ladder operators for the Rosen-Morse system.
The next section summarizes the most recent alternative way of constructing ladder operators
for the Rosen-Morse system [4].

4 Ladder operators for the Rosen-Morse system

To simplify notation, we omit the explicit x-dependence of the eigenstates and use ψs,λ(n)
from this point on. We apply first-order supersymmetric (SUSY) transformation (see [7, 20],
for example) to the Rosen-Morse Hamiltonian Hs,λ and the corresponding eigenstatesψs,λ(n).
We get the so-called intertwining first-order differential operators

B±s,λ = −s tanh(x)−
λ

s
±

d
dx

. (11)

The Rosen-Morse system Hs,λ is known to be shape invariant with SUSY partner Hs−1,λ with
translated parameter s→ s− 1 [7]. We have the usual eigenstates connections

ψs−1,λ(n) =
B−s,λψs,λ(n+ 1)
Æ

Es,λ(n+ 1)− Es,λ(0)
, ψs,λ(n+ 1) =

B+s,λψs−1,λ(n)
Æ

Es,λ(n+ 1)− Es,λ(0)
, (12)

together with the ground state annihilation B−s,λψs,λ(0) = 0. The energies are preserved under
the application of B±s,λ as Es−1,λ(n) = Es,λ(n+ 1). Successive applications of the SUSY trans-
formation generate a hierarchy of Rosen-Morse Hamiltonians with fixed λ and translating s.
Since the system loses its ground state energy at every step of the procedure, the state ψs,λ(n)
of the initial system is connected to the ground state of the system Hs−n,λ and vice versa:

ψs−n,λ(0)∝
�

B−s−n+1,λB−s−n+2,λ · · ·B
−
s−1,λB−s,λ
�

ψs,λ(n) , (13)

ψs,λ(n)∝
�

B+s,λB+s−1,λ · · ·B
+
s−n+2,λB+s−n+1,λ

�

ψs−n,λ(0) . (14)
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Hs,λ Hs−1,λ Hs−n+1,λ Hs−n,λ Hs−n−1,λ

ψs,λ(n+ 1)

ψs,λ(n)

ψs,λ(n− 1)

ψs−1,λ(n)

ψs−1,λ(n− 1)

ψs−1,λ(n− 2)

ψs−n+1,λ(2)

ψs−n+1,λ(1)

ψs−n+1,λ(0)

ψs−n,λ(1)

ψs−n,λ(0)

ψs−n−1,λ(0)

B−s,λ

B+s,λ

B+s,λ

B−s−1,λ

B+s−1,λ

B+s−1,λ · · ·

· · ·

· · ·

· · ·

B−s−n+2,λ

B+s−n+2,λ

B+s−n+2,λ

B−s−n+1,λ

B+s−n+1,λ B+s−n,λ

γs−n,λ

γ−1
s−n+1,λ

Figure 1: Product decomposition of A±s,λ(n) acting on ψs,λ(n) to obtain ψs,λ(n± 1)
through the Rosen-Morse shape invariance hierarchy scheme.

Furthermore, defining

γs,λ = cosh(x)e−
λx

s(s−1) , (15)

we obtain the ground states connections

ψs−1,λ(0)∝ γs,λψs,λ(0) , ψs+1,λ(0)∝ γ−1
s+1,λψs,λ(0) , (16)

which respectively raise and lower the value of the energy (4) in the hierarchy.
A ladder operator is constructed by applying successive intertwining operators from (13)

onψs,λ(n) until a ground state is reached, then applying the connection (16), and finally apply-
ing successive intertwining operators from (14) to climb back in the hierarchy untilψs,λ(n±1)
is reached [4]. The ladder operators A±s,λ(n)write as the (2n±1)-th-order differential operators

A+s,λ(n)∝
�

B+s,λB+s−1,λ · · ·B
+
s−n+1,λB+s−n,λ

�

γs−n,λ

�

B−s−n+1,λB−s−n+2,λ · · ·B
−
s−1,λB−s,λ
�

, (17)

A−s,λ(n)∝
�

B+s,λB+s−1,λ · · ·B
+
s−n+3,λB+s−n+2,λ

�

γ−1
s−n+1,λ

�

B−s−n+1,λB−s−n+2,λ · · ·B
−
s−1,λB−s,λ
�

. (18)

The previous equations are valid with the exception of A−s,λ(0), A+s,λ(0) and A−s,λ(1) for which
they do not hold. For the latter two, one of the products should be interpreted as unity:

A+s,λ(0)∝ B+s,λγs,λ , A−s,λ(1)∝ γ−1
s,λB−s,λ . (19)

The particular case A−s,λ(0) is also of the first order. For consistency with (18)1 we take

A−s,λ(0)∝ γ−1
s+1,λB−s,λ, , (20)

even though B−s,λ already annihilates ψs,λ(0). The ladder operators A±s,λ(n) satisfy the action
(5) and they are illustrated in Figure 1 where their action is decomposed within the hierarchy.

5 Reduction of Pöschl-Teller ladder operators

This section addresses the reduction of the Rosen-Morse ladder operators A±s,λ(n) to the known
Pöschl-Teller first-order realization A±PT (n) presented in Section 3. We set λ = 0 and remove
theλ-label so that A±s (n), B±s ,γs andψs(n) are understood to be that of the Pöschl-Teller system.

1As well as for technical reasons in view of Section 5.
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5.1 Reduction of A+s,0(n)

We show how the action of A+s (n) reduces to that of A+PT (n). To do so, we use ideas from [8].
Raising the ψs(n) state develops as

A+s (n)ψs(n)∝ B+s B+s−1 · · ·B
+
s−n+1

�

B+s−n cosh(x)B−s−n+1B−s−n+2 · · ·B
−
s−1B−s ψs(n)
�

, (21)

where the factor in brackets yields the state ψs−n(1) (see Figure 1). Knowing the expression
for ψs−n(1), we write it in terms of the ground state of the same system in the hierarchy:

ψs−n(1)∝ sinh(x) cosh−(s−n)(x)∝ sinh(x)ψs−n(0) . (22)

Substituting back in (21), we arrive at

A+s (n)ψs(n)∝ B+s B+s−1 · · ·B
+
s−n+1 sinh(x)ψs−n(0) . (23)

The sinh(x) must be commuted to the left of the product of intertwining operators in order to
recover ψs(n) on the right hand side via the relation (14). This can be done by first writing
the product of intertwining operators in the form

B+s B+s−1 · · ·B
+
s−n+1 = coshs+1(x)

�

sech(x)
d

dx

�n

cosh−(s−n+1)(x) , (24)

and then by making use of the commutation relation

��

sech(x)
d

dx

�n

, sinh(x)
�

= n
�

sech(x)
d

dx

�n−1

, (25)

among differential operators [8]. We obtain

A+s (n)ψs(n)∝ sinh(x)B+s B+s−1 · · ·B
+
s−n+1ψs−n(0) + n cosh(x)B+s−1 · · ·B

+
s−n+1ψs−n(0) (26)

∝ sinh(x)B+s ψs−1(n− 1) + n cosh(x)ψs−1(n− 1) , (27)

where we again used (14) in the last line. Then, from (12), we use respectively

B+s ψs−1(n− 1) =
Æ

n(2s− n)ψs(n) , and ψs−1(n− 1) =
B−s ψs(n)
p

n(2s− n)
, (28)

on the first and second terms of (27) to recover the action of a first-order differential operator
on ψs(n):

A+s (n)ψs(n)∝
�

Æ

n(2s− n) sinh(x) +
n cosh(x)
p

n(2s− n)
B−s

�

ψs(n) . (29)

Simplifying using the expression for B−s , the remaining operator is proportional to the usual
raising operator for the Pöschl-Teller system:

A+s (n)ψs(n)∝
�

−(s− n) sinh(x) + cosh(x)
d

dx

�

ψs(n)∝ A+PT (n)ψs(n) . (30)

In the general Rosen-Morse case, the operators B±s,λ contain a λ/s term which complicates
the generalization of the identity (24). Then, the association (22) contains two terms with
exponentials. Put together, the commutation of the B±s,λ cannot be performed similarly and
prevents the reduction of the ladder operators.
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5.2 Reduction of A−s,0(n)

The reduction of A−s (n) is similar to that of A+s (n). Developing the lowering of the ψs(n) state
in a similar fashion as done in (21) and (22) yields

A−s (n)ψs(n)∝ B+s B+s−1 · · ·B
+
s−n+2 sech(x)B−s−n+1ψs−n+1(1) . (31)

Note that we have made the association with ψs−n+1(1) before reaching the step of ground
state connexion (see Figure 1). To continue further, we make use the equivalence of the fol-
lowing operators on ψs−n+1(1):

sech(x)B−s−n+1,λ

cosh(x)B−s−n,λ

«

: ψs−n+1,λ(1) 7→ψs−n+1,λ(0) , (32)

to write
A−s (n)ψs(n)∝ B+s B+s−1 · · ·B

+
s−n+2 cosh(x)B−s−nψs−n+1(1) . (33)

Noticing B−s−n = B−s−n+1 + tanh(x), we get

A−(n)ψs(n)∝ B+s B+s−1 · · ·B
+
s−n+2

�

cosh(x)B−s−n+1 + sinh(x)
�

ψs−n+1(1) . (34)

We use B+s cosh(x) = cosh(x)B+s−1 repeatedly on the first term of (34) to commute cosh(x) to
the left. The second term is treated similarly as in the previous section by using the formula
(24) and the commutation relation (25) on sinh(x), yielding two terms. Keeping track of the
relative constants between the terms, we obtain

A−s (n)ψs(n)∝ cosh(x)B+s−1 · · ·B
+
s−n+2B+s−n+1B−s−n+1ψs−n+1(1)

+ sinh(x)B+s B+s−1 · · ·B
+
s−n+2ψs−n+1(1)

+ (n− 1) cosh(x)B+s−1 · · ·B
+
s−n+2ψs−n+1(1) .

(35)

The product B+s−n+1B−s−n+1 factorizes Hs−n+1 in the first term and the three terms can then be
combined. We act with the product B+s−1 · · ·B

+
s−n+2 to get ψs−1(n− 1) (see Figure 1). We are

left with
A−s (n)ψs(n)∝

�

(2s− n) cosh(x) + sinh(x)B+s
�

ψs−1(n− 1) . (36)

We again make use of (28) and rearrange to recover the usual Pöschl-Teller lowering operator

A−s (n)ψs(n)∝
�

−(s− n) sinh(x)− cosh(x)
d

dx

�

ψs(n)∝ A−PT (n)ψs(n) . (37)

6 Conclusion

In this paper, we have studied ladder operators for the Rosen-Morse system and the Pöschl-
Teller particular case. We exposed how the algebraic method of constructing ladder operators
fails for the general Rosen-Morse system, and we found that the rational dependence of the
parameters as,λ(n) and bs,λ(n) on n is responsible for this failure. Next, we recalled the con-
struction of a set of known (2n± 1)-th-order Rosen-Morse ladder operators. It was expected
that the later should reconcile with the well-known first-order realization of the Pöschl-Teller
ladder operators obtained from the algebraic method. Indeed, we have explicitly obtained the
reduction of the Pöschl-Teller ladder operators from order 2n± 1 to order 1. Besides, a point
canonical transformation [21] has been used to map the ladder operators presented in Sec-
tion 4 onto (2n± 1)-th-order analogous ladder operators for the trigonometric Rosen-Morse
system [4]. We expect that similar results apply in the trigonometric case.
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Abstract

New solutions in supersymmetry breaking through gravity mediation have been recently
discovered. Such solutions have interesting properties regarding renormalisation and
introduce new contributions in the scalar potential that may help to resolve some issues
of the Standard Model. The purpose of this article is to investigate the consequences of
these new structures. We construct a model related to these new solutions, the S2MSSM,
and present some preliminary results on the effects of these new contributions, especially
on the Standard Model’s Higgs boson mass.

Copyright R. Ducrocq.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 16-12-2022
Accepted 11-08-2023
Published 24-11-2023

Check for
updates

doi:10.21468/SciPostPhysProc.14.027

1 Introduction

The Standard Model of particle physics provides a robust framework to describe the behaviour
of particles and fundamental interactions. However, several issues still remain in this model.
Some of these problems may be solved by embedding the Standard Model in a more funda-
mental theory. There exist several possibilities. Two of them are supersymmetry and its local
version, supergravity. Such theories are defined within the framework of Lie superalgebras
in the line of the Haag–Lopuszański–Sohnius theorem [1]. This theorem strongly constrains
the possible symmetries of the spacetime. In the simplest case (N = 1 supersymmetry and
supergravity), this theorem restricts the symmetry to be:

g= g0 ⊕ g1 , with g0 = Iso(1,3)× gC , g1 = SL ⊕ SR ,

with Iso(1, 3) the Poincaré algebra, gC a compact Lie algebra related to internal symmetries
and SL (resp. SR), the left-(right-)handed spinor representation where SL = {Qα, α = 1, 2}
(SR = {Q̄α̇, α̇ = 1,2}) and (Qα)† = Q̄α̇. The subspace g0 is called even whereas g1 is called
odd.

However, the spectrum of such theory is incompatible with the actual measurements. Su-
persymmetry and supergravity must then be broken. Several consistent mechanisms exist in
supergravity. We focus on one of them, namely, gravity-mediated supersymmetry breaking. In
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such scenarios, supergravity is assumed to be broken in a hidden sector. Such a configuration
induces, through gravitational effects, supersymmetry breaking in the usual field sector. Solu-
tions to this mechanism were first classified in the 80s [2]. Recently, new solutions have been
discovered [3] with new supersymmetry breaking terms and a new field sector with specific
properties.

After a general presentation of the gravity-mediated supersymmetry breaking mechanism,
we present the new solutions. A particular model, the S2MSSM, is then constructed. The mass
matrix of the scalar sector is finally analysed.

2 Supersymmetry breaking through gravitational interactions

To construct a model in supergravity, we choose a gauge group G. In our case, we consider
G = SU(3)c×SU(2)L×U(1)Y . Vector superfields associated to the strong SU(3)c and the elec-
troweak SU(2)L×U(1)Y interactions are naturally introduced in the adjoint representation of
G. We also include a matter sector with chiral superfields subdivided into two subsectors. The
first is the visible (or observable) sector {Φa, a = 1, . . . , na} where Φa = (φa,χa

φ
, F a
φ
),1 con-

taining the usual fields of the Standard Model with their associated supersymmetric partners.
The second is the hidden sector {Z i , i = 1, . . . , ni} with Z i = (ζi ,χ i

ζ
, F i
ζ
). Finally, two gauge

invariant functions of the chiral superfields are introduced: a real function called the Kähler
potential K which leads to the kinetic term of chiral superfields and a holomorphic function,
the superpotential W , which generates the Yukawa couplings of the Standard Model. Super-
gravity is then assumed to be broken in the hidden sector with 〈ζi〉=O(mp) where mp is the
Planck mass (we also have 〈φa〉 ≪ mp). The F -term of the scalar potential of supergravity can
then be computed:

VF = exp
�

K/m2
p

��

DAW (K−1)AB∗DB∗W̄ −
3

m2
p
|W |2
�

, (1)

with:

DAW = ∂AW +
W
m2

p
∂AK , (K−1)AB∗ =

�

∂ 2K

∂ X A∂ X †
B∗

�−1

,

({X A} = {Z i ,Φa}). Considering the low energy limit (i.e., taking mp → ∞), we obtain the
classical potential of supersymmetry VSUSY with additional terms V���SUSY which explicitly break
supersymmetry:

VF = VSUSY + V���SUSY . (2)

Note that the form of the superpotential and the Kähler potential must not induce dangerous
couplings in Eq. 1. Indeed, at low energy, couplings proportional to the Planck mass mp gen-
erate instabilities in the matter sector. We must therefore impose that the interactions in the
visible sector must be proportional in the potential to mn

p with n≤ 0.
We are interested in solutions for which the Kähler potential K and the superpotential W

can be expanded as power of the Planck mass:

K(Z , Z†,Φ,Φ†) =
r
∑

n=0

Kn(Z , Z†,Φ,Φ†)mn
p , W (Z ,Φ) =

s
∑

n=0

Wn(Z ,Φ)mn
p , (3)

(we thus exclude no-scale solutions). Under these assumptions, one obtain two solutions us-
ing a canonical Kähler potential. The first one is the historical solution discovered by Soni &

1We denote the components of a chiral superfield X A by X A = (xA,χA
X , FA

X )with xA a scalar field, χA
X a left-handed

Weyl spinor and FA
X an auxiliary field.
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Weldon [2], which is the cornerstone for all the studies involving gravity-mediated supersym-
metry breaking up to now. The second is a new structure that will be described in the next
section.

3 New solutions in gravity-mediated supersymmetry breaking

We briefly present the new solutions [3] associated to a canonical Kähler potential:

K(Z , Z†,Φ,Φ†) = Z i Z†
i +Φ

aΦ†
a .

Following Eq. 3, two possible forms for the superpotential have been identified. The first
corresponds to the known solution developed in [2]. The second has a new structure and
introduces a new singlet superfield sector {S p, p = 1, . . . , np} (with S p = (Sp,χ p

S , F p
S )):

W (Z ,Φ,S) = mpW1(Z ,S) +W0(Z ,Φ,S) , (4)

with:

W1(Z ,S) =W1,0(Z) +W1,p(Z)µ
∗
pS

p , W0(Z ,Φ) =W0,p(Z)S p +W0(Z ,U ,Φ) , (5)

and
U pq = µpSq −µqS p . (6)

The functions W1,0, W1,p, W0,p and W0 are holomorphic functions of chiral superfields. The
form of W (Z ,Φ,S) in Eqs. 4 & 5 and U in Eq. 6 is dictated to avoids dangerous couplings
between the visible and the hidden sector in the low energy limit. The new singlet superfield
sector {S p} is called “hybrid”. It involves in W1(Z ,S) a term proportional to the Planck mass
mp (see Eq. 4), but still produces a divergent-free low energy potential. The low energy scalar
potential Eq. 7 associated with Eqs. 4 and 5 is:

V = VSUSY +Λm2
p + VSOF T + VHARD , (7)

where Λ is the cosmological constant. The two remaining terms break supersymmetry explic-
itly. The terms VSOF T are soft supersymmetric breaking terms, i.e., terms that lead to loga-
rithmic divergences through loop corrections. Such contributions are already present in the
historical classification. The general form of VSOF T has been classified [4] and takes the form:

VSOF T =
�

Ciφ̃
i +

1
2

Bi jφ̃
iφ̃ j +

1
6

Ai jkφ̃
iφ̃ jφ̃k + h.c.
�

+m2
φ̃
φ̃ iφ̃†

i , (8)

with {φ̃ i} = {φa, Sp}. The first terms are holomorphic while the last term is real and corre-
spond to the mass term to each chiral fields φ i . Note that the parameters Ci , Bi j and Ai jk are
not arbitrary but are related to the form of the superpotential W0 in Eq. 5 (which is polynomial
of degree three).

The specific structure of the S-sector generates the last term in Eq. 7. Such couplings are
hard breaking terms, i.e., induce quadratic loop divergences. The general form of the hard
breaking terms takes the form:

VHARD =
�

�

Dp
i φ

i +
1
2

Ep
i jφ

iφ j +
1
6

F p
i jkφ

iφ jφk
�

S†
p + Gi jk

lφ iφ jφkφ†
l +Hi jp

lφ iφ jSpφ†
l + h.c.
�

+Q i,p
qφ iφ†

i SpS†
q + Ti,p

qSpS†
pSrS†

q .

The presence of hard breaking terms in the potential is new. Such terms differ from soft break-
ing terms since couplings between holomorphic and anti-holomorphic superfields are present.
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These couplings allow to close S-loops and induce new contributions to the mass of fields φ.
Since such hard terms are suppressed by an intermediate scale, the quadratic divergences are
reduced and may be sizeable to solve some actual issues of the Standard Model. The hard pa-
rameters Dp

i , Ep
i j and F p

i jk are also correlated with the holomorphic soft breaking terms through
the hybrid fields couplings.

4 Hybrid extension of the MSSM: The S2MSSM

In the previous section, we have presented new solutions obtained from a canonical Kähler
potential. It is desirable to extend the analysis to the non-canonical case to get a richer mass
spectrum. Thus, along the lines of the results of Brignole, Ibanez & Munoz [5] and Guidicce
& Masiero [6], we have considered a solution assuming a non-canonical Kähler metric. This
enables us to identify a possible extension of the Minimal Supersymmetric Standard Model
(MSSM) [7] involving hybrid fields Sp.

4.1 Definition of the model

We assume a hidden sector containing one superfield Z = (ζ,χζ, Fζ) and the observable sector
of the MSSM {Φa} = {Φa}MSSM . This model is the simplest supersymmetric extension of the
Standard Model. The visible sector contains superfields associated to quarks, leptons and
the two SU(2) superfields Higgs doublets HU and HD. We also introduce a hybrid sector
{S p} (p = 1, . . . , np). Following the results above, the superfield U is the only superfield that
couples to the observable sector. Among these np hybrid superfields, we assume that only two
superfields S1 and S2 interact with {Φa} via U :

U = µ1S2 −µ2S1 .

The np − 2 other fields {S3, . . . , Snp} will play an important role as we will see later. The
superpotential and the Kähler potential are:

W (Φ,S, Z) = mp

�

W1,0(Z) +S pµ∗pW1,p(Z)
�

+S pW0,p(Z) +W0(Φ,U , Z) ,

K(Φ,Φ†,S,S†, Z , Z†) = m2
pK̂(Z , Z†) +S†

pSp +
∑

a

Λa(Z , Z†)Φ†
aΦ

a ,

where:

W0(Φ,U , Z) = λ(Z)UHU ·HD +
1
6
κ(Z)U3 +WMSSM |µ=0 ,

with WMSSM |µ=0, the superpotential of the MSSM (not given here) where the quadratic Higgs
doublets coupling is not present. Such a superpotential contains then only Yukawa couplings,
i.e., cubic terms. The matrix Λa(Z , Z†) leads to a non-universality of the breaking terms in
the usual matter sector. Since the hybrid superfields S p are gauge invariant, quadratic and
linear contributions can be added. However, we restrict ourselves to aZ3-invariant W0(Φ,U , Z)
superpotential (only cubic couplings) assuming superconformal invariance.

As seen previously, such solutions generate soft and hard terms that affect the mass spec-
trum of particles at the tree level and through loop corrections. We now investigate the mass
matrix of such a model.

4.2 A simple case

This theory contains many fields. It is then difficult to determine the set of parameters leading
to interesting results. In order to find the optimal configuration, we first analyse a simplified
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model. We assume that only the scalar field from the hidden sector gets a nonzero vacuum
expectation value (or v.e.v.) with 〈ζ〉=O(mp).2 We also assume:

W0(Φ,U , Z) =W0(Φ, Z) .

The S-sector then only contributes through the two components W1,p and W0,p of the super-
potential Eq. 5.

We compute the scalar potential Eq. 1 following these hypotheses. Such a potential can
be written as Eq. 7. The vanishing of the cosmological constant and the minimisation of the
potential are also imposed:

〈V 〉= 0 ,

�

∂ V
∂ X A

�

= 0 ,

�

∂ V

∂ X †
A∗

�

= 0 , (9)

(with X A = {z,φa, Sp}, the scalar part of the chiral superfields and we introduce z = ζ/mp).
These relations highly constrain the parameter space.

The mass matrix of this model is a (na + np + 1)× (na + np + 1) matrix mixing the three
different sectors. It can be shown that it decouples into two submatrices related to the two
sectors {Φa} and {Sp, z} at first order of 1/m2

p, and so can be diagonalised separately. The

mass matrixM′2 in the sector X ′A = {Sp, z} reads:

M′2 =
�

∂ 2V

∂ X ′AX ′†B∗

�

=

�

δp
qm3/2 + bIpĪq cIp

c̄Īq d

�

, with m3/2 =
1

m2
p

e〈K〉/m
2
p〈W 〉 , (10)

where Ip =



µ∗pW1,p(z)mp +W0,p(z)
�

, b,c and d are some constants related to the parameters
of the superpotential, and m3/2 is the gravitino mass. Performing a change of basis, we rewrite
the mass matrixM′2 in the form:

M′2 =





m3/2In−1 0 0
0 m3/2 + b|I|2 c|I|
0 c̄|I| d



 , with
np
∑

p=1

IpĪ p = |I|2 . (11)

We then obtain one S-field mixing in a non-trivial way with the hidden field z and the np − 1
remaining S fields with a mass equal to the gravitino mass m3/2. Proving inductively that
Tr[(M′2)n] (with n ∈ N) is only a function of |I|2, one can show that the eigenvalues do not
depend on Ip thanks to the vanishing of the cosmological constant:

〈V 〉= e|〈z〉|
2
�

|I|2+
∑

a

�

�〈∂aW0〉
�

�

2�
+m2

p(|m
′
3/2|

2−3|m3/2|2) = 0 with m′3/2 =
1

m2
p

e〈K〉/m
2
p〈dzW 〉 ,

where dzW = ∂zW + z†W .
To understand the effects of the hybrid sector {S p} on the Standard Model, we have inves-

tigated the consequences of this new sector on the Higgs boson mass. Several points can be
mentioned:

• Since there are no interactions between the hybrid and the observable sector in W0, the
only contributions of the S-sector on the Higgs boson mass are obtained through the
hard breaking terms and thus through loop-corrections.

2Note that fields from the observable sector can develop a nonzero v.e.vs but much smaller than the Planck
mass, i.e., 〈Sp〉 ≪ 〈ζ〉 and 〈φa〉= Mφ ≪ 〈ζ〉 (with Mφ = MEW ≈ 102 GeV or MGU T ≈ 1016 GeV). The effect of these
nonzero v.e.vs. are taken in account in Section 4.3.
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• The order of magnitude of the one loop-correction is proportional to the energy scale of
the visible sector. In order to increase such contributions, we embed the Standard Model
in a GUT model such that 〈φa〉 ≈ MGU T .

• A quantitative study on the order of magnitude of the one S-loop contribution to the
Higgs boson mass has been done. With such hypotheses, we have highlighted several
configurations leading to a Higgs boson mass of 125 GeV. Nevertheless, such configura-
tions require a certain level of fine-tuning in the hidden sector.

This study enables us to put in evidence the correct strategy for analysing the S2MSSM without
the simplifying assumptions imposed previously.

4.3 Towards the general S2MSSM

We now reintroduce the dependence of U in the superpotential W0(Φ,U , Z) Eq. 5. Non-null
vacuum expectation values for the hybrid fields 〈Sp〉 ̸= 0 and the visible sector 〈φa〉 ̸= 0
are also assumed. The energy scale of the Φ-sector corresponds to the electroweak scale
(MEW ≈ 102 GeV) or a GUT scale (MGU T ≈ 1016 GeV).

The complete form of the scalar potential of the S2MSSM is given in Appendix A. The mass
matrix in the sub-sector {Sp, z} can be written in the following form:

M′2 =
�

δp
qa′ + e′ + b′JpJ̄ q c′Jp + f ′p

c̄′J̄ q + f̄ ′
q

d ′

�

, with Jp = Ip + 〈∂pW0〉 , (12)

with a′, b′, c′, d ′, e′ and f ′p some constants. Note that e′, f ′ and d ′ depend on the parameter

Jp. Due to these new contributions, the simple structure bIpĪq in the {Sp}-sector (see Eq. 10)
is lost. Consequently, the spectrum is not degenerate with a mass equal to m3/2.

Mention again that a complete qualitative analysis is tedious due to the number of new
contributions in the scalar potential (see Appendix A). A numerical computation of the mass
matrix is necessary to find configurations that reduce the mass matrix to a form equivalent to
Eq. 11. Such a study is in progress [8]. Such new terms may also help to resolve two actual
issues in the Standard Model and in supersymmetry, i.e.:

• reduce the fine-tuning on the Higgs boson mass through tree-level and loop corrections
and help to naturally obtain a mass near 125 GeV,

• push the squark masses to higher energy which may explain the non-detection of super-
symmetry in particle physics experiments.

Note also that this model can have an interesting relationship with a model called NMSSM [9]
(extension of the MSSM with one singlet superfield). The relation between these two models
is also under investigation [8].

5 Conclusion

New solutions where supersymmetry is broken through gravitational mediation involving hard
breaking terms have been investigated. The contributions of hard breaking terms have been
studied in this paper through the construction of a model related to these new solutions, the
S2MSSM. The mass spectrum of this new model has been calculated assuming the vanishing of
the cosmological constant, i.e., 〈V 〉 = 0. Following some simplifying assumptions, we obtain
in the particle spectrum several degenerated states with a mass equal to the gravitino mass.
However, such structure is lost when assuming all the contributions in the S2MSSM.

A complete numerical analysis through a spectrum generator may be useful to investigate
all the (tree-level and loop-level) contributions of the new field sector {S p}.
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A Scalar potential of the S2MSSM

The purpose of this appendix is to give the scalar potential of the S2MSSM in the low energy
limit. We define W0 = M3

4ω0 and φa = M4ϕ
a with M4 = MEW or MGU T . We also introduce

the notation
∆ f (z, S,Φ) = f (〈z〉, S + 〈S〉,Φ+ 〈Φ〉)− f (〈z〉, 〈S〉, 〈Φ〉) .

The definition of Ip is given in Eq. 10. The complete form of the scalar potential is:

V =m2
p

�

�m3/2

�

�

2� 1
�

�ξ3/2

�

�

2 − 3
�

+ e
�

�〈z〉
�

�

2
�∑

p

�

�Ip +M3
4 ∂pω0

�

�

2
+M4

4 ∂aω0∂
a∗ω̄0〈(Λ−1)aa∗〉
�

+
�

(〈Sp〉+ Sp)(〈S†
p〉+ S†

p)
��
�

�m3/2

�

�

2
T +

1
m2

p

e
1
2

�

�〈z〉
�

�

2
�

m̄3/2S r Tr + h.c.
�

+
1

m4
p

e
�

�〈z〉
�

�

2

S rS†
t T t

s

�

+
1

m2
p

e
�

�〈z〉
�

�

2

SpS†
q

�

dzIpd
z Īq − 3IpĪq
�

+ e
1
2

�

�〈z〉
�

�

2

m̄3/2Sp
� 1

ξ̄3/2

dzIp − 3 Ip + h.c.
�

+
1

m2
p

e
1
2

�

�〈z〉
�

�

2
�

�

M2
4 (〈ϕ

†
a∗〉+ϕ

†
a∗)(〈ϕ

a〉+ϕa)〈Λa∗
a〉+ (〈S†

p〉+ S†
p)(〈S

p〉+ Sp)
�

(〈Sq〉+ Sq)Iq

×
�

m̄3/2 +
1

m2
p

e
1
2

�

�〈z〉
�

�

2

S†
r Ī

r
�

+ h.c.

�

+M2
4

�

(〈ϕa〉+ϕa)(〈ϕ†
a∗〉+ϕ

†
a∗)
�

×
�
�

�m3/2

�

�

2Sa∗
a +

1
m2

p

e
1
2

�

�〈z〉
�

�

2
�

m̄3/2Sp (Sp)
a∗

a + h.c.
�

+
1

m4
p

e
�

�〈z〉
�

�

2

SpS†
q (S

q
p)

a∗
a

�

+
1

m2
p

e
�

�〈z〉
�

�

2
�

M2
4 (〈ϕ

a〉+ϕa)(〈ϕ†
a∗〉+ϕ

†
a∗)〈Λ

a∗
a〉+ (〈Sp〉+ Sp)(〈S†

p〉+ S†
p)
�

×
�∑

r

�

�Ir

�

�

2
+M3

4 Ī
r∂rω0 +M3

4Ir∂
rω̄0
�

+
�

〈SpS†
p〉+ 〈M

2
4ϕ

†
a∗Λ

a∗
bϕ

b〉
�

×
�

3
�

�m3/2

�

�

2 −
�

�m′3/2
�

�

2 −
1

2m2
p

e
1
2

�

�〈z〉
�

�

2
�

m̄′3/2SqdzIq + m̄3/2Iq

�

〈Sq〉 − 2Sq
�

+ h.c.
�

�

+ e
1
2

�

�〈z〉
�

�

2
�

m̄3/2M3
4 Rb

a(〈ϕa〉+ϕa)∂bω0 +
M3

4

m2
p

e
1
2

�

�〈z〉
�

�

2

(Rp)ba(〈ϕa〉+ϕa)S†
p∂bω0

+
�

m̄3/2 +
1

m2
p

e
1
2

�

�〈z〉
�

�

2

S†
q Ī

q
�

(〈Sp〉+ Sp)
�

Ip +M3
4 ∂pω0

�

+
M3

4

m2
p

e
1
2

�

�〈z〉
�

�

2

(〈S†
p〉+ S†

p)Ī
p∆ω0 + h.c.

�

+ e
1
2

�

�〈z〉
�

�

2

M3
4

�

∆dzω0

� m̄3/2

ξ̄3/2

+
1

m2
p

e
1
2

�

�〈z〉
�

�

2

S†
qd

z Īq
�

− 3∆ω0

�

m̄3/2 +
1

m2
p

e
1
2

�

�〈z〉
�

�

2

S†
q Ī

q
�

+ h.c.
�

+
1

2m4
p

�

�Ip

�

�

2
e
�

�〈z〉
�

�

2
�

M2
4 (〈ϕ

a〉+ϕa)(〈ϕ†
a∗〉+ϕ

†
a∗)〈Λ

a∗
a〉+ (〈Sp〉+ Sp)(〈S†

p〉+ S†
p)
�2

−M2
4

�

�

m′3/2 +
1

m2
p

e
1
2

�

�〈z〉
�

�

2

SpdzIp

�

〈ϕ†∂ zΛϕ〉
�

m̄3/2 +
1

m2
p

e
1
2

�

�〈z〉
�

�

2

S†
q Ī

q
�

+ h.c.

�

,
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where we define ξ3/2 = m3/2/m
′
3/2 and

Sa∗
a =

1
�

�ξ3/2

�

�

2

�

〈∂ zΛa∗
b(Λ
−1)b b∗∂zΛ

b∗
a − ∂ z∂zΛ

a∗
a〉
�

+ 〈Λa∗
a〉
� 1
�

�ξ3/2

�

�

2 − 2
�

,

(Sp)
a∗

a =
1

ξ̄3/2

�

〈∂ zΛa∗
b(Λ
−1)b b∗∂zΛ

b∗
a − ∂ z∂zΛ

a∗
a〉
�

dzIp + 〈Λa∗
a〉
� 1

ξ̄3/2

dzIp − 2Ip

�

,

(Sq
p)

a∗
a =
�

〈∂ zΛa∗
b(Λ
−1)b b∗∂zΛ

b∗
a − ∂ z∂zΛ

a∗
a〉
�

dzIpd
z Īq + 〈Λa∗

a〉(dzIpd
z Īq − 2IpĪq
�

.

and

T =
1
�

�ξ3/2

�

�

2 − 2 , Tp =
1

ξ̄3/2

dzIp − 2Ip , T p
q = dzIqd

z Īq − 2IqĪq , (A.1)

Ra
b = δ

a
b −

1

ξ̄3/2

〈(Λ−1)a b∗∂zΛ
b∗

b〉 , (Rp)a b = Ī pδa
b − dz Ī p〈(Λ−1)a b∗∂

zΛb∗
b〉 .
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Abstract

The algebraic framework of the interacting boson model with configuration mixing is em-
ployed to demonstrate the occurrence of intertwined quantum phase transitions (IQPTs)
in the 40Zr isotopes with neutron number 52–70. The detailed quantum and classical
analyses reveal a QPT of crossing normal and intruder configurations superimposed on
a QPT of the intruder configuration from U(5) to SU(3) and a crossover from SU(3) to
SO(6) dynamical symmetries.
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1 Introduction

Quantum phase transitions [1–3] are qualitative changes in the structure of a physical system
that occur as a function of one (or more) parameters that appear in the quantum Hamiltonian
describing the system. In nuclear physics [4], we vary the number of nucleons and examine
mainly two types of quantum phase transitions (QPTs). The first describes shape phase tran-
sitions in a single configuration, denoted as Type I. When interpolating between two shapes,
for example, the Hamiltonian can be written as a sum of two parts

Ĥ = (1− ξ)Ĥ1 + ξĤ2 , (1)

with ξ the control parameter. As we vary ξ with nucleon number from 0 to 1, the equilibrium
shape and symmetry of the Hamiltonian vary from those of Ĥ1 to those of Ĥ2. QPTs of this type
have been studied extensively in the framework of the interacting boson model (IBM) [4–7].
One example of such QPT is the 62Sm region with neutron number 84–94, where the shape
evolves from spherical to axially-deformed, with a critical point at neutron number 90.

The second type of QPT occurs when the ground state configuration changes its character,
typically from normal to intruder type of states, denoted as Type II QPT. In such cases, the
Hamiltonian can be written in matrix form [8]. For two configurations A and B we have

Ĥ =

�

ĤA(ξA) Ŵ (ω)
Ŵ (ω) ĤB(ξB)

�

, (2)

with ξi (i = A, B), the control parameter of configuration (i), and Ŵ , the coupling between
them with parameterω. QPTs of this type are manifested empirically near (sub-) shell closure,
e.g. in the light Pb-Hg isotopes, with strong mixing between the configurations [9,10].

Recently, we have introduced a new type of phase-transitions in even-even [11, 12] and
odd-mass [13] nuclei called intertwined quantum phase transitions (IQPTs). The latter refers
to a scenario where as we vary the control parameters (ξA,ξB,ω) in Eq. (2), each of the
Hamiltonians ĤA and ĤB undergoes a separate and clearly distinguished shape-phase transi-
tion (Type I), and the combined Hamiltonian simultaneously experiences a crossing of config-
urations A and B (Type II).

2 Theoretical framework

A convenient framework to study the different types of QPTs together is the extension of the
IBM to include configuration mixing (IBM-CM) [14–16].

2.1 The interacting boson model with configuration mixing

The IBM for a single shell model configuration has been widely used to describe low-lying
quadrupole collective states in nuclei in terms of N monopole (s†) and quadrupole (d†) bosons,
representing valence nucleon pairs. The model has U(6) as a spectrum generating algebra,
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where the Hamiltonian is expanded in terms of its generators, {s†s, s†dµ, d†
µs, d†

µdµ′}, and con-
sists of Hermitian, rotational-scalar interactions which conserve the total number of s- and
d-bosons N̂ = n̂s + n̂d = s†s +

∑

µ d†
µdµ . The boson number is fixed by the microscopic inter-

pretation of the IBM [17] to be N=Nπ+Nν, where Nπ (Nν) is the number of proton (neutron)
particle or hole pairs counted from the nearest closed shell.

The solvable limits of the model correspond to dynamical symmetries (DSs) associated
with chains of nested sub-algebras of U(6), terminating in the invariant SO(3) algebra. In the
IBM there are three DS limits

U(6) ⊃











U(5) ⊃ SO(5) ⊃ SO(3) ,

SU(3) ⊃ SO(3) ,

SO(6) ⊃ SO(5) ⊃ SO(3) .

(3)

In a DS, the Hamiltonian is written in terms of Casimir operators of the algebras of a given
chain. In such a case, the spectrum is completely solvable and resembles known paradigms of
collective motion: spherical vibrator [U(5)], axially symmetric [SU(3)] and γ-soft deformed
rotor [SO(6)]. In each case, the energies and eigenstates are labeled by quantum numbers
that are the labels of irreducible representations (irreps) of the algebras in the chain. The
corresponding basis states for each of the chains (3) are

U(5) : |N , nd ,τ, n∆, L〉 , (4a)

SU(3) : |N , (λ,µ), K , L〉 , (4b)

SO(6) : |N ,σ,τ, n∆, L〉 , (4c)

where N , nd , (λ,µ),σ,τ, L label the irreps of U(6), U(5), SU(3), SO(6), SO(5) and SO(3),
respectively, and n∆, K are multiplicity labels.

An extension of the IBM to include intruder excitations is based on associating the different
shell-model spaces of 0p-0h, 2p-2h, 4p-4h, . . . particle-hole excitations, with the corresponding
boson spaces with N , N+2, N+4, . . . bosons, which are subsequently mixed [15,16]. For two
configurations the resulting IBM-CM Hamiltonian can be transcribed in a form equivalent to
that of Eq. (2)

Ĥ = Ĥ(N)A + Ĥ(N+2)
B + Ŵ (N ,N+2) . (5)

Here, the notations Ô(N)= P̂†
N ÔP̂N and Ô(N ,N ′)= P̂†

N ÔP̂N ′ , stand for an operator Ô, with P̂N ,

a projection operator onto the N boson space. The Hamiltonian Ĥ(N)A represents the N bo-

son space (normal A configuration) and Ĥ(N+2)
B represents the N+2 boson space (intruder B

configuration).

2.2 Wave functions structure

The eigenstates |Ψ; L〉 of the Hamiltonian (5) with angular momentum L, are linear combina-
tions of the wave functions, ΨA and ΨB, in the two spaces [N] and [N + 2],

|Ψ; L〉= a |ΨA; [N], L〉+ b |ΨB; [N+2], L〉 , (6)

with a2+b2=1. We note that each of the components in Eq. (6), |ΨA; [N], L〉 and |ΨB; [N+2], L〉,
can be expanded in terms of the different DS limits with its corresponding boson number in
the following manner

|Ψi; [Ni], L〉=
∑

α

C (Ni ,L)
α |Ni ,α, L〉 , (7)

where NA= N and NB = N + 2, and α = {nd ,τ, n∆}, {(λ,µ), K}, {σ,τ, n∆} are the quantum
numbers of the DS eigenstates. The coefficients C (N ,L)

α give the weight of each component
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in the wave function. Using them, we can calculate the wave function probability of having
definite quantum numbers of a given symmetry in the DS bases, Eq. (7), for its A or B parts

U(5) : P(Ni ,L)
nd

=
∑

τ,n∆

[C (Ni ,L)
nd ,τ,n∆

]2 , SO(6) : P(Ni ,L)
σ =
∑

τ,n∆

[C (Ni ,L)
σ,τ,n∆

]2 , (8a)

SU(3) : P(Ni ,L)
(λ,µ) =
∑

K

[C (Ni ,L)
(λ,µ),K]

2 , SO(5) : P(Ni ,L)
τ =
∑

nd ,n∆

[C (Ni ,L)
nd ,τ,n∆

]2 . (8b)

Here the subscripts i=A, B denote the different configurations, i.e., NA=N and NB =N + 2.
Furthermore, for each eigenstate (6), we can also examine its coefficients a and b, which
portray the probability of the normal-intruder mixing. They are evaluated from the sum of the
squared coefficients of an IBM basis. For the U(5) basis, we have

P(NA,L)
a ≡ a2 =
∑

nd ,τ,n∆

|C (NA,L)
nd ,τ,n∆

|2 , P(NB ,L)
b ≡ b2 =
∑

nd ,τ,n∆

|C (NB ,L)
nd ,τ,n∆

|2 , (9)

where the sum goes over all possible values of (nd ,τ, n∆) in the (Ni , L) space, i = A, B, and
a2 + b2=1.

2.3 Geometry

To obtain a geometric interpretation of the IBM is we take the expectation value of the Hamil-
tonian between coherent (intrinsic) states [5,18] to form an energy surface

EN (β ,γ) = 〈β ,γ; N | Ĥ |β ,γ; N〉 . (10)

The (β ,γ) of Eq. (10) are quadrupole shape parameters whose values, (βeq,γeq), at the global
minimum of EN (β ,γ) define the equilibrium shape for a given Hamiltonian. The values are
(βeq = 0), (βeq =

p
2,γeq = 0) and (βeq = 1,γeq arbitrary) for the U(5), SU(3) and SO(6) DS

limits, respectively. Furthermore, for these values the ground-band intrinsic state, |βeq,γeq; N〉,
becomes a lowest weight state in the irrep of the leading subalgebra of the DS chain, with
quantum numbers (nd = 0), (λ,µ)= (2N , 0) and (σ=N) for the U(5), SU(3) and SO(6) DS
limits, respectively.

For the IBM-CM Hamiltonian, the energy surface takes a matrix form [19]

E(β ,γ) =

�

EA(β ,γ;ξA) Ω(β ,γ;ω)
Ω(β ,γ;ω) EB(β ,γ;ξB)

�

, (11)

where the entries are the matrix elements of the corresponding terms in the Hamiltonian (2),
between the intrinsic states of each of the configurations, with the appropriate boson number.
Diagonalization of this two-by-two matrix produces the so-called eigen-potentials, E±(β ,γ).

2.4 QPTs and order parameters

The energy surface depends also on the Hamiltonian parameters and serves as the Landau
potential whose topology determines the type of phase transition. In QPTs involving a single
configuration (Type I), the ground state shape defines the phase of the system, which also
identifies the corresponding DS as the phase of the system. Such Type I QPTs can be studied
using a Hamiltonian as in Eq. (1), that interpolates between different DS limits (phases) by
varying its control parameters ξ. The order parameter is taken to be the expectation value of
the d-boson number operator, n̂d , in the ground state, 〈n̂d〉0+1 , and measures the amount of
deformation in the ground state.
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In QPTs involving multiple configurations (Type II), the dominant configuration in the
ground state defines the phase of the system. Such Type II QPTs can be studied using a Hamil-
tonian as in Eq. (5), that interpolates between the different configurations by varying its control
parameters ξA,ξB,ω. The order parameters are taken to be the expectation value of n̂d in the
ground state wave function, |Ψ; L = 0+1 〉, and in its ΨA and ΨB components, Eq. (6), denoted
by 〈n̂d〉0+1 , 〈n̂d〉A and 〈n̂d〉B, respectively. The shape-evolution in each of the configurations A
and B is encapsulated in 〈n̂d〉A and 〈n̂d〉B, respectively. Their sum weighted by the probabili-
ties of the ΨA and ΨB components 〈n̂d〉0+1 = a2 〈n̂d〉A+ b2 〈n̂d〉B, portrays the evolution of the
normal-intruder mixing.

3 QPTs in the Zr isotopes

Along the years, the Z ≈ 40, A≈ 100 region was suggested by many works to have a ground
state that is dominated by a normal spherical configuration for neutron numbers 50–58 and
by an intruder deformed configuration for 60 onward. This dramatic change in structure is
explained in the shell model by the isoscalar proton-neutron interaction between non-identical
nucleons that occupy the spin-orbit partner orbitals π1g9/2 and ν1g7/2 [20]. The crossing
between configurations arises from the promotion of protons across the Z=40 subsell gap.
The interaction energy results in a gain that compensates the loss in single-particle and pairing
energy and a mutual polarization effect is enabled. Therefore, the single-particle orbitals at
higher intruder configurations are lowered near the ground state normal configuration, which
effectively reverses their order.

3.1 Model space

Using the framework of the IBM-CM, we consider 90
40Zr as a core and valence neutrons in

the 50–82 major shell. The normal A configuration corresponds to having no active protons
above Z = 40 sub-shell gap, and the intruder B configuration corresponds to two-proton ex-
citation from below to above this gap, creating 2p-2h states. Therefore, the IBM-CM model
space employed in this study, consists of [N]⊕ [N + 2] boson spaces with total boson number
N = 1,2, . . . 8 for 92−106Zr and N̄ = 7̄, 6̄ for 108,110Zr, respectively, where the bar over a number
indicates that these are hole bosons.

3.2 Hamiltonian and E2 transitions operator

In order to describe the spectrum of the Zr isotopes, we take a Hamiltonian that has a form as
in Eq. (5) with entries

ĤA(ε
(A)
d ,κ(A),χ) = ε(A)d n̂d +κ

(A) Q̂χ · Q̂χ , (12a)

ĤB(ε
(B)
d ,κ(B),χ) = ε(B)d n̂d + κ

(B) Q̂χ · Q̂χ +κ′(B) L̂ · L̂ +∆p , (12b)

where the quadrupole operator is given by Q̂χ = d†s+ s†d̃+χ(d†× d̃)(2), and L̂ =
p

10(d†d̃)(1)

is the angular momentum operator. Here d̃m = (−1)md−m and standard notation of angular
momentum coupling is used. The off-set energy between configurations A and B is ∆p, where
the index p denotes the fact that this is a proton excitation. The mixing term in Eq. (5) between
configurations (A) and (B) has the form [14–16] Ŵ = ω [ (d† × d†)(0) + (s†)2 ] +H.c., where
H.c. stands for Hermitian conjugate. The parameters are obtained from a fit, elaborated in
the appendix of Ref. [12].
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The E2 operator for two configurations is written as T̂ (E2) = e(A)Q̂(N)χ + e(B)Q̂(N+2)
χ , with

Q̂(N)χ = P̂†
NQ̂χ P̂N and Q̂(N+2)

χ = P†
N+2Q̂χ P̂N+2. The boson effective charges e(A) and e(B) are

determined from the 2+→ 0+ transition within each configuration [12], and χ is the same
parameter as in the Hamiltonian (12).

For the energy surface matrix (11), we calculate the expectation values of the Hamilto-
nians ĤA (12a) and ĤB (12b) in the intrinsic state of Section 2.3 with N and N+2 bosons
respectively, and a non-diagonal matrix element of the mixing term Ŵ between them. The
explicit expressions can be found in [12].

4 Results

In order to understand the change in structure of the Zr isotopes, it is insightful to examine
the evolution of different properties along the chain.

4.1 Evolution of energy levels

In Fig. 1, we show a comparison between selected experimental and calculated levels, along
with assignments to configurations based on Eq. (9) and to the closest DS based on Eq. (8),
for each state. In the region between neutron number 50 and 56, there appear to be two con-
figurations, one spherical (seniority-like), (A), and one weakly deformed, (B), as evidenced by
the ratio R4/2, which is R(A)4/2

∼= 1.6 and R(B)4/2
∼= 2.3 at at 52–56. From neutron number 58, there

is a pronounced drop in energy for the configuration (B) states and at 60, the two configura-
tions exchange their role, indicating a Type II QPT. At this stage, the B configuration appears
to undergo a U(5)-SU(3) Type I QPT, similarly to case of the Sm region [14, 21, 22]. Beyond
neutron number 60, the B configuration is strongly deformed, as evidenced by the small value
of the excitation energy of the state 2+1 , E2+1

=139.3 keV and by the ratio R(B)4/2=3.24 in 104Zr.
At still larger neutron number 66, the ground state band becomes γ-unstable (or triaxial) as

50 54 58 62 66 70
Neutron number

0

1

2

3

4

E 
(M

eV
)

0 +
1

0 +
2

2 +
1

4 +
1

2 +
2

4 +
2

50 54 58 62 66 70
Neutron number

0 +
1

2 +
1

0 +
2

2 +
2

4 +
1

4 +
2

(A) U(5)
(B) U(5)
(B) SU(3)
(B) SO(6)

(a) Exp (b) Calc

Figure 1: Comparison between (a) experimental and (b) calculated energy levels
0+1 , 2+1 , 4+1 , 0+2 , 2+2 , 4+2 . Empty (filled) symbols indicate a state dominated by the nor-
mal A configuration (intruder B configuration), with assignments based on Eq. (9).
The symbol [ , ▲, �], indicates the closest dynamical symmetry [U(5), SU(3),
SO(6)] to the level considered, based on Eq. (8). Note that the calculated values
start at neutron number 52, while the experimental values include the closed shell
at 50. References for the data can be found in [12].
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evidenced by the close energy of the states 2+2 and 4+1 , E2+2
= 607.0 keV, E4+1

= 476.5 keV, in
106Zr, and especially by the results E4+1

=565 keV and E2+2
=485 keV for 110Zr of Ref. [23], a

signature of the SO(6) symmetry. In this region, the B configuration undergoes a crossover
from SU(3) to SO(6).

4.2 Evolution of configuration content

We examine the configuration change for each isotope, by calculating the evolution of the
probability b2, Eq. (9), of the 0+1 and 2+1 states. The left panels of Fig. 2 shows the percentage
of the wave function within the B configuration as a function of neutron number across the
Zr chain. The rapid change in structure of the 0+1 state (bottom left panel) from the normal
A configuration in 92−98Zr (small b2 probability) to the intruder B configuration in 100−110Zr
(large b2 probability) is clearly evident, signaling a Type II QPT. The configuration change
appears however sooner in the 2+1 state (top left panel), which changes to configuration B
already in 98Zr, in line with [24]. Outside a narrow region near neutron number 60, where
the crossing occurs, the two configurations are weakly mixed and the states retain a high level
of purity, especially for neutron number larger than 60.

4.3 Evolution of symmetry content

We examine the changes in symmetry of the lowest 0+ and 2+ states within the B configuration,
which undergoes a Type I QPT. In the right bottom panel of Fig. 2 the red dots represent the
percentage of the U(5) nd = 0 component in the wave function, P(N+2,L=0)

nd=0 of Eq. (8). It is
large (≈ 90%) for neutron number 52–58 and drops drastically (≈ 30%) at 60. The drop
means that other nd ̸=0 components are present in the wave function and therefore this state
becomes deformed. Above neutron number 60, the nd = 0 component drops almost to zero
(and rises again a little at 70), indicating the state is strongly deformed. To understand the
type of DS associated with the deformation above neutron number 60, we add in blue triangles
the percentage of the SU(3) (λ,µ) = (2N + 4,0) component, P(N+2,L=0)

(λ,µ)=(2N+4,0) of Eq. (8) for 60–
66. For neutron number 60, it is moderately small (≈ 35%), at neutron number 62 it jumps
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Figure 2: Left panels: percentage of the wave functions within the intruder B-
configuration [the b2 probability in Eq. (6)], for the ground 0+1 (bottom) and excited
2+1 (top) states in 92−110Zr. Right panels: evolution of symmetries for the lowest
0+ (bottom) and 2+ (top) state of configuration B along the Zr chain. Shown are
the probabilities of selected components of U(5) ( ), SU(3) (▲), SO(6) (�) and
SO(5) ( ), obtained from Eq. (8). For neutron numbers 52–58 (60–70), 0+B corre-
sponds to the experimental 0+2 (0+1 ) state. For neutron numbers 52–56 (58–70), 2+B
corresponds to the experimental 2+2 (2+1 ) state.
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Figure 3: (a) Evolution of order parameters along the Zr chain, normalized (see
text). (b) B(E2) values in W.u. for 2+→ 0+ transitions in the Zr chain. The solid line
(symbols  , ■, ▲, �) denote calculated results (experimental results). Dotted lines
denote calculated E2 transitions within a configuration. The data for 94Zr, 96Zr, 100Zr,
102Zr and (104Zr, 106Zr) are taken from [25], [26], [27], [28], [29], respectively. For
98Zr (neutron number 58), the experimental values are from [30] (�), from [31]
(▲), and the upper and lower limits (black bars) are from [24,27].

(≈ 85%) and becomes maximal at 64 (≈ 92%). This serves as a clear evidence for a U(5)-
SU(3) Type I QPT. At neutron number 66 the SU(3) (λ,µ)=(2N+4,0) component it is lowered,
and one sees by the green diamonds the percentage of the SO(6) σ = N + 2 component,
P(N+2,L=0)
σ=N+2 of Eq. (8). The latter becomes dominant for 66–70 (≈ 99%), suggesting a crossover

from SU(3) to SO(6).
In order to further elaborate the Type I QPT within configuration B from U(5) to SU(3)

and the subsequent crossover to SO(6), we examine also the evolution of SO(5) symmetry.
The gray histograms in the right panel of Fig. 2 depict the probability of the τ=0 component
of SO(5), P(N+2,L=0)

τ=0 of Eq. (8), for 0+B . For neutron numbers 52–56, the 0+B state is composed
mainly of a single (nd =0,τ=0) component, appropriate for a state with good U(5) DS. For
neutron number 58, the larger τ= 0 but smaller nd = 0 probabilities imply the presence of
additional components with (nd ̸=0,τ=0). For neutron numbers 60–64, the τ=0 probability
decreases, implying admixtures of components with (nd ̸= 0,τ ̸= 0), appropriate for a state
with good SU(3) DS. For neutron numbers 66–70, the τ = 0 probability increases towards
its maximum value at 70, appropriate for a crossover to SO(6) structure with good SO(5)
symmetry.

In the top right panel of Fig. 2 we observe a similar trend for the 2+B state. For neutron
numbers 52–58, it is dominated by a single (nd = 1,τ = 1) component. For neutron num-

ber 60, P
(N+2,L=2+B )
nd=1 is smaller than P

(N+2,L=2+B )
τ=1 , indicating the onset of deformation. For 62–

64, P
(N+2,L=2+B )
nd=1 is much smaller than P

(N+2,L=2+B )
τ=1 , implying admixtures of components with

(nd ̸= 1,τ ̸= 1). For neutron numbers 66–70, P
(N+2,L=2+B )
nd=1 remains small but P

(N+2,L=2+B )
τ=1 in-

creases towards its maximum value at 70.

4.4 Evolution of order parameters

The configuration and symmetry analysis of Sections 4.2 and 4.3 suggest a situation of si-
multaneous occurrence of Type I and Type II QPTs. The order parameters can give further
insight to these QPTs. Fig. 3(a) shows the evolution along the Zr chain of the order param-
eters (〈n̂d〉A , 〈n̂d〉B in dotted and 〈n̂d〉0+1 in solid lines), normalized by the respective boson

numbers, 〈N̂〉A=N , 〈N̂〉B=N+2, 〈N̂〉0+1 =a2N+b2(N+2). The order parameter 〈n̂d〉0+1 is close
to 〈n̂d〉A for neutron number 52–58 and coincides with 〈n̂d〉B at 60 and above. The clear jump
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Figure 4: Contour plots in the (β ,γ) plane of the lowest eigen-potential surface, E−(β ,γ),
for the 92−110Zr isotopes.

and change in configuration content from 58 to 60 indicates a Type II phase transition [8],
with weak mixing between the configurations. Configuration A is spherical for all neutron
numbers, and configuration B is weakly-deformed for neutron number 52–58. From neutron
number 58 to 60 we see a sudden increase in 〈n̂d〉B that continues towards 64, indicating a
U(5)-SU(3) Type I phase transition. Then, we observe a decrease from neutron number 66
onward, due in part to the crossover from SU(3) to SO(6) and in part to the shift from bo-
son particles to boson holes after the middle of the major shell 50–82. These conclusions are
stressed by an analysis of other observables [12], in particular, the B(E2) values. As shown
in Fig. 3(b), the calculated B(E2)’s agree with the experimental values and follow the same
trends as the respective order parameters.

4.5 Classical analysis

In Fig. 4, we show the calculated lowest eigen-potential E−(β ,γ), which is the lowest eigen-
value of the matrix Eq. (11). These classical potentials confirm the quantum results, as they
show a transition from spherical (92−98Zr), Figs. 4(a)-(d), to a double-minima potential that is
almost flat-bottomed at 100Zr, Fig. 4(e), to prolate axially deformed (102−104Zr), Figs. 4(f)-(g),
and finally to γ-unstable (106−110Zr), Figs. 4(h)-(j).

5 Conclusions and Outlook

The algebraic framework of the IBM-CM allows us to examine QPTs using both quantum and
classical analyses. We have employed this analysis to the Zr isotopes with A=92–110, which
exhibit a complex structure that involves a shape-phase transition within the intruder config-
uration (Type I QPT) and a configuration-change between normal and intruder (Type II QPT),
namely IQPTs. This was done by analyzing the energies, configuration and symmetry content
of the wave functions, order parameters and E2 transition rates, and the energy surfaces. Fur-
ther analysis of other observables supporting this scenario is presented in [12]. Recently, we
have also exemplified the notion IQPTs in the odd-mass 41Nb isotopes [13] and it would be
interesting to examine the notion of IQPTs in other even-even and odd-mass chains of isotopes
in the Z ≈ 40, A≈ 100 region and other physical systems.
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Abstract

Along this paper, we analyze the entanglement properties of symmetric multi-quDits
systems in a special type of states created from the generalization to U(D) of the usual
spin coherent states. By means of parity operators, we define what we call multicom-
ponent Schrödinger cat states as parity adapted coherent states. Introducing the tool of
information diagrams, i.e. representations of pairs of entropy measures, we analyze the
correlation structure of this type of states and their M-wise reduced density matrices.
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1 Introduction

Information diagrams, simple representations based on a pair of entropic measures, are a help-
ful tool that can be used to analyze the correlation structure and mixture of a given quantum
density matrix, and consequently the entanglement when applied to M-wise reduced density
matrices.

On previous papers [1], we applied them to characterize the entanglement of parity adapted
U(D)-spin coherent states (CSs) or DCATs. This work extends this analysis, computing infor-
mation diagrams for the generalization to different parities of the purely even DCAT already
studied.

To achieve this, we first review the concept of information diagrams in Section 2, then
we define the generalization of DCAT using parity operators in Section 3, and eventually we
combine both concepts to compute the information diagrams of the M -wise reduced density
matrix (RDM) of these kind of states in Section 4.

029.1

https://scipost.org
https://scipost.org/SciPostPhysProc.14.029
mailto:jguerrer@ujaen.es
https://doi.org/10.21468/SciPostPhysProc.14
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhysProc.14.029&amp;domain=pdf&amp;date_stamp=2023-11-24
https://doi.org/10.21468/SciPostPhysProc.14.029


SciPost Phys. Proc. 14, 029 (2023)

2 Information diagrams and entropic measures

First, we will review the concept of information diagrams and its main properties. We will
limit our scope since most details have already been given in [1] (and references therein).

Given a valid probability density function (PDF), we can compute the value of two different
measures of information or entropy and plot a 2D point whose coordinates are those values.
Information diagrams are the structure generated by this type of entropic representations when
all valid PDF (or a subset thereof) are represented.

This idea can be generalized to quantum density matrices if we recall that their eigenvalues
can be interpreted as probabilities, thus allowing the definition of a discrete PDF (for finite
Hilbert spaces) that we can use to build up the information diagrams. In addition, if we select
the two entropy measures as the normalized von Neumann S and linear entropies L, we can
directly compute them for a given density matrix ρ as:

S(ρ) = −Trρ logd ρ , L(ρ) = d
d − 1

�

1− Trρ2
�

, (1)

where d is the dimension of the Hilbert space associated with our quantum system.
As defined, these entropic measures are normalized, i.e., their value is 0 for pure states and

1 for maximally mixed states, and therefore we can ensure that the set of points (L(ρ),S(ρ))
generated by all valid density matrices ρ is a bounded set; however, it does not completely
fill the entire unit square. The boundaries can be computed by means of variational methods
as the search of curves with maximal or minimal von Neunman entropy given a fixed value of
the linear entropy and a density matrix rank k. This allows the subdivion of the set into d − 2
rank-dependent subregions. This makes possible the classification of density matrices within
each subregion by the minimum rank they have. Details about the explicit meaning of these
curves and their parametrization can be found on [1].

In Figure 1, we plotted the basic structure of an information diagram for quantum density
matrices with d = 5. The global boundaries (in black) are the global extremal curves that
enclose the entire set of allowed local points, within there are extremal curves (in grey) that
give information about matrix ranks. The bottom-most curve represent all density matrices
with rank k = 2, while each extremal curve moving upwards for increasingly higher ranks
k = 3, ..., d set the minimum rank allowed on the whole area above it. Matrices with rank
k = 1, i.e. pure states, are all located at the origin. It is also interesting to note that a density
matrix located at the intersection point of the k-extremal curve with the global boundaries has
k identical eigenvalues and d − k zeros as it has maximal von Neumann entropy for its rank.

This rank based structure allows us to obtain an intuition about the level of entanglement
and mixture of a family of density matrices. It is well-known [2] that density matrices which do
not lie at the origin nor to the right of the NEMSs (Not Entangled Mixed States) Linear entropy1

threshold (in dashed gray), all present entanglement. However, information diagrams do not
give direct information about the absolute level of entanglement of a given density matrix.2

With all of this in mind, we will use information diagrams of RDMs to study the entan-
glement of what we call parity adapted coherent states of SU(D) or DCATs, a generalization
of “Schrödinger cat states”. In this case, information diagrams do provide useful information
about entanglement and, in particular, the rank of the RDM is an entanglement monotone [3].

1A similar behaviour can be seen in the von Neumann Entropy.
2But if the system is divided in two parts and one of the parts is traced out, the location in the information

diagram of the resulting RDM provides a good indicator of the level of entanglement of the original density matrix.
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Figure 1: Information diagram for d = 5. Each region overlap with the ones below it

3 Parity adapted U(D) CSs in symmetric multi-quDit systems

We shall introduce here the definition of parity adapted U(D)-spin coherent states (DCATs) in
symmetric multi-quDit system. Before that, establishing the required mathematical tools is
necessary.

We consider a system of N identical indistinguishable particles, each of which has D pos-
sible states or levels, e.g., N D-level identical atoms. Thus, we can define the creation (anni-
hilation) operator for each level: {a†

i }
D−1
i=0 ({ai}D−1

i=0 ). Note that we denote the ground level as
i = 0. As usual, these operators create (destroy) a particle on the i-th level |i〉.

In its fully symmetric representation, the collective U(D)-spin operators can be expressed
as bilinear products of creation and annihilation operators, that is Si j = a†

i a j , 0 ≤ i, j ≤ D− 1
(Schwinger representation).

Note that the diagonal operators Sii correspond to the number operator of the i-th level,
while off-diagonal operators Si j (i ̸= j) are tunneling operators that move a particle from the
j-th level | j〉 to the i-th level |i〉.

As this is the fully symmetric representation of U(D), the associated space can be em-
bedded into the Fock space H(N)F of dimension d =

�N+D−1
N

�

, with a Bose-Einstein-Fock ba-

sis
¦

|n⃗〉 ∈H(N)F

�

�∥n⃗∥1 = N ,



n⃗
�

�n⃗′
�

= δn⃗,n⃗′
©

. Within this space, we pay special attention to the
U(D)-spin coherent states (or DSCSs for short), which can be expressed as a multinomial form
(see [1]) in terms of the {a†

i }
D−1
i=0 operators acting on the Fock vacuum.

However, for the sake of simplicity, we will use a more elementary (although equivalent)
construction for DSCSs. Firstly, we define the one-particle state: |z〉(1) = 1p

1+|z|2

�

|0〉+
∑D−1

i=1 zi |i〉
�

,

labeled with complex points z = (z1, ..., zD−1) ∈ ℂD−1 without the coefficient z0 = 1 (this
election just represents the explicit choice of an specific local chart on the complex projective
manifold defined by the normalized quantum states). The norm |z| is defined in terms of the
scalar product z′ ·z=

∑D−1
i=1 z̄′izi . The N particles U(D)-spin coherent states are simply defined

as:

|z〉(N) =
N
⊗

i=1

|z〉(1)i , (2)

where the superscript denotes number of particles, and the subscript represents the tag of
each particle own space. It is obvious they are symmetric and that they do not present any
entanglement as they are separable (tensor product states or TPS).
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In addition, it is important to note that, in general, DSCSs are not orthogonal since their

overlap is given by (N)



z′
�

�z
�

(N) =
�

1+z′·zp
(1+|z′|2)(1+|z|2)

�N

. This means that, even though they do

not form a basis, they are an overcomplete continuous set of states that spans the entire space
H(N)F , i.e., they form a frame [4].

These non-entangled states can be combined to form highly entangled states by means of
parity operators. These parity operators can be defined as Π j = exp

�

iπS j j

	

, j = 0, ..., D − 1
with i2 = −1 being the imaginary unit. They measure the parity of the number of particles
in the j-th level of a specific state. Note that Πi = Π−1

i . These operators generate the parity
group of symmetric quDits systems ℤ2 × D...×ℤ2 = ℤD

2 . However, as the number of particles
N is fixed, Π0 · ... ·ΠD−1 = (−1)N impose a constrain on the total parity (−1)N , allowing us to
discard one copy of ℤ2 and its corresponding parity operator. In particular, we select the one
corresponding to the ground level (in correspondence with the choice z0 = 1).

Parity operators act upon CSs such that they change the sign of the corresponding z com-
ponents,

Πi |z〉
(N) = Πi |z1, ...., zi , ...., zD−1〉

(N) = |z1, ....,−zi , ...., zD−1〉
(N) . (3)

We define the following parity operators: Π
b j

j = exp
�

iπb jS j j

	

and Π𝕓 = Πb1
1 Π

b2
2 · ... ·Π

bD−1
D−1 ,

where 𝕓 = (b1, b2, ..., bD−1) ∈ {0, 1}D−1 is a binary string of length D− 1 that labels elements
of the parity group ℤD−1

2 . They allow us to define the definite parity subspace projectors as
the Fourier transform in the ℤD−2

2 group,

Π𝕔 = 21−D
∑

𝕓∈{0,1}D−1

(−1)𝕓·𝕔Π𝕓 , (4)

where 𝕔= [c1, c2, ..., cD−1] ∈ {0, 1}D−1 is the parity of the subspace that this projector projects
to. They can be used to project states to a defined parity 𝕔 subspace, thus allowing us to define
the 𝕔-parity adapted CSs states or 𝕔-parity DCAT as:

|DCAT𝕔(z)〉
(N) =

1

N (N)
𝕔 (z)

Π𝕔 |z〉
(N) =

21−D

N𝕔(z)

∑

𝕓∈{0,1}D−1

(−1)𝕓·𝕔
�

�z𝕓
�(N)

, (5)

where z𝕓 := ((−1)b1z1, ...., (−1)bi zi , ...., (−1)bD−1zD−1) and

�

N (N)
𝕔 (z)
�2
= 21−D
∑

𝕓∈{0,1}D−1

(−1)𝕓·𝕔
[1+ z𝕓 · z]N

(1+ |z|2)N
, (6)

is a normalization factor or the norm of the unnormalized DCAT.
As an example, we provide the explicit expression of the 𝕔-parity DCAT state and N𝕔(z) for

D = 2,3 (qubits and qutrits).
For D = 2, there are only two possible levels, and one component of z and parities; thus

z = α and 𝕔 = c. Any one-particle coherent state |z〉(1) := |α〉(1) is written as |α〉(1) = |0〉+α|1〉p
1+|α|2

,

and the corresponding N -particle 2CATc is expressed as

|2CATc(α)〉
(N) =

1

2N (N)
c (α)

�

|α〉(N) + (−1)c |−α〉(N)
�

, (7)

with:

�

N (N)
c (α)
�2
=

1
2
(1+ |α|2)N + (−1)c(1− |α|2)N

(1+ |α|2)N
=

1
2

�

1+ (−1)c
�

1− |α|2

1+ |α|2

�N�

. (8)
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It is easy to check that Πb |2CATc(α)〉
(N) = (−1)c·b |2CATc(α)〉

(N) as it corresponds to its parity. It
is also important to note that, for c = 1, the 2CAT1(0) can only be defined as the limit α→ 0
of the normalized DCAT, since the normalization factor tends to zero as the unnormalized state
itself also does.

For D = 3, there are three possible levels and two component of z and parities; thus
z = (α,β) and 𝕔 = [c1, c2]. A one-particle coherent state |z〉(1) := |α,β〉(1) is written as
|α,β〉(1) = |0〉+α|1〉+β |1〉p

1+|α|2+|β |2
, with the corresponding N -particle 3CAT𝕔 expressed as:

|3CAT𝕔(α,β)〉(N) =
1

4N (N)
𝕔 (α,β)

�

|α,β〉(N) + (−1)c1 |−α,β〉(N)

+ (−1)c2 |α,−β〉(N) + (−1)c1+c2 |−α,−β〉(N)
�

, (9)

with:

�

N (N)
𝕔 (α,β)
�2
=

1
4
+
(−1)c1(1− |α|2 + |β |2)N + (−1)c2(1+ |α|2 − |β |2)N

4(1+ |α|2 + |β |2)N

+
(−1)c1+c2(1− |α|2 − |β |2)N

4(1+ |α|2 + |β |2)N
. (10)

It is easy to check that Π𝕓 |3CAT𝕔(α,β)〉(N) = (−1)𝕔·𝕓 |3CAT𝕔(α,β)〉(N) as it corresponds to the
partial parity of the given pair.

These expressions will be used in Section 4 to compute the eingenvalues of the corre-
sponding M -wise RDM ρ(M)𝕔 (z) = Tr(N−M) [|DCAT𝕔(z)〉 〈DCAT𝕔(z)|], which allows us to analyze
the entanglement structure of the DCATs using information diagrams.

4 Entropic measures of reduced density matrices

As we have seen in Section (2), we can compute von Neumann and linear entropies associated
to any quantum state using the eingenvalues of the corresponding density matrix operator.

This allow us to compute the entropies associated to the M -wise RDM of a DCAT state (i.e.
partial tracing N − M out of the N particles). Using the explicit expression of DCATs in terms
of the Fock basis [1], one can easily compute the RDM taking partial trace. This RDM can be
diagonalized and then its entropy computed [6].

For the sake of simplicity, we will limit ourselves, again, to D = 2,3. As it is not rele-
vant here, we omit the diagonalization and directly provide the eingenvalues of the RDM. We
consider the partial trace of N − M > N/2 particles, leaving M ≤ N/2 on our state (cases
where M > N/2 are symmetric to the case M ≤ N/2 by interchanging M → N − M). This
means that the M -wise RDM is associated with the Fock space H(M)F ̸= H(N)F with dimension
dM =
�M+D−1

M

�

< dN =
�N+D−1

N

�

.
For D = 2, we provide the eingenvalues of the RDM as a vector, and we omit the expression

of eigenvectors, which are not relevant here,

ρ(M)c (α) =





�

LN−M
+ + (−1)c LN−M

−

� �

LM
+ + LM

−

�

2LN
+

�

N (N)
c

�2 ,

�

LN−M
+ − (−1)c LN−M

−

� �

LM
+ − LM

−

�

2LN
+

�

N (N)
c

�2 , 0⃗



 ,

(11)
where L± := 1 ± |α|2 and 0⃗ is a vector that pads the diagonal with zeros until the required
dimension is reached. In general, we only have two non-zero eingenvalues.
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Figure 2: Information diagrams (upper line) for D = 2, N = 6, 7 and M = 2, 3, and
the corresponding plots (bottom line) of the von Neumann entropy as a function of
the parameter |z|.

In Figure (2), we plotted the von Neumann entropy as a function of the absolute value
of the complex parameter z as well as the associated information diagrams for three pairs of
(N , M) and both possible parities 𝕔= [0], [1].

At z = 0, the 𝕔= [0] RDM presents no entropy, while 𝕔= [1] starts from a high value of the
entropy. As |z| increases, so does the entropy for both cases and any pair (N , M) of particles
until the peak value is reached at |z|= 1. At this point, it can be shown that any derivative of
order < M vanishes. This means that the higher M is, the flatter the peak will be. From this
point, the entropy decreases for both parities with one of them consistently over the other. For
even N , 𝕔= [1] remains at the top while this behaviour reverses if N is odd.

Using the previous information, we can give an interpretation to each corresponding in-
formation diagram. For D = 2, the maximum value of the rank is k = 2 for all M > 1 since all
RDM lie on the bottom-most curve. However, k = 1 is reached for RDM with no entropy and,
therefore, no entanglement (pure states). For even N , only 𝕔 = [0] covers the entire possible
entropy range (entropy is normalized to dimension dM = M for D = 2), while 𝕔 = 1 only
spans a narrow interval of possible values. On the other hand, for odd N ,the entire range is
available for both parities.
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Figure 3: Information diagrams (upper row) for D = 3, N = 7, M = 2, and all
relevant parities, and the corresponding contour plots (bottom row) representation
of the von Neumann entropy as a function of the parameters (|α|, |β |)

For D = 3, we have:

ρ(M)𝕔 (α,β) =
1

4LN
++ [N𝕔(α,β)]2

×
�

�

LN−M
++ + (−1)c1 LN−M

−+ + (−1)c2 LN−M
+− + (−1)c1+c2 LN−M

−−

� �

LM
++ + LM

−+ + LM
+− + LM

−−

�

,
�

LN−M
++ − (−1)c1 LN−M

−+ + (−1)c2 LN−M
+− − (−1)c1+c2 LN−M

−−

� �

LM
++ − LM

−+ + LM
+− − LM

−−

�

,
�

LN−M
++ + (−1)c1 LN−M

−+ − (−1)c2 LN−M
+− − (−1)c1+c2 LN−M

−−

� �

LM
++ + LM

−+ − LM
+− − LM

−−

�

,
�

LN−M
++ − (−1)c1 LN−M

−+ − (−1)c2 LN−M
+− + (−1)c1+c2 LN−M

−−

� �

LM
++ − LM

−+ − LM
+− + LM

−−

�

, 0⃗
�

,
(12)

where Lσ1σ2
:= 1+σ1|α|2 +σ2|β |2 with σi ∈ {−1,+1}.

Now, in Figure 3, we show a contour plot of the von Neumann entropy as a function of the
point (|α|, |β |), as well as the corresponding information diagram for fixed N = 7 and M = 2
and all relevant parities (the 𝕔 = [1, 0] case is symmetric to 𝕔 = [0,1] with the interchange
α ↔ β). The color scale represent the von Neumann entropy in both contour plots and
information diagrams.

For D = 3, the behaviour is similar to D = 2 but the number of possible cases increases
exponentially. For even N , the higher the number of 1’s a parity has, the higher the associ-
ated average entropy is (higher on the information diagram), and the narrower the range is
occupied. For odd N and all parities except 𝕔 = [1,1], the entire possible entropy range is
occupied taking into account the maximum rank available. Each one of the two axis (|α|, |β |)
has an intimate relation with its corresponding parity component. If the parity components
are not equal, an asymmetry between both axis is created as not all directions are equivalent,
decreasing the entropy at points near the axises with corresponding non-zero parity compo-
nent.

Again, all the properties can be directly visualized on the information diagrams in Figure
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3. Now, the possible ranks scale from k = 1 to k = 4 for any M , and completely even parities
occupy higher areas (with non null measure) on the diagrams.

5 Conclusion

Parity adapted coherent states or DCATs can be physically produced on Kerr materials [5] or
as products of Bose-Einstein condensates and have applications on models such as the Lipkin-
Meshkov-Glick model [1]. Therefore the entanglement structure of this kind of states is of
high interest.

This work is limited in scope but in [6] the ideas seen here are further developed, gener-
alizing the decomposition of the RDM of DCATs into their eigenvectors using Group theoretical
methods and more sophisticated interpretations.
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The paper develops, within a new representation of Clifford algebras in terms of tensor
products of quaternions called hyperquaternions, several applications. The first appli-
cation is a quaternion 2D representation in contradistinction to the frequently used 3D
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(signature +−−) within the Dirac algebra C5 (2, 3) ≃C⊗H⊗H subalgebra of H⊗H⊗H.
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third application is a classification of all hyperquaternion algebras into four types, pro-
viding the general formulas of the signatures and relating them to the symmetry groups
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1 Introduction

A new hyperquaternionic representation of Clifford algebras [1, 2] has been introduced re-
cently [3–7], hyperquaternion algebras being defined as tensor products of quaternion alge-
bras (or subalgebra thereof). This paper develops several hyperquaternionic applications.

Throughout this paper, H⊗m will denote the tensor product of m quaternion algebras, i.e.
H⊗m =H⊗H⊗ · · · ⊗H (m terms). The structure of the paper is as follows.

In the preliminaries, the historical origins and basic concepts of hyperquaternion Clifford
algebras are examined. In the third section, a quaternion 2D representation is proposed in con-
tradistinction to a widely used 3D representation. In the fourth section, the conformal group
of the (1+ 2) space (signature+−−) is developed within the Dirac algebra C5 (2,3)≃ C⊗H⊗2

considered as a subalgebra of H⊗3 ≃ C6 (2,4) . The choice of the (1+ 2) space is motivated by
its use in quantum gravity [8]. A numerical example together with a canonical decomposition
into simple planes is provided. Finally, the fifth section gives a classification of all hyperquater-
nion algebras into four types with general formulas of the signatures and associated symmetry
groups of physics.

2 Preliminaries: Clifford algebras and hyperquaternions

2.1 Quaternions and biquaternions

The quaternion group [9,10] was discovered in 1843 by W. R. Hamilton and is constituted by
the elements (±1,±i,± j,±k) satisfying the formula

i2 = j2 = k2 = i jk = −1 . (1)

The quaternion algebra H is defined as a set of four real numbers qi , called quaternions
q = q0+q1i+q2 j+q3k. The conjugate qc of q is defined by qc = q0−q1i−q2 j−q3k. Hamilton
was to give a 3D (if not 4D) interpretation of quaternions which was to lead to the classical
vector calculus still in use today. He also introduced complex quaternions which he named
biquaternions.

2.2 Clifford algebras and hyperquaternions

Clifford in 1878, introduced his algebras as tensor products of quaternion algebras [11]. He
proved the following theorem

C2m ≃H⊗m , C2m−1 ≃ C⊗H⊗m−1 . (2)

Lipschitz in 1880, derived the rotation formula of nD Euclidean spaces [12]

x ′ = axa−1 , a ∈ C+ . (3)

He thereby rediscovered the (even) Clifford algebras. In 1922, Moore [13] was to call Lips-
chitz’s algebras: hyperquaternions, a term which we shall extend to all Clifford algebras. A
major success of Clifford algebras in physics was the Dirac algebra and the spinor calculus. Re-
cent developments in Clifford algebras seem to have somewhat neglected if not totally ignored
the hyperquaternionic filiation.

In terms of generators, the Clifford algebra Cn(p, q) has n = p + q generators ei such that
eie j+ e jei = 0 (i ̸= j), e2

i = +1 (p generators) and e2
i = −1 (q generators). The total number of

elements is 2n. The algebra contains scalars (S), vectors (V ) ei , bivectors (B) eie j (i ̸= j), etc.
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C+ is the (even) subalgebra constituted by products of an even number of ei . It is to be noticed
that the hyperquaternion product is independent of the choice of the generators whereas the
multivector structure depends on it.

Examples of hyperquaternion Clifford algebras are: quaternions H (e1 = i, e2 = j), bi-
quaternions C⊗H (e1 = i I , e2 = j I , e3 = kI , I = 1⊗i), H⊗H (e0 = j, e1 = kI , e2 = kJ , e3 = kK)
with (I , J , K) = 1⊗ (i, j, k).

3 Quaternion 2D representation

In contradistinction to Hamilton who gave a 3D interpretation of quaternions which is still
widely used today, we shall provide a 2D plane representation below since quaternions con-
stitute a Clifford algebra with only two generators

e1 = i , e2 = j , e1e2 = k
�

e2
1 = e2

2 = −1
�

. (4)

Interior and exterior products can be defined with x = x1i + x2 j ∈ V, B = bk bivector (b ∈R)
by

x .y = − (x y + y x)/2= x1 y1 + x2 y2 ∈ S , (5)

x ∧ y = (x y − y x)/2= (x1 y2 − x2 y1) k ∈ B , (6)

x .B = − (xB − Bx)/2= b (−x2i + x1 j) ∈ V , (7)

x ∧ B = (xB + Bx)/2= 0 . (8)

The rotation group SO(2) is expressed by

x ′ = r x rc = (x1 cosθ − x2 sinθ ) i + (x1 sinθ + x2 cosθ ) j , (9)

with
r = ekθ/2 = (cosθ/2+ k sinθ/2) ∈ B . (10)

The modeling of an Euclidean 3D space can be realized similarly with biquaternions [14].

4 Hyperquaternionic conformal group in (1+2) space

The conformal group of the (1+ 3) space has been examined within the algebra H⊗3 ≃ C6(2,4)
in [4]. Here, we consider the (1+ 2) subspace within the subalgebra C5(2,3)≃ C⊗H⊗2 ≃ C(4)
isomorphic to the Dirac algebra. This space has received much attention in particular with
respect to quantum gravity [8]. We first introduce the algebraic structure, then the restricted
conformal group and a numerical example including a canonical decomposition into simple
planes.

4.1 Algebraic structure

As generators of the subalgebra C5(2, 3)≃ C⊗H⊗2, we take

ea = kI , e0 = kJ , e1 = kKl , e2 = kKm , eb = j , (11)

with
H⊗3 = (i, j, k)⊗ (I , J , K)⊗ (l, m, n) , (12)
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and (l, m, n) = 1 ⊗ 1 ⊗ (i, j, k). A general element A of H⊗3 can be viewed as a set of 16
quaternions [qi] = ai + bi l + cim+ din

A= [q1] + I [q2] + J [q3] + K
�

q4

�

+ i [q5] + i I [q6] + iJ
�

q7

�

+ iK [q8]

+ j
�

q9

�

+ j I [q10] + jJ [q11] + jK [q12] + k [q13] + kI
�

q14

�

+ kJ [q15] + kK [q16] . (13)

The explicit multivector structure of C5(2, 3) is given in Appendix [A]. The algebra has
25 = 32 elements with 10 parameters for the bivectors. The product is implemented in
http://www.notebookarchive.org/2021-08-6z1zbda/.

4.2 Restricted conformal group

The restricted conformal group in (1+ 2) space is obtained via the procedure described in [1].
First, one constructs an affine space within C5(2,3). Let X be a five dimensional vector

X =

�

x2 − 1
�

2
ea + x +

�

x2 + 1
�

2
eb = x2ϵ1 + x + ϵ2 , (14)

with x = x0e0 + x1e1 + x2e2 ∈ E3, X 2 = 0 and

ϵ1 =
ea + eb

2
, ϵ2 =

eb − ea

2
, ϵ2

1 = ϵ
2
2 = 0 . (15)

The restricted conformal group is then expressed by the transformations

X ′ = aX ac (aac = 1 , a ∈ C+5 (2,3)) . (16)

They are composed of

• spatial rotations a = en θ2 ,

• boosts a = eB θ2 , B ∈ (I l, Im) ,

• translations a = eϵ1u = 1+ ϵ1u (u ∈ E3) ,

• transversions a = eϵ2v = 1+ ϵ2v (v ∈ E3) ,

• dilations a = eeaeb
ϕ
2 = e−i I ϕ2 = cosh ϕ2 − i I sinh ϕ2 .

The total number of parameters is (n+2)(n+1)
2 = 10 (n = 3) . Through combinations, one

obtains the general transformations

X ′ = f X fc ( f fc = 1 , f ∈ C+5 (2,3)) . (17)

The Lie algebra is given in [4]

4.3 Numerical example

Here, we present a numerical example consisting of a set of transformations together with a
canonical decomposition thereof.
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As transformation X ′ = f X fc we shall consider a dilation (e−ϕ = 1/3) followed by a unit
translation (u= e1) and a rotation ( θ = π/2 in the plane e12 = n). The combination of these
transforms yields the hyperquaternion f ∈ C+

f = en θ2 eϵ1ue−i I ϕ2 (18)

= (cosθ/2+ n sinθ/2) (1+ ϵ1u) (coshϕ/2− i I sinhϕ/2) (19)

=
�

1
p

2
+ n

1
p

2

��

1+
(kI + j)

2
kKl
��

2
p

3
− i I

1
p

3

�

(20)

=

�√

√2
3
−

1
p

6
i I

�

(1+ n) +
1
2

√

√2
3
(J + iK) (l +m) , (21)

with tan θ2 = 1, tanh ϕ2 =
1
2

�

eϕ = 1+thϕ/2
1−thϕ/2 =

3/2
1/2 = 3
�

.

The bivector part B of f generating the transformation, divided by the scalar
q

2
3 is

B = n−
iJ
2
+

3
4
(J + iK) (l +m) . (22)

The canonical decomposition [4] of B and f into simple, orthogonal and commuting planes
(B1, B2) with b1 = tan Φ1

2 = 1, b2 = tanh Φ2
2 =

1
2 leads to

B = b1B1 + b2B2 , f = e
Φ1
2 B1 e

Φ2
2 B2 , (23)

with

B1 = n+
3
10
(J + iK) (3l +m) , B2

1 = −1 , (24)

B2 =
3

10
(J + iK) (−l + 3m)− IK , B2

2 = 1 . (25)

The two invariants of the transformation are

S1 = B.B = −
3
4

, S2 = [(B ∧ B) .B] .B = −1 . (26)

The conformal transformation with X = ea+ e1+ eb (x0 = 0, x1 = 1, x2 = 0) is obtained either
directly

e1
D
→ e1/3

T
→ (1/3+ 1) e1 = (4/3) e1

R
→ (4/3) e2 , (27)

or by computation:

X ′ = f X fc = x ′aea + x ′ + x ′beb (28)

= −
25
6

ea + 4e2 −
7
6

eb , (29)

yielding the final transform

x → y(x) =
x ′

x ′b − x ′a
=

4
3

e2 . (30)

5 Classification of hyperquaternion algebras

Table 1 lists a few hyperquaternion algebras and their signature (p, q) obtained via the gen-
erators given in [7]. The table shows the importance of the parameter s = p − q [2, 15]. It
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reveals four classes of hyperquaternions: the algebrasH⊗r (r even or odd) and the subalgebras
C+. From (n, s) one deduces p = (n+ s)/2, q = (n− s)/2 yielding the general formulas for m
integer (m⩾ 1)

H⊗2m ≃ C4m(2m+ 1, 2m− 1) , (s = 2) ,

C⊗H⊗(2m−1) ≃ C4m−1(2m+ 1,2m− 2) , (s = 3) ,

H⊗(2m−1) ≃ C4m−2(2m− 2,2m) , (s = −2) ,

C⊗H⊗(2m−2) ≃ C4m−3(2m− 2,2m− 1) , (s = −1) .

All signatures of hyperquaternion algebras can be derived from the first four ones via the
formula

Cn+4 (p+ 2, q+ 2) = Cn (p, q)⊗H⊗2 ,

resulting from the double application of the general formula

Cn+2 (p+ 1, q+ 1) = Cn (p, q)⊗C2 (1, 1) ,

together with C2 (1, 1)≃ R (2) ,R (2)⊗R (2)≃ R (4)≃H⊗2. Furthermore, since

H⊗2 ≃ R (4) , C⊗H⊗2 ≃ C (4) , H⊗3 ≃H (4) ,

one obtains all square real, complex and quaternionic matrices. Concerning the matrix rep-
resentation of hyperquaternion algebras, which is beyond the scope of this paper, the above
isomorphisms show that H⊗2 can be represented either by a reducible real matrix R (16) (real
16 × 16 matrix) or by an irreducible R (4) matrix (H being represented by an irreducible
R (4) matrix). Similarly, H⊗3 and its subalgebra C⊗H⊗2 can be represented either by a re-
ducible matrix R (64) or by an irreducible matrix R (16) . A classification of real irreducible
representations of quaternionic Clifford algebras can be found in [16,17].

A hyperconjugation defined as

AH = (ic , jc , kc)⊗ (Ic , Jc , Kc)⊗ (lc , mc , nc) ,

yields the matrix transposition, adjunction and transpose quaternion conjugate. Finally, writ-
ing ω = e1 · · · en, one obtains for all hyperquaternion algebras with the above values of s and

Table 1: Hyperquaternion algebras (SR: special relativity, RQM: relativistic quantum
mechanics, usp: unitary symplectic physics, sm: standard model).

Cn(p, q) n p q s = p− q Group Physics
C 1 0 1 −1 U(1) 1D
H 2 0 2 −2 USp(1) 2D
C⊗H 3 3 0 3 SU(2) 3D
H⊗2 ≃ R (4) 4 3 1 2 SO(3, 1) SR
C⊗H⊗2 ≃ C (4) 5 2 3 −1 SU(4) RQM
H⊗3 ≃H (4) 6 2 4 −2 USp(4) usp
C⊗H⊗3 7 5 2 3 SU(8) sm
H⊗4 8 5 3 2 SO(5, 3)
C⊗H⊗4 9 4 5 −1 SU(16)
H⊗5 10 4 6 −2 USp(16)
C⊗H⊗5 11 7 4 3 SU(32)
H⊗6 12 7 5 2 SO(7, 5)
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the classical derivation (developing n= p+ q and using (−1)pq = (−1)−pq)

ω2 = (−1)
n(n−1)

2 e2
1...e2

n = (−1)
n(n−1)

2 +q = (−1)
s(s−1)

2 = −1 .

Though hyperquaternion algebras have been neglected in the past, recent algebraic software
like Mathematica and numerical computing have opened perspectives for the hyperquater-
nion calculus. An advantage of the hyperquaternion representation of Clifford algebras, is
that the product is defined independently of the choice of the generators. Furthermore, hy-
perquaternion algebras single out specific Clifford algebras which seem to be closely related
to symmetry group of physics as indicated in the table above. Thus they might constitute a
step towards a greater unification as proposed in [18].

6 Conclusion

The paper has developed applications of a new hyperquaternionic representation of Clifford
algebras in terms of tensor products of quaternion algebras. One advantage of hyperquater-
nion algebras is a uniquely defined product, independent of the choice of generators. Though,
hyperquaternions have been somewhat neglected so far, they have become more accessible
due to the introduction of algebraic and numerical computing. As applications, the paper has
examined the quaternion 2D representation, the conformal group in (1+ 2) space together
with a numerical example and implementation. Finally, a classification of all hyperquaternion
algebras into four types has been given, with general formulas of the signatures and the as-
sociated symmetry groups. We hope to have shown that the hyperquaternion algebras might
constitute a useful unifying tool for physics.
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A Multivector structure of C5(2, 3)

(e012 = e0e1e2, etc..)






















































1 0 0 n= e12

0 I l = e10 I m= e20 0
0 J l = ea1 J m= ea2 0
K = e0a 0 0 Kn= e0a12
0 il = e0a1b im= e0a2b 0
i I = eba 0 0 i I n= e1a2b
iJ = eb0 0 0 iJ n= e102b
0 iK l = eb1 iKm= eb2 0
j = eb 0 0 jn= e12b
0 j I l = e10b j I m= eb20 0
0 jJ l = ea1b jJ m= ea2b 0
jK = e0ab 0 0 jKn= e0a12b
0 kl = ea01 km= ea02 0
kI = ea 0 0 kI n= ea12
kJ = e0 0 0 kJ n= e012
0 kKl = e1 kKm= e2 0
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Abstract

It is well-known that the symmetry group of a Feynman diagram can give important
information on possible strategies for its evaluation, and the mathematical objects that
will be involved. Motivated by ongoing work on multi-loop multi-photon amplitudes in
quantum electrodynamics, here I will discuss the usefulness of introducing a polynomial
basis of invariants of the symmetry group of a diagram in Feynman-Schwinger parameter
space.
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1 Introduction: Schwinger parameter representation of Feynman
diagrams

The most universal approach to the calculation of Feynman diagrams uses Feynman-Schwinger
parameters x i , introduced through the exponentiation of the (Euclidean) scalar propagator,

1
p2 +m2

=

∫ ∞

0

d x e−x(p2+m2) .

For scalar diagrams, one finds the following universal structure for an arbitrary graph G
with n internal lines and l loops in D dimensions:

IG = Γ (n− lD/2)

∫

x i≥0

dn x δ
�

1−
n
∑

i=1

x i

�Un−(l+1) D
2

Fn−lD/2
.

U and F are polynomials in the x i called the first and second Symanzyk (graph) polyno-
mials. There exist graphical methods for their construction.
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For more general theories (involving not only scalar particles) the same graph will involve,
in addition to these two polynomials, also a numerator polynomial N (x1, . . . , xn). Such nu-
merator polynomials can become extremely large, and in the present talk I would like to point
out the universal option of rewriting them as polynomials in a basis of invariants of the sym-
metry group of the graph. After introducing the symmetries of Feynman diagrams and some
related facts of invariant theory in section 2, sections 3 to 8 are devoted to the discussion and
motivation of our main example, the three-loop effective Lagrangian in two-dimensional QED,
where we have found this procedure to lead to significantly more manageable expressions. We
come back to the group-theoretical aspects of this calculation in section 9, before summarizing
our findings in sections 10 and 11.

2 Symmetries of Feynman diagrams

Many Feynman diagrams possess a non-trivial symmetry group, generated by interchanges
of the internal lines that leave the topology of the graph unchanged.1 Then all its graph
polynomials must be invariant under the natural action of the group on the set of polynomials
IR[x1, . . . , xn], g.P(X )≡ P(g.X ).

A nice example is the l − loop banana graph shown in Fig. 1.

K K

M1

M2

M3

Ml+1

Figure 2.1: The l-loop banana diagram

2.2 Geometry associated to l-loop banana diagram

The zero locus of the denominator of the integral defines a singular family of (l � 1)-fold
Calabi-Yau hypersurfaces Ms as

Ms =
n

Pl(t, ⇠i; x) = 0|(x1 : . . . : xl+1) 2 Pl
o

. (2.4)

Due to standard arguments, see e.g. [31], Ms is a complex Kähler manifold with trivial cano-
nical class K = 0, hence a Calabi-Yau space. The first fact follows by the definition of Ms

as hypersurface in projective space Pl and the second as for a homogeneous polynomial Pl of
degree deg(P ) in Pl the canonical class is given in terms of the hyperplane class H of Pl as [31]
�K = c1(TMs) = [(l+1)�deg(P )]H and deg(P ) = (l+1). Note that given the scaling of (2.3)
this degree makes the integrand of (2.1) well defined under the C⇤ scaling of the homogenous
coordinates defining Pl. Embedded in Pl the hypersurface is a singular Calabi-Yau space.
Due to the Batyrev construction there is a canonical resolution of these singularities to define
a smooth Calabi-Yau family, which we discuss next following [19, 7, 21, 28]. A Calabi-Yau
manifold M of complex dimension n = l � 1 has two characteristic global di↵erential forms.
Since it is Kähler it has a Kähler (1, 1)-form ! defining its Kähler— or symplectic structure
deformations space. The triviality of the canonical class implies the existence of an unique
holomorphic (n, 0)-form that plays a crucial role in the description of the complex structure
deformations space of M .

2.2.1 Calabi-Yau hypersurfaces in toric ambient spaces

First we define a Newton polynomial P�l
as

Pl(t, ⇠i; x) =: P�l

l+1Y

i

xi . (2.5)

The exponents of each monomial of P�l
, w.r.t. to the coordinates xi, i = 1, . . . , l + 1, define

a point in a lattice Zl+1. The convex hull of all these points in the natural embedding of
Zl+1 ⇢ Rl+1 defines an l-dimensional lattice polyhedron. The dimension is reduced due to the
homogeneity of P�l

and we denote the polyhedron10 that lies in the induced lattice Zl ⇢ Rl

by �l.

10One calls P�l the Newton polynomial of �l and �l the Newton polyhedron of P�l .

5

Figure 1: l-loop banana graph.

When all the masses Mi are equal, this graph has full permutation symmetry in all the
internal lines, so the symmetry group is Sl+1, and its graph polynomials must be symmetric
functions of x1, . . . , x l+1. As is well-known, this implies that they can be rewritten as polyno-
mials in the elementary symmetric polynomials S1, . . . , Sn.

Perhaps less known is that this generalizes to the case of a general symmetry group as
follows [1]:

Theorem 1: Let G be a finite group and let Γ be an n−dimensional (real) representation.

1. There exist n = dim(Γ ) algebraically invariant polynomials P1, · · · , Pn, called the primi-
tive invariants, such that the Jacobian ∂ (P1,...,Pn)

∂ (x1,...,xn)
̸= 0.

2. Denote dk = deg(Pk) and R = R[P1, · · · , Pn] the subalgebra of polynomial invariants
generated by the primitive invariants.

3. There exist m= d1 · · · dn/|G| secondary invariant polynomials S1, · · · , Sm.

4. The subalgebra of invariants R[x1, · · · , xn]Γ is a free R−module with basis (S1, · · · , Sm).
In particular this means that any invariant I ∈ R[x1, · · · , xn]Γ can be uniquely written

1We do not consider here the exchange of external lines, since for such an exchange to leave a graph invariant
would require the two external momenta to be equal, which is not a natural condition. The exception is the case
where all the external momenta go to zero, which is what effectively happens in our main example below.
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as I =
m
∑

i=1
fi(P1, · · · , Pn)Si , where fi(P1, · · · , Pn), i = 1, · · · , m belong to R, i.e., are poly-

nomials in (P1, · · · , Pn).

There exist computer algebra systems for the computation of P1, . . . , Pn such as SINGULAR [2].

3 The Euler-Heisenberg Lagrangian at one loop

In 1936 Heisenberg and Euler obtained their famous representation of the one-loop QED ef-
fective Lagrangian in a constant field (“Euler-Heisenberg Lagrangian” or “EHL”)

L(1)(a, b) = −
1

8π2

∫ ∞

0

dT
T3

e−m2T
�

(eaT )(ebT )
tanh(eaT ) tan(ebT )

−
e2

3
(a2 − b2)T2 − 1

�

. (1)

Here m is the electron mass, and a, b are the two invariants of the Maxwell field, related to E,
B by a2 − b2 = B2 − E2, ab = E · B. This Lagrangian holds the information on the QED N -
photon amplitudes in the low-energy limit where all photon energies are small compared to
the electron mass, ωi ≪ m. It corresponds to the diagrams shown in Fig. 2.

This formula (called ‘AAM formula’ in the following) is highly remark-
able for various reasons. Despite of its simplicity it is a true all-loop result;
the rhs receives contributions from an infinite set of Feynman diagrams of
arbitrary loop order, as sketched in fig. 1.

Number of external legs

Number of loops 4 6 8 · · ·

1

+ + + · · ·

2

+ + · · ·

· · · · · ·

3 · · · . . .
...

...
...

. . .
. . .

...

Figure 1: Diagrams contributing to ImL(all−loop)
scal (E) in the weak-field limit.

1

Figure 2: Feynman diagrams corresponding to the EHL.

For the extraction of the amplitudes from the effective Lagrangian, one expands it in powers
of the Maxwell invariants,

L(a, b) =
∑

k,l

ckl a2k b2l , (2)

then fixes a helicity assignment and uses spinors helicity techniques [3].

4 Imaginary part of the effective action

Except for the purely magnetic case where b = 0, the proper-time integral in (1) has poles on
the integration contour at ebT = kπ which create an imaginary part. For the purely electric
case one gets [4]

ImL(1)(E) = m4

8π3
β2
∞
∑

k=1

1
k2

exp
�

−
πk
β

�

,

(β = eE/m2). We note:

• The kth term relates to coherent creation of k pairs in one Compton volume.

• ImL(E) depends on E non-perturbatively (non-analytically), which is consistent with
Sauter’s [5] interpretation of pair creation as vacuum tunnelling (Fig. 3).
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FIG. 1: Pair production as the separation of a virtual vacuum dipole pair under the influence of an external electric field.

building on earlier work of Sauter [18]. This result sets a basic scale of a critical field strength and intensity near
which we expect to observe such nonperturbative effects:

Ec =
m2c3

e h̄
≈ 1016 V/cm

Ic =
c

8π
E2

c ≈ 4 × 1029 W/cm2 (1.4)

As a useful guiding analogy, recall Oppenheimer’s computation [19] of the probability of ionization of an atom of
binding energy Eb in such a uniform electric field:

Pionization ∼ exp

[
−4

3

√
2mE

3/2
b

eEh̄

]
. (1.5)

Taking as a representative atomic energy scale the binding energy of hydrogen, Eb = me4

2h̄2 ≈ 13.6 eV, we find

P hydrogen ∼ exp

[
−2

3

m2 e5

E h̄4

]
. (1.6)

This result sets a basic scale of field strength and intensity near which we expect to observe such nonperturbative
ionization effects in atomic systems:

E ionization
c =

m2e5

h̄4 = α3Ec ≈ 4 × 109 V/cm

I ionization
c = α6Ic ≈ 6 × 1016 W/cm2 (1.7)

These, indeed, are the familiar scales of atomic ionization experiments. Note that E ionization
c differs from Ec by a factor

of α3 ∼ 4 × 10−7. These simple estimates explain why vacuum pair production has not yet been observed – it is an
astonishingly weak effect with conventional lasers [20, 21]. This is because it is primarily a non-perturbative effect,
that depends exponentially on the (inverse) electric field strength, and there is a factor of ∼ 107 difference between
the critical field scales in the atomic regime and in the vacuum pair production regime. Thus, with standard lasers
that can routinely probe ionization, there is no hope to see vacuum pair production. However, recent technological
advances in laser science, and also in theoretical refinements of the Heisenberg-Euler computation, suggest that lasers
such as those planned for ELI may be able to reach this elusive nonperturbative regime. This has the potential to open
up an entirely new domain of experiments, with the prospect of fundamental discoveries and practical applications,
as are described in many talks in this conference.

II. THE QED EFFECTIVE ACTION

In quantum field theory, the key object that encodes vacuum polarization corrections to classical Maxwell electro-
dynamics is the ”effective action” Γ[A], which is a functional of the applied classical gauge field Aµ(x) [22, 23, 24].
The effective action is the relativistic quantum field theory analogue of the grand potential of statistical physics, in
the sense that it contains a wealth of information about the quantum system: here, the nonlinear properties of the

quantum vacuum. For example, the polarization tensor Πµν = δ2Γ
δAµδAν

contains the electric permittivity εij and the

magnetic permeability µij of the quantum vacuum, and is obtained by varying the effective action Γ[A] with respect

Figure 3: Pair creation by an external field as vacuum tunnelling.

This formula (called ‘AAM formula’ in the following) is highly remark-
able for various reasons. Despite of its simplicity it is a true all-loop result;
the rhs receives contributions from an infinite set of Feynman diagrams of
arbitrary loop order, as sketched in fig. 1.
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...
...
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...

Figure 1: Diagrams contributing to ImL(all−loop)
scal (E) in the weak-field limit.

1

Figure 4: Feynman diagrams contributing to the 2-loop EHL.

5 Beyond one loop

The two-loop correction to the EHL due to one internal photon exchange (Fig. 4) has been
analyzed [6–8], and turned out to contain important information on the Sauter tunnelling
picture [9], on-shell versus off-shell renormalization [6,10], and the asymptotic properties of
the QED photon S-matrix [11].

It leads to rather intractable two-parameter integrals. However, in the electric case its
imaginary part ImL(2)(E) permits a decomposition analogous to Schwinger’s (3) [9]. For
single-pair production, this is now interpreted as a tunnelling process where, in the process
of turning real, the electron-positron pair is already interacting at the one-photon exchange
level.

Even for the imaginary part no completely explicit formulas are available. However, it
simplifies dramatically in the weak-field limit, where it just becomes an απ correction to the
one-loop contribution:

ImL(1)(E) + ImL(2)(E) β→0
∼

m4β2

8π3

�

1+απ
�

e−
π
β .

This suggests that higher loop orders might lead to an exponentiation, and indeed Lebedev
and Ritus [9] provided strong support for this hypothesis by showing that, assuming that

ImL(1)(E) + ImL(2)(E) + ImL(3)(E) + . . .
β→0
∼

m4β2

8π3
exp
�

−
π

β
+απ
�

= ImL(1)(E) eαπ ,

then the result can be interpreted in the tunnelling picture as the corrections to the Schwinger
pair creation rate due to the pair being created with a negative Coulomb interaction energy

m(E)≈ m+δm(E) , δm(E) = −
α

2
eE
m

.

Moreover, the resulting field-dependent mass-shift δm(E) is identical with the Ritus mass shift,
originally derived by Ritus in [13] from the crossed process of one-loop electron propagation
in the field (Fig. 5).

Unbeknownst to the authors of [9], for scalar QED the corresponding conjecture had al-
ready been established two years earlier by Affleck, Alvarez and Manton [12] using Feynman’s
worldline path integral formalism and a semi-classical worldline instanton approximation.
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1

Figure 5: Photon-corrected pair-creation vs. electron propagation in the field.
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Figure 1: Diagrams contributing to ImL(all−loop)
scal (E) in the weak-field limit.

Moreover, the mass appearing in (1.15) is argued to be still the physical
renormalized mass, which means that the above figure should strictly speak-
ing include also the mass renormalization counter diagrams which appear in
EHL calculations starting from two loops.

The derivation given in [33] is very simple, if formal. Based on a station-
ary path approximation of Feynman’s worldline path integral representation
[34] of Lscal(E), it actually uses only a one-loop semiclassical trajectory, and
arguments that this trajectory remains valid in the presence of virtual pho-
ton insertions. This also implies that non-quenched diagrams do not con-
tribute in the limit (1.15), which is why we have shown only the quenched
ones in fig. 1.

Although the derivation of (1.15) in [33] cannot be considered rigorous,
an independent heuristic derivation of (1.15), as well as extension to the
spinor QED case (with the same factor of eαπ) was given by Lebedev and
Ritus [31] through the consideration of higher-order corrections to the pair
creation energy in the vacuum tunneling picture. At the two-loop level,
(1.15) and its spinor QED extension state that

6

Figure 6: Feynman diagrams contributing to the exponentiation hypothesis.

Diagrammatically, we note the following features of the exponentiation formula (see Fig. 6):

• It Involves diagrams with any numbers of loops and legs.

• Although not shown, also all the counter-diagrams from mass renormalization must
contribute.

• It does not include diagrams with more than one fermion loop (those get suppressed in
the weak-field limit [12]).

• Horizontal summation produces the Schwinger exponential e−
π
β .

• Vertical summation produces the Ritus-Lebedev/Affleck-Alvarez-Manton exponential eαπ.

6 QED in 1+1 dimensions

The exponentiation conjecture has so far been verified only at two loops. A three-loop check
is in order, but calculating the three-loop EHL in D = 4 is presently hardly feasible. Motivated
by work by Krasnansky [14] on the EHL in various dimensions, in 2010 two of the authors
with D.G.C. McKeon started investigating the analogous problem in 2D QED. In [15] we used
the worldline instanton method to generalize the exponentiation conjecture to the 2D case,
resulting in

ImL(all−loop)
2D ∼ e−

m2π
eE +α̃π

2κ2
, (3)

where κ = m2/(2e f ), f 2 = 1
4 FµνFµν, and α̃ = 2e2

πm2 is the two-dimensional analogue of the
fine-structure constant. Defining the weak-field expansion coefficients in 2D by

L(l)(2D)(κ) =
m2

2π

∞
∑

n=1

(−1)l−1c(l)2D(n)(iκ)
−2n , (4)
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we then used Borel analysis to derive from (3) a formula for the limits of ratios of l - loop to
one - loop coefficients:

limn→∞
c(l)2D(n)

c(1)2D (n+ l − 1)
=
(α̃π2)l−1

(l − 1)!
. (5)

Moreover, we calculated the 2D EHL at one and two loops,

L(1)( f ) = −m2

4π
1
κ

�

lnΓ (κ)−κ(lnκ− 1) +
1
2

ln
� κ

2π

�

�

, (6)

L(2)( f ) = m2

4π
α̃

4

�

ψ̃(κ) + κψ̃′(κ) + ln(λ0m2) + γ+ 2
�

, (7)

where ψ̃(x) ≡ ψ(x)− ln x + 1
2x , ψ(x) = Γ ′(x)/Γ (x), and the constant λ0 comes from an IR

cutoff. One finds from (6) and (7) that

c(1)2D (n) = (−1)n+1 B2n

4n(2n− 1)
, (8)

c(2)2D (n) = (−1)n+1 α̃

8
2n− 1

2n
B2n . (9)

Using properties of the Bernoulli numbers Bn it is then easy to verify that

lim
n→∞

c(2)2D (n)

c(1)2D (n+ 1)
= α̃π2 ,

in accordance with (5).

7 Three-loop EHL in 2D: Diagrams

At three loops, we face the task of computing the two diagrams shown in Fig. 7 (there are also
diagrams involving more than one fermion-loop, including several that involve Gies-Karbstein
tadpoles [16], but those can be shown to be subdominant in the asymptotic limit).

! " #

Figure 7: Three-loop diagrams contributing to the exponentiation conjecture.

The fermion propagators in these diagrams are the exact ones in the constant external
field. Thus, although they are depicted as vacuum diagrams, they are equivalent to the full
set of ordinary diagrams of the given topology with any number of zero momentum photons
attached to them in all possible ways.

Due to the super-renormalizability of 2D QED these diagrams are already UV finite. They
suffer from spurious IR - divergences, but those can be removed by going to the traceless gauge
ξ = −2 [17]. The calculation of diagram A is relatively straightforward, thus we focus on the
much more substantial task of computing diagram B and its weak-field expansion coefficients.
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4 Final result for  A

Adding up both contributions and taking prefactors into account gives finally the integral representation:

 A =
e4

8⇡3(ef)4

Z 1

0
dzdz̄dẑdz0

e�2(z+ẑ+z̄+z0)

a2 cosh z cosh ẑ(cosh z̄ cosh z0)2

⇥
"
m2 cosh(z � ẑ) � 2

a cosh z cosh ẑ

#
(32)

=
e4

4⇡3ef

Z 1

0
dzdz̄dẑdz0

e�2(z+ẑ+z̄+z0)

A2 cosh z cosh ẑ(cosh z̄ cosh z0)2

(33)

⇥
"
 cosh(z � ẑ) � 1

A cosh z cosh ẑ

#
(34)

where
A = tanh z + tanh z0 + tanh ẑ + tanh z̄

5 Diagram B

α

ν

β

p
_

p

p

p’
 ^

q

k

µ

We will use k, q, and p as the independent variables. The remaining variables are expressed in terms of them
as

p0 = p + q

p̄ = p + k

p̂ = p + q + k

(35)

With these conventions, the contribution of this diagram is written as

5

Figure 8: Parametrization of diagram B.

Introducing Schwinger parameters for this diagram as shown in Fig. 8 leads to the integral
representation [17]

L3B( f ) =
α̃2m2

128π

∫ ∞

0

dwdw′dŵdw̄ IB e−a ,

IB =
ρ3

cosh2ρw cosh2ρw′ cosh2ρŵ cosh2ρw̄

B
A3C

−ρ
cosh(ρw̃)

coshρw coshρw′ coshρŵ coshρw̄

�

1
A
−

C
G2

ln

�

1+
G2

AC

��

,

where

B = (tanh2z + tanh2ẑ)(tanhz′ + tanhz̄) + (tanh2z′ + tanh2z̄)(tanhz + tanhẑ) ,

C = tanhz tanhz′ tanh ẑ + tanhz tanhz′ tanhz̄ + tanhz tanhẑ tanhz̄ + tanhz′ tanhẑ tanhz̄ ,

G = tanhz tanhẑ − tanhz′ tanhz̄

(z = ρw etc.). Although for a three-loop diagram this is a fairly compact representation, an
exact calculation is out of the question, and a straightforward expansion in powers of the
external field to get the weak-field expansion coefficients turns out to create huge numerator
polynomials. To deal with those, we will now take advantage of the high symmetry of the
diagram.

8 Integration-by-parts algorithm

Introduce the operator d̃ ≡ ∂
∂ w−

∂
∂ w′ +

∂
∂ ŵ−

∂
∂ w̄ which acts simply on the trigonometric building

blocks of the integrand. Integrating by parts with this operator, it is possible to write the
integrand of βn, the n-th coefficient of the expansion of IB as a power series in ρ, as a total
derivative βn = d̃θn. Then, using once more the symmetry of the graph,

∫ ∞

0

dwdw′dŵdw̄ e−aβn =

∫ ∞

0

dwdw̄dŵdw′d̃ e−(w+w′+ŵ+w̄)θn

= 4

∫ ∞

0

dwdw′dŵ e−(w+w′+ŵ) θn|w̄=0 .

The remaining threefold integrals are already of a fairly standard type.
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9 Using the polynomial invariants of D4

Diagram B has the symmetries

w ↔ ŵ ,

w′ ↔ w̄ ,

(w, ŵ) ↔ (w′, w̄) .

Those generate the dihedral group D4. After a slight generalization to the inclusion of semi-
invariants (invariants up to a sign) [18], Theorem 1 can be used to deduce that the numerator
polynomials can be rewritten as polynomials in the variable w̃= w−w′+ŵ−w̄ with coefficients
that are polynomials in the four D4 - invariants a, v, j, h,

a = w+w′ + ŵ+ w̄ ,

v = 2(wŵ+w′w̄) + (w+ ŵ)(w′ + w̄) ,

j = aw̃− 4(wŵ−w′w̄) ,

h= a(ww′ŵ+ww′w̄+wŵw̄+w′ŵw̄) + (wŵ−w′w̄)2 .

These invariants are moreover chosen such that they are annihilated by d̃. Thus they are
well-adapted to the integration-by-parts algorithm. This rewriting leads to a very significant
reduction in the size of the expressions generated by the expansion in the field.

10 Results

In this way we obtained the first two coefficients of the weak-field expansion analytically,

Γ B
0 = −

3
2
+

7
4
ζ(3) ,

Γ B
1 = −

251
120

+
35
16
ζ(3) ,

and five more coefficients numerically (the coefficients Γn are related to the ones introduced
in (4) by 4nc(3)n = α̃2

64Γn). For a definite conclusion concerning the exponentiation conjecture
this is still insufficient, and the computation of further coefficients is in progress.

11 Outlook

• Writing Feynman graph polynomials in terms of invariant polynomials is a universal op-
tion that, to the best of our knowledge, has not previously been used, but we expect that
it will be found very useful for multiloop calculations involving diagrams with nontrivial
symmetry groups and a large number of propagators.

• In particular, this is the case for the weak-field expansion of the QED effective Lagrangian
starting from three loops (in any dimension).

References

[1] B. Sturmfels, Algorithms in invariant theory, Springer, Vienna, Austria, ISBN
9783211774168 (2008), doi:10.1007/978-3-211-77417-5.

031.8

https://scipost.org
https://scipost.org/SciPostPhysProc.14.031
https://doi.org/10.1007/978-3-211-77417-5


SciPost Phys. Proc. 14, 031 (2023)

[2] W. Decker and C. Lossen, Computing in algebraic geometry: A quick start using SINGULAR,
Springer, Berlin, Heidelberg, Germany, ISBN 9783540289920 (2006), doi:10.1007/3-
540-28993-3.

[3] L. C. Martin, C. Schubert and V. M. Villanueva Sandoval, On the low-energy
limit of the QED N - photon amplitudes, Nucl. Phys. B 688, 335 (2003),
doi:10.1016/j.nuclphysb.2018.07.026.

[4] J. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82, 664 (1951),
doi:10.1103/PhysRev.82.664.

[5] F. Sauter, Über das verhalten eines elektrons im homogenen elektrischen feld nach der rela-
tivistischen theorie diracs, Z. Phys. 69, 742 (1931), doi:10.1007/BF01339461.

[6] V. I. Ritus, Lagrangian of an intense electromagnetic field and quantum electrodynamics at
short distances, Zh. Eksp. Teor. Fiz 69, 1517 (1975).

[7] W. Dittrich and M. Reuter, Effective Lagrangians in quantum electrodynamics, Springer,
Berlin, Heidelberg, Germany, ISBN 9783540151821 (1985), doi:10.1007/3-540-15182-
6.

[8] M. Reuter, M. G. Schmidt and C. Schubert, Constant external fields in gauge theory and the
spin 0, 1/2, 1 path integrals, Ann. Phys. 259, 313 (1997), doi:10.1006/aphy.1997.5716.

[9] S. L. Lebedev and V. I. Ritus, Virial representation of the imaginary part of the Lagrangian
function of an electromagnetic field, Zh. Eksp. Teor. Fiz. 86, 408 (1984).

[10] V. I. Ritus, Connection between strong-field quantum electrodynamics with short-distance
quantum electrodynamics, Zh. Eksp. Teor. Fiz 73, 807 (1977).

[11] I. Huet, M. Rausch de Traubenberg and C. Schubert, Asymptotic behavior of the QED per-
turbation series, Adv. High Energy Phys. 6214341 (2017), doi:10.1155/2017/6214341.

[12] I. K. Affleck, O. Alvarez and N. S. Manton, Pair production at strong coupling in weak
external fields, Nucl. Phys. B 197, 509 (1982), doi:10.1016/0550-3213(82)90455-2.

[13] V. I. Ritus, Method of eigenfunctions and mass operator in quantum electrodynamics of a
constant field, Zh. Eksp. Teor. Fiz. 75, 1560 (1978).

[14] M. Krasnansky, Two-loop vacuum diagrams in background field and Heisenberg-Euler
effective action in different dimensions, Int. J. Mod. Phys. A 23, 5201 (2008),
doi:10.1142/S0217751X08042572.

[15] I. Huet, D. G. C. McKeon and C. Schubert, Euler-Heisenberg Lagrangians and asymp-
totic analysis in 1 + 1 QED. Part I: Two-loop, J. High Energy Phys. 12, 036 (2010),
doi:10.1007/JHEP12(2010)036.

[16] H. Gies and F. Karbstein, An addendum to the Heisenberg-Euler effective action beyond one
loop, J. High Energy Phys. 03, 108 (2017), doi:10.1007/JHEP03(2017)108.

[17] I. Huet, M. Rausch de Traubenberg and C. Schubert, Three-loop Euler-Heisenberg La-
grangian in 1 + 1 QED, part 1: Single fermion-loop part, J. High Energy Phys. 03, 167
(2019), doi:10.1007/JHEP03(2019)167.

[18] I. Huet, M. Rausch de Traubenberg and C. Schubert, Dihedral invariant polynomi-
als in the effective Lagrangian of QED, J. Phys.: Conf. Ser. 1194, 012046 (2019),
doi:10.1088/1742-6596/1194/1/012046.

031.9

https://scipost.org
https://scipost.org/SciPostPhysProc.14.031
https://doi.org/10.1007/3-540-28993-3
https://doi.org/10.1007/3-540-28993-3
https://doi.org/10.1016/j.nuclphysb.2018.07.026
https://doi.org/10.1103/PhysRev.82.664
https://doi.org/10.1007/BF01339461
https://doi.org/10.1007/3-540-15182-6
https://doi.org/10.1007/3-540-15182-6
https://doi.org/10.1006/aphy.1997.5716
https://doi.org/10.1155/2017/6214341
https://doi.org/10.1016/0550-3213(82)90455-2
https://doi.org/10.1142/S0217751X08042572
https://doi.org/10.1007/JHEP12(2010)036
https://doi.org/10.1007/JHEP03(2017)108
https://doi.org/10.1007/JHEP03(2019)167
https://doi.org/10.1088/1742-6596/1194/1/012046




SciPost Phys. Proc. 14, 032 (2023)

Quantum cylindrical integrability in magnetic fields

Ondřej Kubů⋆ and Libor Šnobl

Czech Technical University in Prague, Faculty of Nuclear Sciences
and Physical Engineering, Prague, Czech Republic

⋆ ondrej.kubu@fjfi.cvut.cz

34th International Colloquium on Group Theoretical Methods in Physics
Strasbourg, 18-22 July 2022

doi:10.21468/SciPostPhysProc.14

Abstract

We present the classification of quadratically integrable systems of the cylindrical type
with magnetic fields in quantum mechanics. Following the direct method used in classi-
cal mechanics by [F Fournier et al 2020 J. Phys. A: Math. Theor. 53 085203] to facilitate
the comparison, the cases which may a priori differ yield 2 systems without any correc-
tion and 2 with it. In all of them the magnetic field B coincides with the classical one,
only the scalar potential W may contain a ħh2-dependent correction. Two of the systems
have both cylindrical integrals quadratic in momenta and are therefore not separable.
These results form a basis for a prospective study of superintegrability.
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1 Introduction

This article is a contribution to the study of integrable and superintegrable Hamiltonian sys-
tems with magnetic fields on the 3D Euclidean space E3 in quantum mechanics. More specifi-
cally, we assume a Hamiltonian of the form (using units where e = −1, m= 1)

H =
1
2

�

p⃗2 + A j( x⃗)p j + p jA j( x⃗) + A j( x⃗)
2
�

+W ( x⃗) , (1)

with implicit summation over repeated indices j = 1,2, 3 (in the whole paper), p⃗ = −iħh∇⃗ is
the momentum operator and A⃗ = (A1( x⃗), A2( x⃗), A3( x⃗)) and W ( x⃗) are the vector and scalar
potentials of the electromagnetic field.

Integrability then entails the existence of two algebraically independent integrals of motion
X1, X2 (further specified below) mutually in involution, i.e.

[H, X1] = [H, X2] = [X1, X2] = 0 . (2)

They are usually considered to be polynomials in the momenta p j , for computational feasibility
usually of a low order (typically 2).
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Integrable (and especially superintegrable) systems are rare and distinguished by the pos-
sibility to obtain the solution to their equations of motion in a closed form. They are subse-
quently invaluable for gaining physical intuition and serve as a starting point for modelling
more complicated systems. Finding and classifying these systems is therefore of utmost im-
portance.

The case without the vector potential A⃗ has been widely studied. The quadratic integrable
systems were classified in 1960s and the 1:1 correspondence with orthogonal separation of
variables of the Schrödinger (or, in classical context, the Hamilton-Jacobi) equation was found
[1–3]. This leads to the 11 classes of scalar potentials V studied by Eisenhart [4]. Higher order
superintegrability followed, see e.g. [5] and references therein.

Despite its physical relevance, integrability with magnetic fields was mostly ignored due to
its computational difficulty. The first systematic result remedying this omission was the article
by Shapovalov on separable systems [6], followed by the articles in E2 [7, 8]. Subsequent
articles in E3 assumed first order integrals [9] or separation of variables [10–13]. Marchesiello
et al. [9] found a quadratic superintegrable system with an integral not connected to separation
of variables, which was recently followed up by [14,15].

Here we present in an abridged form the classification of quadratically integrable systems
of the cylindrical type (see (9)) in quantum mechanics obtained in O. Kubů’s Master thesis
[16], which closely followed Fournier et al.’s [13] classical analysis to highlight the differences
arising in quantum mechanics.

In Section 2 we introduce the differential form formalism for magnetic fields in cylindrical
coordinates, derive the determining equations for cylindrical–type integrals and reduce them
to a simpler form. The calculations separate into several cases depending on the rank of the
matrix in equation (15). In the case that may a priori differ from the classical one from [13]
only ranks 2 and 1 are relevant. We present the corresponding results in Sections 3 and 4,
respectively. We draw our conclusions in Section 5.

2 Cylindrical–type system

Before we specify the corresponding integrals X1, X2, we have to introduce the formalism used
for magnetic field in curvilinear coordinates in classical mechanics, cf. [13,17].

Defining the cylindrical coordinates

x = r cos(φ) , y = r sin(φ) , z = Z , (3)

we represent the vector potential A as a 1-form

A= Axdx + Aydy + Azdz = Ardr + Aφdφ + AZdZ . (4)

Hence, we obtain the following transformations

Ax = cos(φ)Ar −
sin(φ)

r
Aφ , Ay = sin(φ)Ar +

cos(φ)
r

Aφ , Az = AZ . (5)

As a part of the canonical 1-form λ = p jdx J , the momenta p j transform in the same way
and we can define the covariant momenta by pA

j = p j + A j in both Cartesian and cylindrical
coordinates.

Components of the magnetic field 2-form B = dA are

B = Bx( x⃗)dy ∧ dz + B y( x⃗)dz ∧ dx + Bz( x⃗)dx ∧ dy

= Br(r,φ, Z)dφ ∧ dZ + Bφ(r,φ, Z)dZ ∧ dr + BZ(r,φ, Z)dr ∧ dφ ,
(6)
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which leads to the following transformation

Bx( x⃗) =
cos(φ)

r
Br(r,φ, Z)− sin(φ)Bφ(r,φ, Z) ,

B y( x⃗) =
sin(φ)

r
Br(r,φ, Z) + cos(φ)Bφ(r,φ, Z) , (7)

Bz( x⃗) =
1
r

BZ(r,φ, Z) .

We can use the same formalism and notation in quantum mechanics as well, we just have
to quantize the equations and the integrals (properly symmetrized) in Cartesian coordinates
and subsequently transform our equations into cylindrical ones. For example, the transformed
momenta read

px = −iħh
�

cos(φ)∂r −
sin(φ)

r
∂φ

�

, py = −iħh
�

sin(φ)∂r +
cos(φ)

r
∂φ

�

, pz = −iħh∂Z , (8)

i.e. the transformation is the same as (5) upon defining pr,φ,Z = −iħh∂r,φ,Z .
We can now introduce integrals of motion of the cylindrical type, i.e. integrals that imply

separation of Schrödinger (or, classically, Hamilton-Jacobi) equation in the cylindrical coordi-
nates in the limit of vanishing magnetic field B⃗. Expressed in the cylindrical coordinates they
read

X1 =
�

pA
φ

�2
+

1
2

∑

α=r,φ,Z

�

sα1 (r,φ, Z)pA
α + pA

αsα1 (r,φ, Z)
�

+m1(r,φ, Z) ,

X2 =
�

pA
Z

�2
+

1
2

∑

α=r,φ,Z

�

sα2 (r,φ, Z)pA
α + pA

αsα2 (r,φ, Z)
�

+m2(r,φ, Z) .
(9)

The functions s{r,φ,Z}
1,2 , m1,2 are to be determined from the integrability conditions (2) together

with the electromagnetic field B, W .
Our form of integrals allows us to separate the integrability conditions (2) into coefficients

of momenta, e.g. pr pZ , which must all vanish, yielding the so-called determining equations.
The second order ones can be solved in terms of 5 auxiliary functions of one variable each,
namely

sr
1 =

d
dφ
ψ(φ) , sφ1 = −

ψ(φ)
r
− r2µ(Z) +ρ(r) , sZ

1 = τ(φ) ,

sr
2 = 0 , sφ2 = µ(Z) , sZ

2 = −
τ(φ)

r2
+σ(r) ,

(10)

Br = −
r2

2
d

dZ
µ(Z) +

1
2r2

d
dφ
τ(φ) , Bφ =

τ(φ)
r3
+

1
2

d
dr
σ(r) ,

BZ =
−ψ(φ)

2r2
+ rµ(Z)−

1
2

d
dr
ρ(r)−

1
2r2

d2

dφ2
ψ(φ) ,

(11)

cf. [13]. We further use primes for derivatives of these functions with respect to their variable.
We substitute this result into the remaining determining equations and the corresponding

Clairaut compatibility conditions ∂bam j = ∂abm j and after some calculations we obtain the
following reduced equations. (Indexes of W mean partial derivatives.)

ψ′(φ)
�

r3σ′(r) + 2τ(φ)
�

−τ′(φ) (rρ(r)−ψ(φ)) = 0 , (12)

µ(Z)ψ′(φ) + r3σ(r)µ′(Z) = 0 , (13)
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Wrφ = −
2
r

Wφ +
1

4r5

�

ψ′(φ)
�

r3(ρ′′(r)−µ(Z))− r2ρ′(r) + rρ(r)− 3ψ′′(φ)− 4ψ(φ)
�

+ τ′(φ)
�

r3σ′(r) + 2τ(φ)
�

− 2r4τ(φ)µ′(Z)−ψ′′′(φ) (ψ(φ)− rρ(r))
�

,

WφZ = −
1

4r2

�

r2µ′′(Z)
�

τ(φ)− r2σ(r)
�

+τ′′(φ)µ(Z)
�

, (14)

WrZ =
1

4r3

�

rµ′(Z)
�

r2ρ′(r) +ψ(φ)− 2r3µ(Z)
�

+ 2µ(Z)τ′(φ)
�

,





0 r2µ(Z) r2σ(r)−τ(φ)
ψ′(φ) ρ(r)− r2µ(Z)− ψ(φ)r τ(φ)

0 4r7µ(Z) −4r5τ(φ)



 ·





Wr
Wφ

WZ



=





0

−ħh
2(ψ′′′(φ)+ψ′(φ))

4r3

0



 . (15)

We denote the matrix in (15) by M .
The only change with respect to the classical case is the non-zero RHS in equation (15),

corresponding to equation (39) in [13].
We proceed depending on the rank of the matrix M : rank 0 implies vanishing magnetic

field and rank 3 is inconsistent with the other reduced equations (12)–(14), we therefore
consider ranks 1 and 2 only.

For both these ranks we have to consider the following 2 cases,

a) ψ′(φ) = 0 ,

b) ψ′(φ) ̸= 0 , and µ(Z) = 0 .

Case a) implies vanishing quantum correction in (15), i.e. the systems are characterized
by the same functions B, W, s and m in the classical and quantum mechanics. The reader can
find those in [13]. Hereafter we present only the results for case b) for brevity, details can be
found in [16].

3 rank (M) = 2

Here the matrix equation (15) implies that the coordinate Z is cyclical in a suitable gauge and
the integral X2 reduces to a first order one pZ = pz in that gauge.

We obtain 2 systems. The dynamics of the first one splits to a free motion in the z direction
and a 2D system with perpendicular magnetic field, so some details were extracted from the
consideration of 2D systems in [7, 8]. The other system cannot be separated in this way due
to a more complicated magnetic field (but pz remains an integral).

In what follows we use r =
p

x2 + y2 for brevity in Cartesian coordinates as well and ex-
pressions likeρ1,ψ2 and W0 are (usually nonvanishing) constants unless a variable is explicitly
indicated.

1. The first system is classical, i.e. the quantum correction vanishes. The electromagnetic
field in Cartesian coordinates reads

Bx = 0 , B y = 0 , Bz = −6ρ2r2 +ρ1 ,

W = − 2ρ2(ψ1 x +ψ2 y)−ρ2
2 r6 +

ρ2ρ1

2
r4 −ρ2W0r2 .

(16)

The cylindrical integral of motion X1 in Cartesian coordinates is

X1 =
�

LA
z

�2
+
�

3ρ2r4 −ρ1r2 +W0

�

LA
z −ψ2pA

x +ψ1pA
y

+ (2ρ2r2 −ρ1)(ψ1 x +ψ2 y)

+ 1
4

�

3ρ2r4 −ρ1r2 + 2W0

� �

3ρ2r2 −ρ1

�

r2 .

(17)
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2. This time the reduced equations (12)–(15) were not completely solved. The electro-
magnetic field listed below features a function β(φ) = ψ(φ) − ρ0 which must satisfy
the following ODE

β ′(φ)
�

7β(φ)β ′′(φ) + 4β ′(φ)2 + 12β(φ)2 + f1
�

+ β(φ)2β ′′′(φ) = 0 , (18)

where f1 is a parameter, or equivalently its reduced form with integrating constants
β1,β2

4β(φ)4β ′(φ)2 + 4β(φ)6 − 4β1β(φ)
2 + f1β(φ)

4 = β2 . (19)

We were not able to solve this autonomous first order differential equation in general in
an explicit form. As was noted in [7], a hodograph transformation leads to φ(β) obtain-
able by a quadrature in terms of elliptic integrals. However, the subsequent inversion to
find β(φ) is either impossible or not illuminating, therefore the authors of [7] proceed

only with some special solutions. e.g. by choosing β2 = 0, f1 < 0, and − f 2
1

64 < β1 < 0,
we obtain a well-defined solution

β(φ) =

√

√

√

q

64β1 + f 2
1 sin (2(φ −φ0))− f1

8
. (20)

Using the ODEs above to eliminate derivatives of β(φ), the electromagnetic field for any
solution β(φ) of (19) is given by

Br = −τ1

p

4β1β(φ)2 + β2 − 4β(φ)6 − f1β(φ)4

2r2β(φ)5
,

Bφ =
τ1

r3β(φ)2
, BZ =

2β1β(φ)2 + β2

4r2β(φ)5
, (21)

W =
W0

r2β(φ)2
−
(4τ2

1 + β2)

32r4β(φ)4
+ħh2 f1β(φ)4 − 12β1β(φ)2 − 5β2

32r2β(φ)6
.

The sign of the square root depends on the branch chosen while substituting for β ′(φ)
from (19).

We note that the magnetic field is the same classically and quantum mechanically in
both cases, only the scalar potential W obtains an ħh2-proportional correction depending
on β . This system admits τ1 = 0, which leads to its separation into free 1D motion plus
2D motion in a perpendicular magnetic field.

The lower order terms of the cylindrical integral X1 from (9) are determined by

sr
1 =

p

4β1β(φ)2 + β2 − 4β(φ)6 − β(φ)4 f1
2β(φ)2

,

sφ1 = −
β(φ)

r
, sZ

1 = τ0 +
τ1

β(φ)2
, (22)

m1 =
2W0

β(φ)2
−

4β(φ)2τ0τ1 + 2β1β(φ)2 + 4τ2
1 + β2

8β(φ)4r2
+ħh2 f1β(φ)4 − 12β1β(φ)2 − 5β2

16r2β(φ)6
,

the integral X2 reduces to the first order one X̃2 = pZ in a suitable gauge.
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4 rank (M) = 1

Here the general form of the fields is as follows

Bx = 0 , B y = 0 , Bz = Bz(x , y) ,

W =W12(x , y) +W3(z) .
(23)

This implies that the system again separates into the 1D motion in the z direction, influ-
enced by the scalar potential W3(z) and no magnetic field (Bx = B y = 0), and the motion in
the x y direction determined by a perpendicular magnetic field Bz(x , y) and a scalar potential
W12(x , y) containing a priori a quantum correction.

The presence of the scalar potential W3(z), which is not constrained further, implies that
the cylindrical integral,

X2 =
�

pA
z

�2
+ 2W3(z) , (24)

does not reduce to a first order one and the motion in the z direction is no longer free.
The remaining 2D motion, studied earlier in [7,8], is integrable due to the integral X1 from

(9). The relevant magnetic field Bz(x , y), the 2D scalar potential W12(x , y) and the functions
sr,φ,Z
1 , m1 coincide with the results of Section 3, namely case 1, see (16), and case 2 with
τ1 = 0, see (21). In both cases neither of the cylindrical integrals reduces to a first order one
(with potential exceptions for some special solutions of β(φ)), therefore the results of [6,18]
imply that these systems are in general not separable.

5 Conclusions

In this article we presented the classification of quantum quadratically integrable systems of
cylindrical type obtained in O. Kubů’s Master thesis [16]. We proceeded by directly solving
the determining equations (2). Despite our focus on the quantum case, we followed the anal-
ysis from the classical case [13] to facilitate comparison and because only the zeroth order
equations contain a correction, see the reduced equation (15).

Noting that the results of case a) coincide with the classical ones known from [13], we
analyze further only case b) where the quantum correction is a priori non–trivial. We find that
in all remaining subcases the magnetic fields coincide with their classical counterparts and
only the scalar potential W is modified by a ħh2-proportional correction. However, even here
it may vanish due to the consistency conditions on the scalar potential W , leaving us with 2
systems with a correction, namely system 2 in Section 3 and its counterpart in Section 4 (in
the latter τ1 = 0 is necessary).

In all cases there is at least one free parameter, a constant or even a function. It is therefore
probable that some superintegrable systems can be found by imposing further restrictions. This
has been done in classical mechanics for separable systems [19] and on the intersection with
other integrable systems [20], but only for first order integrals in quantum mechanics [16].
Easing these restrictions is necessary as well as going beyond integrals connected to orthogonal
separation of variables as was shown in [14].
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Abstract

We present a novel family of Yang–Mills solutions, with gauge group SO(1,3), on
Minkowski space that are geometrically distinguished into two classes, viz. interior and
exterior of the lightcone. We achieve this by foliating the former with SO(1,3)/SO(3)
cosets and the latter with SO(1,3)/SO(1,2) cosets and analytically solving the Yang–Mills
equation of an SO(1,3)-invariant gauge field. The resulting fields and their stress-energy
tensor, when translated to the Minkowski space, diverge at the lightcone, but we demon-
strate how this stress-energy tensor could be regularised due to its unique algebraic
structure.
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1 Introduction

Analytic solutions of Yang-Mills theory with compact gauge groups, such as SU(2), and finite
action are very few, like the ones presented in [1–3] or more recently in [4–6]. Here we
improve upon this situation by presenting new solutions [7], albeit with a non-compact gauge
group G=SO(1,3), i.e. the Lorentz group. The latter appears in a gauge theory formulation of
general relativity and could be relevant for emergent/modified theories of gravity including
supergravity and matrix models.

The construction of these solutions relies on the fact that, owing to the natural action of
the Lorentz group on Minkowski space R1,3, there exists foliations of R1,3 into G-orbits that
are reductive and symmetric coset spaces G/H. Specifically, on the inside of the lightcone we
have H=SO(3) and on the outside of the lightcone we have H=SO(1,2). The former is the
Riemannian two-sheeted hyperbolic space H3, foliating the future and past of the lightcone
with timelike parameter u, while the latter is a pseudo-Riemmanian de Sitter space dS3, foli-
ating the exterior of lightcone with spacelike parameter u. The Yang–Mills dynamics on these

◦ Address since July 1, 2023: Institute for Physics, Humboldt Universität, Zum Großen Windkanal 2, 12489
Berlin, Germany.
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spaces are separately studied by considering a G-invariant gauge connection A and employing
dimensional reduction on R × G/H that yields a Newton’s particle, parameterized by u and
subject to an inverted double-well potential, which admits analytic solutions.

These field configurations are then pulled back to the respective domains of the Minkowski
space, yielding the color-electromagnetic fields—diverging at the lightcone—that we then use
to compute the stress-energy tensor. The latter turns out to have the same form in both the
domains; this form, curiously, takes the shape of a pure improvement term. This fact can be
used to regularize the stress-energy tensor across the lightcone so that one can have matching
of the fields, defined on two domains of the spacetime, at the lightcone.

2 Minkowskian geometry and its foliations

We can foliate the Minkowski space R1,3, with metric (ηµν) = (−,+,+,+) for µ,ν= 0, 1,2, 3,
in two parts as depicted in Figure 1a: (a) the lightcone-interior T with two-sheeted hyperbolic
space H3 and (b) the lightcone-exterior S with single-sheeted de Sitter space dS3.

For the first case, the hyperbolic space H3 is embedded in R1,3 algebraically as

y·y ≡ ηµν yµ yν = −1 , (1)

and foliates—with a timelike parameter u obeying eu =
p

|x ·x |—the lightcone-interior T as1

ϕ
T

: R×H3→ T , (u, yµ) 7→ xµ := eu yµ ,

ϕ−1
T

: T →R×H3 , xµ 7→ (u, yµ) :=

�

ln
Æ

|x ·x | ,
xµ
p

|x ·x |

�

.
(2)

With this, the metric on T becomes conformal to a Lorentzian cylinder R×H3:

ds2
T
= e2u
�

−du2 + ds2
H3

�

, (3)

where ds2
H3 is the flat metric on H3 arising from (1).

In the second case, we can embed dS3 inside the Minkowski space R1,3 by

y · y ≡ ηµν yµ yν = 1 . (4)

The foliation of S follows analogous to the previous case, albeit with a spacelike foliation
parameter u satisfying eu =

p

|x ·x | ≡
p

r2 − t2:

ϕ
S

: R× dS3→ S , (u, yµ) 7→ xµ := eu yµ ,

ϕ−1
S

: S →R× dS3 , xµ 7→ (u, yµ) :=

�

ln
Æ

|x ·x |,
xµ
p

|x ·x |

�

,
(5)

such that the metric on S becomes conformal to the metric on a cylinder R× dS3,

ds2
S
= e2u
�

du2 + ds2
dS3

�

, (6)

where the flat dS3-metric ds2
dS3

is induced from (4).

1We employ standard conventions x0=t, x1=x , x2=y, x3=z, x⃗ := (x1, x2, x3) and r =
p

x⃗ · x⃗ in this article.
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(a) Foliation of interior (yellow region) and ex-
terior of the lightcone with H3- and dS3-slices
respectively. Every slicing has internal coordi-
nate y and foliation parameter u.

(b) Every H3 vector Vα is related to
V0 ∼ (1,0, 0,0)⊤ with a unique boost Λα,
yielding its stability subgroup: Λα SO(3)Λ-1

α .

(c) The above H3 vectors Vα lies in one-to-one
correspondence with cosets Λα SO(3) so that
H3, as a 3-dimensional submanifold σ(y) in-
side SO(1,3), arises through a choice of repre-
sentative σ in each of these cosets.

Figure 1: Minkowski foliations and demonstration of H3 ∼= SO(1,3)/SO(3).

3 Algebra/geometry of symmetric SO(1,3)-cosets

We consider here reductive coset spaces G/H with 6-dimensional Lie group G = SO(1,3)
that are also symmetric. This yields homogeneous spaces H3 and dS3 with stablity subgroups
H=SO(3) and H=SO(1, 2) respectively. The equivalence of SO(1,3)/SO(3) with H3 is geo-
metrically illustrated through Figures 1b and 1c.

The six generators {IA} of the Lie algebra g= Lie(G) are nothing but the canonical rotation
(Ja) and boost (Ka) generators of the Lorentz group:

J1=
� 0 0 0 0

0 0 0 0
0 0 0 -1
0 0 1 0

�

, J2=
� 0 0 0 0

0 0 0 1
0 0 0 0
0 -1 0 0

�

, J3=
� 0 0 0 0

0 0 -1 0
0 1 0 0
0 0 0 0

�

, K1=
� 0 1 0 0

1 0 0 0
0 0 0 0
0 0 0 0

�

, K2=
� 0 0 1 0

0 0 0 0
1 0 0 0
0 0 0 0

�

, K3=
� 0 0 0 1

0 0 0 0
0 0 0 0
1 0 0 0

�

. (7)

Moreover, for reductive cosets, g splits into a Lie subalgebra h = Lie(H) and its orthogonal
complement2 m; this is also reflected in the splitting of the generators {IA} as follows

g = h⊕m =⇒ {IA} = {Ii} ∪ {Ia} , with i = 4, 5,6 , and a = 1,2, 3 , (8)

where {Ii} spans h and {Ia} spans m. They satisfy following commutation relations

[Ii , I j] = f k
i j Ik , [Ii , Ia] = f b

ia Ib , and [Ia, Ib] = f i
ab Ii . (9)

2The orthogonality here is with respect to the Cartan–Killing metric, given by the trace of adjoint representation
of these generators {IA}.
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Similarly, the left-invariant one-forms of SO(1,3) split into {eA} = {ei} ∪ {ea}, such that the
following structure equations—with same structure coefficients as in (9)—are satisfied

dea + f a
ib ei ∧ eb = 0 , and dei + 1

2 f i
jk e j ∧ ek + 1

2 f i
ab ea ∧ eb = 0 . (10)

Here ea yields the metric on G/H while ei = ei
a ea are linearly dependent.

3.1 Case I: H3 ∼= SO(1,3)/SO(3)

For SO(1,3)/SO(3) the splitting (8) and structure coefficients (9) are given by

Ii = Ji−3 , Ia = Ka =⇒ f k
i j = ϵi−3 j−3 k−3 , f b

ia = ϵi−3 a b , f i
ab = −ϵa b i−3 . (11)

The identification of coset space SO(1,3)/SO(3) with H3 is seen from the following maps

α
T

: SO(1,3)/SO(3)→ H3 , [ΛT ] 7→ yµ = (ΛT )
µ
0 ,

α−1
T

: H3→ SO(1,3)/SO(3) , yµ 7→ [ΛT ] ,
(12)

where the representative ΛT of the coset [ΛT ] := {Λ= ΛT h : h ∈ SO(3)} is given by

ΛT =

�

γ γβββ⊤

γβββ 1+ (γ−1)βββ⊗βββ
βββ2

�

, with βa =
ya

y0
, γ=

1
p

1−βββ2
= y0 , (13)

and βββ2 = δab β
aβ b ≥ 0. It is straightforward to verify that the above map α

T
is well-defined

and, in fact, ΛT is a generic boost obtained from coset generators Ia ∈ m as

ΛT = exp(ηa Ia) , with βa = ηa
p
ηηη2

tanh
Æ

ηηη2 , for ηηη2 = δab η
aηb . (14)

We can now obtain the left-invariant one-forms by employing the Maurer–Cartan prescription:

Λ−1
T dΛT = ea Ia+ei Ii , ea =

�

δab−
ya y b

y0(1+y0)

�

dy b , and ei = ϵi−3 a b
ya

1+y0
dy b , (15)

such that ea reproduces the metric on H3 while ei become linearly dependent as follows

ds2
H3 = δab ea ⊗ eb , and ei = ei

a ea , with ei
a = ϵa i−3 b

y b

1+y0
. (16)

3.2 Case II: dS3
∼= SO(1,3)/SO(1,2)

For the coset space SO(1,3)/SO(1, 2) we chose the splitting (8) as follows

Ii ∈ {K1, K2, J3} , and Ia ∈ {J1, J2, K3} , (17)

such that the structure coefficients (9) comes out to be

f k
i j = ϵi−3 j−3 k−3 (1−2δk6) , f b

ia = ϵi−3 a b (1−2δa3) , and f i
ab = ϵa b i−3 , (18)

where no summation convention is used inside the brackets. As before, we demonstrate the
equivalence between dS3 and SO(1,3)/SO(1,2) through following well-defined maps

α
S

: SO(1,3)/SO(1, 2)→ dS3 , [ΛS] 7→ yµ := (ΛS)
µ
3 ,

α−1
S

: dS3→ SO(1, 3)/SO(1,2) , yµ 7→ [ΛS] ,
(19)
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where the representative left-coset element ΛS is again obtained though exponentiation with
coset generators {J1, J2, K3}. The resultant Maurer–Cartan one-forms look like

Λ−1
S dΛS = ea Ia+ ei Ii , ea = dy3−a−

y3−a

1+y3
dy3 , and ei = −ϵi−3 a b

y3−a

1+y3
dy3−b . (20)

These one-forms behave as expected with (ηab)=(−,+,+) due to the stabilizer SO(1,2):

ds2
dS3
= ηab ea ⊗ eb , and ei = ei

a ea , with ei
a = ϵi−3 a b

y3−b

1+y3
. (21)

3.3 The lightcone exception

Before we move on, let us make a remark on the lightcone itself that sits here as an excep-
tion in the following manner. It can be shown that both future and past of the lightcone are
individually isomorphic to SO(1,3)/ISO(2), where the stability subgroup is a Euclidean group
E(2)=ISO(2) generated by two translations and one rotation. However, this coset space is
non-reductive and, on top of that, this does not give rise to any foliation here, making this
case unsuitable to study Yang–Mills dynamics as discussed in Section 4.

4 Yang–Mills fields from dimensional reduction

The study of Yang–Mills dynamics on R × G/H via dimensional reduction is a well-known
topic with excellent review in [8]. Given an orthonormal frame {eu:=du, ea} on the cylinder
R× G/H, we can write a generic connection one-form A in the “temporal" gauge Au=0 and
its curvature two-form F = dA+A∧A as follows

A = Aa ea =⇒ F = Fua eu ∧ ea + 1
2Fab ea ∧ eb . (22)

Next, we expand the gauge fieldAa in terms of full SO(1,3)-generators (8) asAa=Ai
a Ii+Ab

a Ib
and impose G-invariance on this, yielding following two conditions3

Ai
a = ei

a , and Aa
b =Aa

b(u) , with f c
ia Aa

b = f a
ib Ac

a . (23)

Furthermore, for the symmetric spaces that concerns us, one finds that Aa
b(u) = φ(u)δ

a
b such

that our G-invariant gauge field A depends on a single real function φ:

A = Ii ei +φ(u) Ia ea . (24)

The components of the field strength F , using (23) and (10), computes to

Fua = φ̇ Ia , and Fab = (φ
2−1) f i

ab Ii , with φ̇ := ∂uφ , (25)

yielding the the color-electric field Ea = Fau ∈ m and -magnetic field Ba =
1
2ϵabcFbc ∈ h on

the cylinder. Finally, to work out the dynamics of φ(u) we look at the Yang–Mills action

SYM = −
1

4g2

∫

trad(F ∧ ∗F) , (26)

which simplifies drastically in both cases, viz. interior of the lightcone T with M3 := H3 and
exterior of the lightcone with M3 := dS3, as follows

SYM =
6
g2

∫

R×M3

dvol
�1

2 φ̇
2 − V (φ)
�

, V (φ) = −1
2(φ

2−1)2 , (27)

3We can write the second relation more succinctly as [Ii , eAa] = f b
ia
eAb for eAa :=Aa

b Ia ∈ m.
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Figure 2: Plot of V (φ).

where dvol = 1
3!ϵabc du ∧ ea ∧ eb ∧ ec is the volume form.

We immediately observe that the above action represents a
mechanical particle φ(u) in an inverted double-well poten-
tial V (φ) depicted in Figure 2, which yields the equation of
motion for an anharmonic oscillator,

φ̈ = −
∂ V
∂ φ

= 2φ (φ2−1) . (28)

This admits analytic solutions in terms of Jacobi elliptic functions. For example, in the bounded
case where the mechanical energy 1

2 φ̇
2 + V (φ) =: ε ∈ [−1

2 , 0] we have

φε,u0
(u) = f−(ε) sn
�

f+(ε)(u−u0), k
�

, with f±(ε) =
Æ

1±
p
−2ε , k2 =

f−(ε)
f+(ε)

, (29)

and a ‘time’-shift parameter u0. This also include special cases, such as a “kink”:

φ =











0 , for ε= −1
2 ,

tanh (u−u0) , for ε= 0 ,

±1 , for ε= 0 .

(30)

Now in order to pull these solution back to T we transform the orthonormal frame {eu, ea}
on R×H3, using the map ϕ

T
(2) and abbreviation |x | :=

p

|x ·x |, as follows

eu := du =
t dt − r dr

t2 − r2
, and ea =

1
|x |

�

dxa −
xa

|x |
dt +

xa

|x |(|x |+ t)
r dr
�

. (31)

The SO(1,3)-invariant gauge field A≡ A (24) can be casted into a Minkowski one-form

A =
1
|x |

¨

ϵ k−3
ab xa

|x |+ t
dx b Ik +φ(x)
�

dxa −
xa

|x |
dt +

xa

|x |(|x |+ t)
r dr
�

Ia

«

, (32)

where φ(x):=φε,u0
(u(x)). We can then find the field strength F = Fµν dxµ ∧ dxν on T from

its cylinder version F (25) using vierbein components eu = eu
µ dxµ and ea = ea

µ dxµ (31). The

corresponding color-electric Ei := F0i and -magnetic Bi := 1
2ϵi jk F jk fields read

Ea =
1
|x |3

�

�

φ2−1
�

ϵ i−3
ab x b Ii − φ̇
�

t δab −
xa x b

|x |+ t

�

Ib

�

,

Ba = −
1
|x |3

�

�

φ2−1
�

�

t δa i−3 −
xa x i−3

|x |+ t

�

Ii + φ̇ ϵ
c

ab x b Ic

�

.

(33)

An interesting feature of these fields is the presence of color-electromagnetic duality,
i.e. Ea → Ba and Ba →−Ea, which works when we simultaneously interchange φ̇↔ (φ2−1)
and switch the generators as follows: Ii → Ia and Ia → −Ii (plus some obvious index adjust-
ment). More importantly, we notice that the gauge field A (32) along with the electric Ei and
magnetic Bi fields (33) become singular at the lightcone t=±r. One can find out the fields
on S using (5) and following the same recipe as above. We restrain from reproducing these
results here owing to space constraint and refer the reader to [7] for explicit form of such
fields.
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5 The stress-energy tensor

We can compute the stress-energy tensor, given by the expression

Tµν = −
1

2g2 trad

�

Fµα Fνβ η
αβ − 1

4ηµνF2
�

, with F2 = Fµν Fµν , (34)

for such Yang–Mills fields in a straightforward manner. Interestingly, we find that the compu-
tation yields the same form of stress-energy tensor on both sides of the lightcone that reads

T =
ε

g2(r2−t2)3







3t2+r2 −4t x −4t y −4tz
−4t x t2+4x2−r2 4x y 4xz
−4t y 4x y t2+4y2−r2 4yz
−4tz 4xz 4yz t2+4z2−r2






. (35)

It is worth emphasising here that the explicit form ofφ, like in (29), is irrelevant here as T only
depends on the total mechanical energy ε. Moreover, this has a vanishing trace and presence
of lightcone singularity, as expected. Surprisingly, this admits a nice compact form that can be
recasted into a pure “improvement” term as follows,

Tµν = ∂
ρSρµν , with Sρµν =

ε

g2

xρηµν − xµηρν
(x ·x)2

, (36)

where the term Sρµν can be expressed using abbreviation (S̃ρ)µν := g2(x ·x)2
ε Sρµν as

S̃0 =

�

0 0 0 0
x −t 0 0
y 0 −t 0
z 0 0 −t

�

, S̃1 =

�−x t 0 0
0 0 0 0
0 −y x 0
0 −z 0 x

�

, S̃2 =

�−y 0 t 0
0 y −x 0
0 0 0 0
0 0 −z y

�

, S̃3 =

�−z 0 0 t
0 z 0 −x
0 0 z −y
0 0 0 0

�

. (37)

Naturally, one hopes to glue the two expressions for stress-energy tensors to find a single
expression valid across the Minkowski spacetime. The price to pay here is the singularity at
the lightcone, which can be remedied through the following regularization procedure

Sreg
ρµν =

ε

g2

xρηµν − xµηρν
(x ·x +δ)2

=⇒ T reg
µν =

ε

g2

4 xµxν −ηµνx ·x + 3δηµν
(x ·x +δ)3

. (38)

This nonsingular improvement term (with a finite regularization parameter δ) yields vanishing
energy and momenta as their fall-off behaviour at spatial infinity is fast enough.

An alternate route to regularization could be to directly shift only the denominator of Tµν
in (36) via x ·x 7→ x ·x + δ. We can then improve the resultant stress-energy tensor up to the
term in (38) so as to obtain the following energy-momentum tensor candidate that is regular
and that also vanishes as δ→ 0,

Tδµν =
ε

g2

4 xµxν −ηµνx ·x
(x ·x +δ)3

∼
ε

g2

−3δηµν
(x ·x +δ)3

. (39)

6 Conclusion

Starting from the geometry of the Minkowski foliations with H3- (interior of the lightcone)
and dS3-slices (exterior of the lightcone) and exploring the origin of these symmetric spaces
through cosets of the gauge group SO(1,3), we have obtained analytic solutions of Yang–Mills
equation on Minkowski space that, however, diverge at the lightcone. We achieved this by
first solving a SO(1,3)-invariant configuration on the cylinder R×SO(1,3)/H, with H=SO(3)
on the interior and H=SO(1,2) on the exterior of the lightcone, using dimensional reduction
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technique of gauge theory and then translating these solutions to two different domains of
Minkowski spacetime, seperated by the lightcone, with their respective foliation maps. We
then computed the stress-energy tensor in both cases and found out that they have the same
form. Not only this, when written compactly, we were able to cast it into a pure improvement
term, a fact that helped us in finding a regularized candidate for the stress-energy tensor,
defined throughout the spacetime; how this modified stress-energy tensor arise from a source
term remains an open question though.
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Abstract

Considering spin degrees of freedom incorporated in the conformal generators, we in-
troduce an intrinsic momentum operator πµ, which is feasible for the Bhabha wave equa-
tion. If a physical stateψph for spin s is annihilated by theπµ, the degree ofψph, degψph,
should equal twice the spin degrees of freedom, 2(2s + 1) for a massive particle, where
the multiplicity 2 indicates the chirality. The relation degψph = 2(2s + 1) holds in the
representation R5(s , s), irreducible representation of the Lorentz group in five dimen-
sions.
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1 Introduction

Conformal symmetry [1] has many applications in string theory and critical phenomena in
condensed matter and statistical physics. For a scalar field, the conformal generators are com-
posed of dilatation D, momentum Pµ, special conformal Kµ, and angular momentum Lµν. For
a multicomponent field Φ, where spin degrees of freedom is incorporated as Lµν→ Lµν+ sµν,
the D and Kµ are generalized as D→ D +∆ and Kµ → Kµ + κµ, while the Pµ, in an ordinary
context [1], remains unchanged as Pµ → Pµ. The unchangeability of Pµ may be because Φ
transforms as a scalar under spacetime translation. If we assume that Φ(x)→ Φ′(x ′) = Φ(x)
under x → x ′ = x + a, that is, Φ′(x) = Φ(x − a) = e−a·PΦ(x), we find it unnecessary to in-
troduce an intrinsic momentum operator πµ as Pµ → Pµ + πµ. Even if we admit the scalar
property of Φ(x) under x → x + a, we can introduce πµ in such a way that the πµ may
annihilate physical states.

This paper aims to introduce such an intrinsic momentum operator πµ, to find that πµ
can realize for a matrix structure in parafermion-based Dirac-like equations, such as spin-1
Kemmer equation [2], and more generally, Bhabha equation [3]. In Sec. 2, we give some
preliminaries concerning the conformal algebra, together with its Casimir operator. In Secs. 3-
5, we deal with theπµ in the case of spin 1

2 , 1, 3
2 , respectively. We devote Sec. 6 to the summary.
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2 Preliminaries

We begin with the commutation relations between the intrinsic conformal generators ∆, πµ,
κµ, and sµν, corresponding to D, Pµ, Kµ, and Lµν, respectively. If the intrinsic conformal
generators satisfy the same commutation relations as ordinary conformal generators, we can
write the non-vanishing commutation relations as

[∆, πµ] = iπµ , [∆, κµ] = −iκµ , [κµ, πν] = 2i(gµν∆− sµν) , (1)

[πρ, sµν] = i(gρµπν − gρνπµ) , [κρ, sµν] = i(gρµκν − gρνκµ) , (2)

[sµν, sρσ] = i(gνρsµσ + gµσsνρ − gµρsνσ − gνσsµρ) , (3)

while the vanishing commutation relations are given by

[∆, sµν] = [πµ, πν] = [κµ, κν] = 0 . (4)

It should be remarked that (1)-(4) are invariant under the scaling ofπµ and κµ, and also under
the substitution between πµ and κµ as

(∆, πµ, κµ, sµν)→ (∆, λπµ, λ−1κµ, sµν) , (5)

(∆, πµ, κµ, sµν)→ (−∆, κµ, πµ, sµν) , (6)

where λ ∈ C \ {0}, and use has been made of sνµ = −sµν in (6). Note that (5) represents the
“chiral” transformation g → g ′ = eθ∆ge−θ∆ (g ∈ {∆,πµ,κµ, sµν}), where λ= eiθ .

To check the irreducibility of the representation for the conformal group, it may be avail-
able to obtain the Casimir operator C . Note that although the C is invariant under (5) due
to the chiral transformation, the invariance of C under (6) is somewhat naive. For simplic-
ity, we consider (3+ 1) spacetime dimensions, where the conformal algebra is isomorphic to
so(4,2) [1]. In this case, the order of C is given by 2,3, 4, as in the case of so(6) [4]. Explicitly,
we have C = C2, C3, C4 (the index i in Ci represents the order) as [5]

C2 =
1
2

sµνs
µν +

1
2
{κµ, πµ} −∆2 , C3 = ε

µνρσ
�

∆ sµν + {κµ, πν}
�

sρσ ,

C4 =
1
2
JµνJ µν −

1
2
{JK ,µ, J µ

P } −
1
16

J 2 , (7)

where J µν,J µ
K ,J µ

P , and J are given by J µν = εµνρσ
�

∆ sρσ +
1
2
{κρ, πσ}
�

, J µ
K = ε

µνρσκνsρσ,

J µ
P = ε

µνρσπνsρσ, and J = εµνρσsµνsρσ, with εµνρσ the totally anti-symmetric Levi-Civita
tensor (ε0123 = 1), and {A, B} = AB + BA. It confirms that all the C ’s are invariant under (5).
If the εµνρσ remains invariant under (6), the Ci ’s transform as (C2, C3 C4) → (C2, −C3, C4).
However, the invariance of εµνρσ under (6) is not so trivial, which will be discussed at the end
of the next section and afterward.

3 Spin
1
2

This section deals with the Dirac equation, which describes a spin-1
2 particle. In this case,

the spin operator sµν, which satisfies (3), can be written using the gamma matrix γµ as
sµν = i1

4[γµ, γν], where {γµ, γν} = 2gµν1. The next thing is to obtain πµ from the first
equality in (2) and [πµ, πν] = 0. Considering that [γρ, sµν] = i(gρµγν − gρνγµ), one may
suspect that πµ may be given by πµ = λγµ (λ ∈ C), which, however, would not be appropri-
ate due to [πµ, πν] ̸= 0. This conclusion is not the end of the story. For an even spacetime
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dimension, there is a matrix γ5 such that γ2
5 = 1 and {γ5, γµ} = 0. Under the existence of

γ5, the choice of πµ = λ(γµ ± γ5γµ) satisfies the first equality in (2) and [πµ, πν] = 0. In a
similar way, we obtain κµ = λ′(γµ ± γ5γµ) from the second equality in (2) and [κµ, κν] = 0.
The relation between λ and λ′, along with the remaining generator ∆, can be derived from
(1). To summarize, we have

∆= ±
1
2

iγ5 , πµ = M
�

1± γ5

2

�

γµ , κµ =
1
M

�

1∓ γ5

2

�

γµ , sµν =
i
4
[γµ, γν] , (8)

where the multiplier M ∈ C \ {0} corresponds to λ in (5). Note that the substitution (6) can
be interpreted as γ5→−γ5. Note also that [∆, sµν] = 0.

The fundamental property of πµ (or κµ) is the nilpotence of order two. Let a±µ := (1±γ5)γµ.
Then it follows that

a+ν a+µ = 0= a−ν a−µ . (9)

To be more exact, we can show that
¨

a+µP1 = 0 ,

a−µP2 = 0 ,

¨

a+µP2 = 2P1γµ ,

a−µP1 = 2P2γµ ,
(10)

where P1 =
1
2(1 + γ5) and P2 =

1
2(1 − γ5) represent the projection operators such that

P1 + P2 = 1 and PiP j = δi jPi . In the Dirac theory, it is well known that P1 and P2 are
employed in the chiral decomposition. In this sense, (10) can be derived without recognizing
the concept of the intrinsic momentum operator πµ; the existence of πµ will play a substantial
role in higher spin states.

Now we give some properties concerning the Casimir operators Ci ’s in (7). First, we discuss
the invariance of C3 under (6). Recalling that the substitution (6) corresponds to γ5 → −γ5,
and that γ5 = −

1
4! iε

µνρσγµγνγργσ, we find that γ5 → −γ5 implies that εµνρσ → −εµνρσ. In
this sense, C3 remains invariant under (6). Next, we obtain the relation between C2 and C4.
Note that J µν can be rewritten as 3∆εµνρσsρσ, which leads to JµνJ µν = 9sµνs

µν. In a similar
way, we have {JK ,µ, J µ

P }= −9{κµ, πµ} and 1
16J

2 = 9∆2. Thus we obtain C4 = 9C2. Anyway,
there is no such operator (except a scalar multiple of identity 1) that is commutative with all
the γµ’s, so that the Ci ’s are given by a multiple of identity 1 as (C2, C3, C4) =

15
4 (1, 22, 32)1.

4 Spin 1

This section deals with relativistically invariant wave equations for spin s = 1. For the sake of
simplicity, spacetime dimension d is restricted to (3+ 1). We summarize the wave functions
for a free massive particle in Table 1, to find that the πµ is allowed for the KDP equation
but not for the Proca and the WSG equations. This is because the n× n matrix πµ such that
[πρ, sµν] = i(gρµπν − gρνπµ) is allowed for n= 10, but not for n= 4,6. In what follows, we
concentrate on the KDP equation, where the βµ’s satisfy the trilinear relations

βµβνβρ + βρβνβµ = gµνβρ + gρνβµ (µ,ν,ρ ∈ {0, 1,2, 3}) . (11)

Note that βi (i = 1,2, 3) can be identified with the non-relativistic spin-1 operator si in the
sense that the si ’s satisfy sis jsk + sks jsi = δi jsk +δk jsi .

For n = 10, it is known that [2] there is a matrix ω (= β5) which is given by extending
(11) to those for µ,ν,ρ ∈ {0,1, 2,3, 5} with g5µ = gµ5 = δ5µ. Explicitly, we have

ω3 =ω ,

¨

{ω2, βµ}= βµ ,

ωβµω= 0 ,

¨

βµωβν + βνωβµ = 0 ,

ωβµβν + βνβµω= gµνω .
(12)
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Table 1: Lorentz invariant wave equations for s = 1 and d = 3 + 1. For the Proca
equation, the upperscript in ψ = (A0, A1, A2, A3) represents the Lorentz vector com-
ponent, and Λµν represents the generator of the Lorentz transformation. For the
WSG equation, si (i = 1, 2,3) is given by the (3 × 3) representation matrix for the
non-relativistic spin-1 operator.

Name Equation Degree of ψ sµν πµ

Proca (□+m2)Aµ = ∂ µ(∂ · A) 4 Λµν NA

WSG [6,7] (□+ γµν∂ µ∂ ν)ψ= 2m2
0ψ 6

¨

s0i =
1
iσ3 ⊗ si

si j = 1⊗ εi jksk
NA

KDP [2,8,9] (iβµ∂ µ +m)ψ= 0 10 i[βµ, βν] ✓

Then the intrinsic conformal generators are given by

∆= ±iω , πµ = M
�

βµ ± [ω, βµ]
�

, κµ =
1
M

�

βµ ∓ [ω, βµ]
�

, sµν = i[βµ, βν] . (13)

Note that (13) reduces to (8) under (βµ,ω)→ 1
2(γµ,γ5). It is not so difficult to obtain from

(11) and (12) the nilpotence of πµ as

α+µα
+
να
+
ρ = 0= α−µα

−
να
−
ρ , (14)

where α±µ := βµ ± [ω, βµ]. To be more exact, we have the following relations:

¨

α+µP1 = 0 ,

α−µP3 = 0 ,

¨

α+µP2 = 2P1βµ ,

α−µP2 = 2P3βµ ,

¨

α+να
+
µP3 = 2P1Aµν ,

α−να
−
µP1 = 2P3Aµν ,

(15)

where Aµν = {βµ,βν} − gµν1, and Pi represents a projection operators as P1 =
1
2ω(ω+ 1),

P2 = 1−ω2, and P3 =
1
2ω(ω−1), so that

∑3
i=1 Pi = 1 and PiP j = δi jPi . Notice that in (15),

the lower relations can derive from the corresponding upper ones through the substitution
ω→−ω. Notice further that Aµν anticommutes with ω, that is

{Aµν, ω}= 0 . (16)

The relation (16) leads to [Aµµ, ω2] = 0. Note that Aµµ andω are Lorentz invariant in the sense

that [sαβ , Aµµ] = 0= [sαβ , ω]. This relation implies that Aµµ can be written as Aµµ =
∑2

i=0 ciω
i

(ci ∈ C), where ci (i ≥ 3) is not necessary due to ω3 =ω. Here we have assumed that there is
no Lorentz invariant other than 1,ω, and ω2. In this case, we find that c0 + c2 = 0 = c1 from
{Aµµ, ω} = 0 by (16), and that c0 = 2 from {βν, βµβµ} = 5βν by (11) and {βν, ω2} = βν by
(12). Eventually, we have

βµβ
µ = P2 + 21 . (17)

Actually, the relation (17) holds in the ten-dimensional representation [2] for (11) and (12),
which corresponds to the adjoint representation of the Lorentz group in five dimensions (for
the adjoint representation, we have

�

5
2

�

= 10 Lorentz group generators). For later conve-
nience, we rewrite 1

2 sµνs
µν using P2 as

1
2

sµνs
µν = 41−P2 , (18)

where we have used (17), together with P2
2 = P2.
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As was mentioned in Sec. 1, the πµ should annihilate the physical state. To check the
validity, we show that the rank of Pk (or equivalently, the trace of Pk) for k = 1,3 equals
the spin degrees of freedom. In the ten-dimensional representation, the eigenvalues of ω are
given by 1, 0,−1 appearing 3,4, 3 times, respectively. Thus, we obtain

Rank(P1) = Rank(P3) = 3 , Rank(P2) = 4 .

This result is quite reasonable because the number “3” equals the spin degree of freedom for
a massive particle for s = 1. To confirm the validity, we calculate the 3-dimensional spin
magnitude 〈s〉2 := s 2

12 + s 2
23 + s 2

31 . Let |ψ+ph〉 = P1|ψ〉, |ψ−ph〉 = P3|ψ〉, and |ψun〉 = P2|ψ〉, in

which we have α±µ |ψ
±
ph〉 = 0. Recalling that 〈s〉2 (= 1

4 sµνs
µν) = 21 − 1

2P2 by (18), and that

PiP j = δi jPi , we obtain 〈s〉2|ψ±ph〉 = s(s + 1)|ψ±ph〉 (s = 1) and 〈s〉2|ψun〉 =
3
2 |ψun〉. These

relations indicate that |ψ±ph〉 represents the spin-1 state, while |ψun〉 does not. Bearing these
findings in mind, we can regard |ψ±ph〉 and |ψun〉 as physical and unphysical states, respectively.

Finally, we give some properties of the Casimir operator C . As in the case of s = 1
2 , the

invariance of C3 under (6) is guaranteed by the statement that (ω→−ω)=⇒ (εµνρσ→−εµνρσ)
by ω = − i

4ε
µνρσβµβνβρβσ [10, 11]. After a somewhat tedious calculation, we can write

the Ci ’s in (7) as (C2, C3, C4) = (9, 48,144)1, which confirms the irreducibility of the ten-
dimensional representation.

5 Spin
3
2

In this section, we consider the (3+ 1)-dimensional Minkowski space, as in the case of s = 1.
Although the Rarita-Schwinger equation is well known as a relativistic invariant wave equation
for s = 3

2 , the intrinsic momentum operator is not allowed, as in the case of the Proca equation.
Instead, we adopt a Dirac-like wave equation for parafermion of order 3, namely (massive)
Bhabha wave equation [3] (see Table 2).

Extending the polynomial relations among the non-relativistic spin operators si ’s (i=1,2, 3)
to those among sµ’s (µ= 0,1, 2,3) in a relativistically covariant way, we obtain

¨

sµsνsα + sαsνsµ + gµαsν = sµsαsν + sνsαsµ + gµνsα ,

0=
�

sµsνsαsβ −
5
4{sµ, sν}gαβ +

9
16 gµνgαβ
�

+ (perm. of µ,ν,α,β) .
(19)

It may be convenient to rewrite the first relation of (19) as [sµ, [sν, sα]] = gµνsα− gµαsν. Note
that 1

2γµ satisfies both relations in (19). This implies that there should exist a polynomial rela-
tion such that p(s0, s1, s2, s3) = 0 with p(s0, s1, s2, s3)|sµ→ 1

2γµ
̸= 0. However, we neglect, for the

time being, such a polynomial relation because it is not irrelevant to the following discussion.
Suppose that there exists an operator s5 which satisfies (19) for µ,ν,α,β ∈ {0,1, 2,3, 5}, with

Table 2: Lorentz invariant wave equations for s = 3
2 . For the Rarita equation, ψ

is composed of four Dirac spinors as ψ := (ψ0,ψ1,ψ2,ψ3), where the subscript
represents the Lorentz vector component, so that Λ (= {Λµν}) : ψ 7→ ψ′ acts as
(ψ′)µ = Λνµψν.

Name Equation Degree of ψ sµν πµ

Rarita-Schwinger (εµνρσγ5γν∂ρ +mgµσ)ψσ = 0 4× 4 Λµν +
i
4[γµ, γν] NA

Bhabha (isµ∂ µ +m)ψ= 0 20 i[sµ, sν] ✓
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g5µ = gµ5 = δ5µ. Then the intrinsic conformal generators are given, as is analogous to the
case of s = 1

2 , 1, by

∆= ±is5 , πµ = M
�

sµ ± [s5, sµ]
�

, κµ =
1
M

�

sµ ∓ [s5, sµ]
�

, sµν = i[sµ, sν] . (20)

Note that the first equality in (19), together with the existence of s5, is sufficient for (20); the
second equality in (19) is not necessary for (20). Recalling that the first relation in (19) is
satisfied for sµ→

1
2γµ (s =

1
2) and for sµ→ βµ (s = 1), we find it natural that the relation (20)

is the same form as (8) and (13). For later convenience, we obtain some operators which
anti-commute with s5. Such operators are exemplified as

{s5, Aµ}= 0= {s5, Aρνµ + (perm. of ρ,ν,µ)} , (21)

where Aµ = s5sµs5 −
3
4 sµ, and Aρνµ = sρsνsµ −

7
4 gρνsµ.

The projection operators Pi ’s (i = 1, 2,3, 4) can be written using the minimum polynomial
f (x) with respect to s5 as Pi =

1
f ′(λi)

f (s5)1
s5−λi1

, where f (x) =
∏4

i=1(x −λi), with λ1 =
3
2 , λ2 =

1
2 ,

λ3 = −
1
2 , λ4 = −

3
2 . Let s±µ := sµ ± [s5, sµ]. Then it follows that (see Appendix A)

¨

s+µP1 = 0 ,

s−µP4 = 0 ,

¨

s+µP2 = 2P1Xµ ,

s−µP3 = 2P4Xµ ,

¨

s+ν s+µP3 = 2P1Xνµ ,

s−ν s−µP2 = 2P4Xνµ ,

¨

s+ρs+ν s+µP4 =
4
3P1Xρνµ ,

s−ρs−ν s−µP1 =
4
3P4Xρνµ ,

(22)

where Xµ, Xνµ and Xρνµ are given by

Xµ = sµ , Xνµ = {sν, sµ} − sgνµ1 , Xρνµ =
�

Yρνµ + (perm. of ρ,ν,µ)
�

,

with s = 3
2 and Yρνµ := sρsνsµ − gρν(ssµ +

1
2s s5sµs5) → Aρνµ −

1
3 gρνAµ (s = 3

2). The rela-
tions (22) lead to s+µ s+ν s+ρs+σPi = 0 = s−µ s−ν s−ρs−σPi (i = 1, 2,3, 4), from which, together wirh
∑4

i=1 Pi = 1, we obtain the nilpotence of s±µ (of order 4) as

s+µ s+ν s+ρs+σ = 0= s−µ s−ν s−ρs−σ . (23)

Note that by (21), not only have we the anti-commutativity

{Xρνµ, s5}= 0 ,

but also the anti-commutativities {γµ, γ5}= 0 and (16) can be rewritten using Xµ and Xνµ as

{X (
1
2 )
µ , γ5}= 0= {X (1)νµ , ω} , (24)

where X
( 1

2 )
µ and X (1)νµ , more generally, X (s)νµ... represents the corresponding Xνµ... for a given spin

s. For example, we have Y
( 1

2 )
ρνµ =

1
8γργνγµ−

1
8 gρνγµ, and Y (1)ρνµ = βρβνβµ− gρνβµ by replacing

(sρ, sν, sµ; s) in Yρνµ with 1
2(γρ,γν,γµ; 1) and (βρ,βν,βµ; 1), respectively. Note further that we

have the following vanishing relations:

X
( 1

2 )
νµ = X

( 1
2 )
ρνµ = 0 , X (1)ρνµ = 0 ,

which, in vew of (22), are due to the relations (9) and (14), respectively.

Now we discuss whether or not physical states can be given by Pk|ψ〉 (k = 1, 4) by cal-
culating the rank of Pk. In the Bhabha theory [3] for s = 3

2 , we have two irreducible rep-
resentations R5(

3
2 , 3

2) and R5(
3
2 , 1

2), where R5(s, s̃) represents the spin-s Lorentz group repre-
sentation in five dimensions. Let S := {s1, s2, s3, is0}. For R5(

3
2 , 3

2), the eigenvalues of x ∈ S
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are 3
2 , 1

2 ,−1
2 ,−3

2 appearing 4,6, 6,4 times, respectively; while for R5(
3
2 , 1

2), the eigenvalues of
x ∈ S are 3

2 , 1
2 ,−1

2 ,−3
2 appearing 2, 6,6, 2 times, respectively. If s5 realizes, the eigenvalues of

s5 are identical with those of x ∈ S, so that

Rank (P1) = Rank (P4) =

¨

4
�

R5

�3
2 , 3

2

��

,

2
�

R5

�3
2 , 1

2

��

,
Rank (P2) = Rank (P3) =

¨

6
�

R5

�3
2 , 3

2

��

,

6
�

R5

�3
2 , 1

2

��

.

Thus we obtain in the representation R5(
3
2 , 3

2), the relation Rank (P1) = Rank (P4) = 4, the
spin degrees of freedom for a spin-3

2 massive particle.
The analogous relation holds for a general spin s. Note that by a fundamental property

of the projector, we have Rank (Pi) = Ni , where Ni represents the number of the eigen-
value (s + 1 − i) of s5. Note also that in the representaion R5(s, s̃) (s̃ = s, s − 1, . . .), the
maximum and minimum eigenvalues of s5 [that is, s and (−s), respectively] occur (2s̃ + 1)
times [3]. Considering these two remarks, we obtain in the representation R5(s, s), the relation
Rank (P1) = Rank (P2s+1) = 2s+1, the spin degrees of freedom. To confirm that |ψ+ph〉= P1|ψ〉
and |ψ−ph〉 = P2s+1|ψ〉, in which we have s±µ |ψ

±
ph〉 = 0, can be regarded as physical states, we

should further show 〈s〉2|ψ±ph〉= s(s+ 1)|ψ±ph〉, which, however, will be discussed elsewhere.

6 Conclusion

We have found that the intrinsic momentum operator πµ = s+µ , s−µ , which we do not introduce
in the ordinary conformal group, is feasible for the Bhabha wave equation, provided that s5,
corresponding to 1

2γ5 (s = 1
2) andω (s = 1), exists. For a general spin s, we can write the intrin-

sic conformal generators as the same relations as (20) and those where s5→ (−s5), satisfying
the invariance under (5) and (6). The fundamental property of πµ is the nilpotence of order
(2s+1). To be more exact, let Pi ’s (i = 1,2, . . . , 2s+1) be the projection operators concerning
the s5 as Pi =

1
f ′(λi)

f (s5)1
s5−λi1

, where f (x) =
∏2s+1

i=1 (x−λi), λi = s+1− i. Then we have the same

hierarchical relation as (22), where X
( 1

2 )
µ , X (1)µν , . . . anti-commute with γ5, ω, . . ., respectively.

As long as the wave function transforms as a scalar under the spacetime translation, either s+µ
or s−µ should annihilate a physical state, so that the relation Rank(Pk) = 2s+1 (k = 1, 2s+1) is
required for a massive particle. Fortunately, this relation holds in the representation R5(s, s),
irreducible representation of the Lorentz group in five dimensions.
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A Derivation of (22)

It is not so difficult to obtain Xµ and Xνµ by rewriting s+µP2 and s+ν s+µP3 in such a way that s5
is located as leftward as possible. However, this procedure is not practical for the calculation
of Xρνµ because Xρνµ hinges on s5 so that we may not represent Xρνµ uniquely due to some
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relations between s5 and sµ’s. In this sense, it would be better to adopt another approach. We
start with the following relation:

s+µP4 = 2XµP4 (Xµ = sµ) . (A.1)

Keeping the form of (A.1) without rearranging s5 leftward, and applying s+ν to both sides of
(A.1) from the left, then we find it rather simple to obtain

s+ν s+µP4 = 2XνµP4

�

Xνµ = {sν, sµ} − s1 , s =
3
2

�

,

where we have used [s+ν , sµ] = [sν, sµ]+gνµs5, together with the relation s5P4 = −sP4. Further
application of s+ρ leads to the relation

s+ρs+ν s+µP4 =
4
3 XρνµP4

�

Xρνµ = Yρνµ + (perm. of ρ,ν,µ)
�

,

where Yρνµ = sρsνsµ − gρν(ssµ +
1
2s s5sµs5). A similar calculation yields s−ρs−ν s−µP1 =

4
3 XρνµP1.

Recalling that {s5, Xρνµ} = 0 by (21) and noticing that P1 ↔ P4 under the substitution
s5→−s5, we finally get the last relation in (22).

References

[1] P. Di Francesco, P. Mathieu and D. Sénéchal, Conformal field theory, Springer, New York,
USA, ISBN 9781461274759 (1997), doi:10.1007/978-1-4612-2256-9.

[2] N. Kemmer, The particle aspect of meson theory, Proc. R. Soc. Lond., A. Math. Phys. Sci.
173, 91 (1939), doi:10.1098/rspa.1939.0131.

[3] H. J. Bhabha, Relativistic wave equations for the proton, Proc. Indian Acad. Sci. A 21, 241
(1945).

[4] F. Iachello, Lie algebras and applications, Springer, Berlin, Heidelberg, Germany, ISBN
9783540362364 (2006), doi:10.1007/3-540-36239-8.

[5] Y. Murai, On the group of transformations in six-dimensional space, Prog. Theor. Phys. 9,
147 (1953), doi:10.1143/ptp/9.2.147.

[6] S. Weinberg, Feynman rules for any spin, Phys. Rev. 133, B1318 (1964),
doi:10.1103/PhysRev.133.B1318.

[7] D. Shay and R. H. Good, Spin-one particle in an external electromagnetic field, Phys. Rev.
179, 1410 (1969), doi:10.1103/PhysRev.179.1410.

[8] R. J. Duffin, On the characteristic matrices of covariant systems, Phys. Rev. 54, 1114
(1938), doi:10.1103/PhysRev.54.1114.

[9] G. Petiau, Contribution à la théorie des équations d’ondes corpusculaires, in Memoires de la
Classe des sciences, Palais des Académies, Brussels, Belgium (1936).

[10] M. Harish-Chandra, The correspondence between the particle and the wave aspects of
the meson and the photon, Proc. R. Soc. Lond., A. Math. Phys. Sci. 186, 502 (1946),
doi:10.1098/rspa.1946.0061.

[11] Y. A. Markov and M. A. Markova, Generalization of Geyer’s commutation relations with
respect to the orthogonal group in even dimensions, Eur. Phys. J. C 80, 1153 (2020),
doi:10.1140/epjc/s10052-020-08605-4.

034.8

https://scipost.org
https://scipost.org/SciPostPhysProc.14.034
https://doi.org/10.1007/978-1-4612-2256-9
https://doi.org/10.1098/rspa.1939.0131
https://doi.org/10.1007/3-540-36239-8
https://doi.org/10.1143/ptp/9.2.147
https://doi.org/10.1103/PhysRev.133.B1318
https://doi.org/10.1103/PhysRev.179.1410
https://doi.org/10.1103/PhysRev.54.1114
https://doi.org/10.1098/rspa.1946.0061
https://doi.org/10.1140/epjc/s10052-020-08605-4


SciPost Phys. Proc. 14, 035 (2023)

Vinberg’s T-algebras: From exceptional
periodicity to black hole entropy

Alessio Marrani⋆

Instituto de Física Teorica, Dep.to de Física, Universidad de Murcia,
Campus de Espinardo, E-30100, Spain

⋆ alessio.marrani@um.es

34th International Colloquium on Group Theoretical Methods in Physics
Strasbourg, 18-22 July 2022

doi:10.21468/SciPostPhysProc.14

Abstract

We introduce the so-called Magic Star (MS) projection within the root lattice of finite-
dimensional exceptional Lie algebras, and relate it to rank-3 simple and semi-simple
Jordan algebras. By relying on the Bott periodicity of reality and conjugacy properties of
spinor representations, we present the so-called Exceptional Periodicity (EP) algebras,
which are finite-dimensional algebras, violating the Jacobi identity, and providing an al-
ternative with respect to Kac-Moody infinite-dimensional Lie algebras. Remarkably, also
EP algebras can be characterized in terms of a MS projection, exploiting special Vinberg
T-algebras, a class of generalized Hermitian matrix algebras introduced by Vinberg in
the ’60s within his theory of homogeneous convex cones. As physical applications, we
highlight the role of the invariant norm of special Vinberg T-algebras in Maxwell-Einstein-
scalar theories in 5 space-time dimensions, in which the Bekenstein-Hawking entropy of
extremal black strings can be expressed in terms of the cubic polynomial norm of the
T-algebras.
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1 Projecting root lattices onto the magic star

Within the r-dimensional root lattice of g2, f4, e6, e7 and e8 (with r = 2, 4,6,7, 8, resp.), one
can find a plane (defined by the two Cartans of an a2 subalgebra) on which the projection of
the roots results into the so-called “Magic Star" (MS) (reported in Fig. 1). To the best of our
knowledge, the MS was firstly observed in late ’90s by Mukai1 [2], and later re-discovered and
treated in some detail by Truini [3] (see also [4]), within a different approach relying Jordan
Pairs [5]; see also [1].

Figure 1: The Magic Star of exceptional Lie algebras [2, 3]. Jq
3 denotes a rank-3

simple Jordan algebra, realized as matrix algebra of 3× 3 Hermitian matrices over
Hurwitz’s division algebras A= R,C,H,O (of real dimension q = dimRA= 1, 2,4, 8,
resp.). The limit case of g2 (corresponding to q = −2/3) corresponds to a trivial
Jordan algebra, given by the identity element only: J−2/3

3 ≡ I := diag(1,1, 1).

The existence of the MS relies on the so-called (not necessarily maximal, generally non-
symmetric) MS embedding/decomposition2

qconf
�

Jq
3

�

⊃ a2 ⊕ str0

�

Jq
3

�

, (1)

where qconf
�

Jq
3

�

and str0

�

Jq
3

�

stand for the quasi-conformal resp. the reduced structure Lie
algebra of Jq

3 (see e.g. [13,14] for basic definitions, and a list of Refs.).
Over C, (1) implies [3,4]

qconf
�

Jq
3

�

= a2 ⊕ str0

�

Jq
3

�

⊕ 3× Jq
3 ⊕ 3× Jq

3 . (2)

Upon setting q = 8, 4,2, 1,0,−2/3,−1, one obtains the exceptional sequence (or exceptional
series) Table 1, cf. e.g. [8].3

Jq
3 stands for the rank-3 simple Jordan algebra [10] (cfr. e.g. [9], and Refs. therein)

associated to the parameter q, which for q = 8,4, 2,1 is the real dimension of the division
algebra A on which the corresponding Jordan algebra is realized as a 3×3 generalized matrix

1Mukai used the name “g2 decomposition".
2For an application to supergravity, see [6] (where MS embedding was named Jordan pairs’ embedding), as

well as [7], in which the MS embedding was elucidated to be nothing but the D = 5 instance of the so-called
super-Ehlers embedding.

3Note that we consider b3, corresponding to q = −1/3 and absent in [8].
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Table 1

q 8 4 2 1 0 −1/3 −2/3 −1

qconf
�

Jq
3

�

e8 e7 e6 f4 d4 b3 g2 a2

str0

�

Jq
3

�

e6 a5 a2 ⊕ a2 a2 C⊕C C 0 −

algebra with the property of A-Hermiticity: q = dimRA = 8,4, 2,1 for A = O,H,C,R, resp.,
and Jq

3 ≡ JA3 ≡ H3 (A) are equivalent notations. Remarkably, qconf
�

Jq
3

�

and str0

�

Jq
3

�

span the
entries of the fourth resp. second row/column of the Freudenthal-Tits Magic Square [11,12]
when setting q = 8,4, 2,1. From the classification of finite-dimensional, semi-simple cubic
Jordan algebras [10], J0

3 ≡ C⊕C⊕C is the completely factorized (triality symmetric) rank-

3 Jordan algebra, whereas J−1/3
3 ≡ C ⊕ C and J−2/3

3 ≡ C are its partial and total diagonal
degenerations, respectively.

Within this report, we will consider things over R. In this case, there are at least two non-
compact real forms of the “enlarged" exceptional sequence

�

qconf
�

Jq
3

�	

q=8,4,2,1,0,−1/3,−2/3,−1
which can be easily interpreted in terms of symmetries of rank-3 real Jordan algebras: they
are given in Tables 2 and Table 3. and they both pertain to the following non-compact, real
form of (2)): qconf e8

qconf
�

Jq
3

�

= sl3,R ⊕ str0

�

Jq
3

�

⊕ 3× Jq
3 ⊕ 3′ × Jq′

3 . (3)

Table 2: The split real form of the exceptional sequence. In this case, for q = 8, 4,2,1,
Jq

3 ≡ JAs
3 ≡ H3(As), where As is the split form of A=O,H,C, respectively.

q 8 4 2 1 0 −1/3 −2/3 −1

qconf
�

Jq
3

�

e8(8) e7(7) e6(6) f4(4) so4,4 so4,3 g2(2) sl3,R

str0(J
q
3) e6(6) sl6,R sl3,R ⊕ sl3,R sl3,R R⊕R R 0 −

Table 3: Another (non-split) non-compact real form of the exceptional sequence.

q 8 4 2 1 0 −1/3 −2/3 −1

qconf
�

Jq
3

�

e8(−24) e7(−5) e6(2) f4(4) so4,4 so4,3 g2(2) sl3,R

str0(J
q
3) e6(−26) su∗6 (sl3,C)R sl3,R R⊕R R 0 −

2 Spinor content of exceptional Lie algebras and Fierz identities
in 8+ q dimensions

The following maximal, Jordan algebraic embeddings

JA3 ⊃ R⊕ JA2 ,

JAs
3 ⊃ R⊕ JAs

2 , (4)

enjoy the following matrix realization as (ri ∈ R, Ai ∈ A or As, i = 1,2, 3)

JA3 ∋ J =





r1 A1 A2

A1 r2 A3

A2 A3 r3



⇒ J ′ =





r1 A1 0
A1 r2 0
0 0 r3



 ∈ R⊕ JA2 , (5)
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where the bar denotes the conjugation in A or in As. Usually, the matrix elements r1 and r2
are associated to lightcone degrees of freedom, i.e.

r1 := x+ + x−, r2 := x+ − x− . (6)

Furthermore, the following algebraic isomorphisms hold (cf. e.g. [15]):

JA2 ∼ Γ1,q+1 , (7)

JAs
2 ∼ Γq/2+1,q/2+1 , (8)

where Γ1,q+1 and Γq/2+1,q/2+1 are (generally simple) Jordan algebras of rank 2 with a quadratic
form of (Lorentian resp. Kleinian) signature (1, q+ 1) resp. (q/2+1, q/2+1), i.e. the Clifford
algebras of O (1, q+ 1) resp. O(q/2+1, q/2+1); for this reason, it is customary to refer to (4)
as to the the spin-factor embeddings.

By setting A=O, i.e. q = 8, in (4), and considering the various symmetries of Jordan alge-
bras, one obtains the graded structure of suitable real forms of finite-dimensional exceptional
Lie algebras with respect to the corresponding pseudo-orthogonal Lie algebras, thus obtaining
the spinor content of the exceptional algebras themselves:

1. For what concerns the derivations der (namely, the Lie algebra of the automorphism
group) of the rank-3 Jordan algebras, one obtains the 2-graded structure of the real,
compact form of f4, namely:

der
�

JO3
�

⊃m,s der
�

R⊕ JO2
�

⇔







f4(−52) ⊃m,s so9 ,

f4(−52) = so9 ⊕ 16 ,
(9)

where 16 is the Majorana spinor irrepr. of so9, and the upperscripts “m" and “s" re-
spectively indicate maximality and symmetric nature. The fact that the 2-graded vector
space so9⊕16 can be endowed with the structure of a (simple, exceptional) Lie algebra,
and thus satisfies the Jacobi identity (in particular, for three elements in 16), relies on a
remarkable Fierz identity for so9 gamma matrices.

2. At the level of the reduced structure Lie algebra str0, one obtains the 3-graded structure
of the real, minimally non-compact form of e6, namely:

str0

�

JO3
�

⊃m,s str0

�

R⊕ JO2
�

⇔



















e6(−26) ⊃m,s so9,1 ⊕R ,

e6(−26) = 16′−1 ⊕
�

so9,1 ⊕R
�

0 ⊕ 161 ,
or

e6(−26) = 16−1 ⊕
�

so9,1 ⊕R
�

0 ⊕ 16′1 ,

(10)

where 16 and 16′ are the Majorana-Weyl (MW) spinors of so9,1, which constitute an
example of Jordan pair which is not a pair of Jordan algebras (see e.g. [5], as well
as [3, 4] for a recent treatment); also, the indeterminacy denoted by “or” depends on
the spinor polarization of the embedding [16]. The fact that the 3-graded vector space(s)
in the r.h.s. of (10) can be endowed with the structure of a (simple, exceptional)
Lie algebra, and thus satisfies the Jacobi identity (in particular, for three elements in
16 ⊕ 16′), relies on a remarkable Fierz identity for so9,1 gamma matrices. Note that
str
�

JO3
�

≃ str0

�

JO3
�

⊕ R is isomorphic to the Lie algebra of the automorphism group
Aut
�

JO3 ,JO′3

�

of the Jordan pair
�

JO3 , JO′3

�

:

str
�

JO3
�

≃ Lie
�

Aut
��

JO3 , JO′3

���

≃ der
�

JO3 , JO′3

�

. (11)
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3. At the level of the conformal Lie algebra conf, one obtains

conf
�

JO3
�

⊃m,s conf
�

R⊕ JO2
�

⇔







e7(−25) ⊃m,s so10,2 ⊕ sl2,R ,

e7(−25) = so10,2 ⊕ sl2,R ⊕
�

32(′),2
�

,
(12)

where 32 is the MW spinor of so10,2, and the possible priming (denoting spinor conju-
gation) depends on the choice of the spinor polarization [16]. By further branching the
sl2,R, one obtain a 5-grading of contact type (recently reconsidered within the classifi-
cation worked out in [17]) of the real, minimally non-compact form of e7, namely:

e7(−25) ⊃ so10,2 ⊕R ,

e7(−25) = 1−2 ⊕ 32(′)−1 ⊕
�

so10,2 ⊕R
�

0 ⊕ 32(′)1 ⊕ 12.
(13)

The fact that the 5-graded vector space(s) in the r.h.s. of (13) can be endowed with
the structure of a (simple, exceptional) Lie algebra, and thus satisfies the Jacobi identity
(in particular, for three elements in 32(′) ⊕ 32(′)), relies on a remarkable Fierz identity
for so10,2 gamma matrices. Note that conf

�

JO3
�

is isomorphic to the Lie algebra of the
automorphism group Aut

�

F
�

JO3
��

of the reduced Freudenthal triple system constructed
over JO3 :

conf
�

JO3
�

≃ Lie
�

Aut
�

F
�

JO3
���

≃ der
�

F
�

JO3
��

. (14)

4. Finally, at the level of the quasi-conformal Lie algebra4 qconf [13, 14], one obtains the
2-graded structure of the real, minimally non-compact form of e8, namely:

qconf
�

JO3
�

⊃m,s qconf
�

R⊕ JO2
�

⇔







e8(−24) ⊃m,s so12,4 ,

e8(−24) = so12,4 ⊕ 128(′) ,
(15)

where 128 is the MW spinor of so12,4, and, again, the possible priming (standing for
spinorial conjugation) relates to the choice of the spinor polarization [16]. Further de-
composition of so12,4 yields to a 5-grading of “extended Poincaré" type [17]:

e8(−24) ⊃ so11,3 ⊕R ,

e8(−24) =







14−2 ⊕ 64′−1 ⊕
�

so11,3 ⊕R
�

0 ⊕ 641 ⊕ 142 ,
or

14−2 ⊕ 64−1 ⊕
�

so11,3 ⊕R
�

0 ⊕ 64′1 ⊕ 142 ,

(16)

where 64 is the MW spinor of so11,3 and the “or” indeterminacy depends on the spinor
polarization [16]. The fact that the 2-graded vector space so12,4⊕128(′) can be endowed
with the structure of a (simple,exceptional) Lie algebra, and thus satisfies the Jacobi
identity (in particular, for three elements in 128(′)), relies on a remarkable Fierz identity
for so12,4 gamma matrices. Equivalently, the fact that the 5-graded vector space(s) in the
r.h.s. of (16) can be endowed with the structure of a (simple, exceptional) Lie algebra,
and thus satisfies the Jacobi identity (in particular, for three elements in 64⊕64′), relies
on a remarkable Fierz identity for so11,3 gamma matrices.

4We recall that the quasi-conformal realization of e8(−24) concerns a non-linear action on an extended derived
Freudenthal triple system EF

�

JO3
�

≃ R⊕ F
�

JO3
�

[13].

035.5

https://scipost.org
https://scipost.org/SciPostPhysProc.14.035


SciPost Phys. Proc. 14, 035 (2023)

3 From Bott periodicity to exceptional periodicity

Thus, we have related the existence of (finite-dimensional, simple) exceptional Lie algebras
to some remarkable Fierz identities holding in q+ 8 dimensions (in particular, with signature
9+ 0, 9+ 1, 10+ 2,and 12+ 4, for q = 1,2, 4 and 8, respectively).

Now, by observing that the reality properties of spinors and the existence and symmetry of
invariant spinor bilinears are periodic mod 8 (Bott periodicity), one can define some algebras
which (for the moment, formally) generalize the spinor content of the real forms of exceptional
Lie algebras discussed above: these are the so-called “Exceptional Periodicity” (EP) algebras
[1,18], and, as vector spaces, they are defined as follows (n ∈ N∪{0} throughout5):

1. Level der:
f
(n)
4(−52) := so9+8n ⊕ψso9+8n

, (17)

where ψso9+8n
≡ 24+4n is the Majorana spinor of so9+8n.

2. Level str0:
e
(n)
6(−26) :=ψ′so9+8n,1,−1 ⊕

�

so9+8n,1 ⊕R
�

0 ⊕ψso9+8n,1,1 , (18)

where ψso9+8n,1
≡ 24+4n is the MW spinor of so9+8n,1.

3. Level conf:

e
(n)
7(−25) :=
�

so10+8n,2 ⊕ sl2,R
�

⊕
�

ψso10+8n,2
,2
�

(19)

= 1−2 ⊕ψso10+8n,2,−1 ⊕
�

so10+8n,2 ⊕R
�

0 ⊕ψso10+8n,2,1 ⊕ 12 ,

where ψso10+8n,2
≡ 25+4n is the MW spinor of so10+8n,2.

4. Level qconf:

e
(n)
8(−24) := so12+8n,4 ⊕ψso12+8n,4

(20)

= (14+ 8n)−2 ⊕ψ′so11+8n,3,−1 ⊕
�

so11+8n,3 ⊕R
�

0 ⊕ψso11+8n,3,1 ⊕ (14+ 8n)2 ,

where ψso12+8n,4
≡ 27+4n and ψso11+8n,3

≡ 26+4n respectively denote the MW spinors of
so12+8n,4 and of so11+8n,3.

A rigorous algebraic definition of the above EP algebras has been given in [18] (see
also [1]) by introducing the notion of generalized roots, and by defining the structure con-
stants in terms of (a suitably generalized) Kac’s asymmetry function [19, 20]. In this report,
we confine ourselves to remark that EP algebras are not simply non-reductive nor semisim-
ple, spinor-affine extensions of (pseudo-)orthogonal Lie algebras, but their spinor generators
are non-translational (i.e., non-Abelian), as are the spinor generators of6 f4(−52) ≡ f

(n=0)
4(−52),

e6(−26) ≡ e
(n=0)
6(−26), e7(−25) ≡ e

(n=0)
7(−25), and e8(−24) ≡ e

(n=0)
8(−24). This yields to the violation of the

Jacobi identity when considering three spinor generators as input in the Jacobiator [18]. As of
today, a rigorous, axiomatic treatment of EP algebras is missing: can EP algebras be defined in
terms of some characterizing identities, going beyond Jacobi? This remains an open problem.

5Note that there has been a shift of unity with respect to the notation of [1] and [18]: the index n used here is
actually n− 1 of such Refs.

6The treatment on R given here is based on the EP generalization of the various symmetry Lie algebras of the
Albert algebra JO3 , and it yielded to some specific real forms of f(n)4 , e(n)6 , e(n)7 and e

(n)
8 . Starting from C, a rigorous

definition of all real forms of EP algebras, by means of the introduction of suitable involutive morphisms within
the corresponding EP generalized root lattices [18], will be the object of forthcoming works.
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Figure 2: The Magic Star structure of the a2-projection of the generalized root lattices
of EP algebras. finite-dimensional [18]. Tq,n

3 stands for a Vinberg T-algebra of rank-3
and of special type [22], parametrized by q = 1,2, 4,8 and n ∈ N∪{0}, corresponding
to f

(n)
4 , e(n)6 , e(n)7 , e(n)8 , respectively.

The crucial result, which motivates and renders all the above construction and the correspond-
ing construction in the EP lattices non-trivial, is the following [18]: for n > 0, all EP algebras
admit a a2 subalgebra, such that the projection of their generalized root lattices onto the 2-
dimensional plane defined by the Cartans of such a2 has a Magic Star structure, with those
generalized roots corresponding to the degeneracies on the tips of such EP-generalized Magic
Star which can be endowed with an algebraic structure, denoted by Tq,n

3 , generalizing the rank-
3 simple Jordan algebras Jq

3 ≡ JA3 ≡ H3 (A) mentioned above. The resulting, EP-generalized
Magic Star is depicted in Fig. 2. Remarkably, such a generalization is7 the unique possible
one, and it is provided by the Hermitian part of (a class of) rank-3 T-algebras of special type.
Such algebras were introduced some time ago by Vinberg [22], and they recently appeared
in [23–25], in which they have been named Vinberg special T-algebras.

4 Vinberg special T-algebras and Bekenstein-Hawking entropy

The real forms of EP algebras resulting from the treatment given above, i.e. f
(n)
4(−52), e

(n)
6(−26),

e
(n)
7(−25), and e

(n)
8(−24) (corresponding to der, str0, conf and qconf levels, or, equivalently - by the

symmetry of the Freudenthal-Tits Magic Square [11, 12] - to q = 1, 2,4 and 8, respectively),
the 3×3 generalized matrix algebras Tq,n

3 corresponding to the set of generalized roots degen-
erating to a point on each of the tips of the EP-generalized Magic Star (depicted in Fig. 2) can
be realized as follows:

Tq,n
3 :=







r1 Vsoq+8n
ψsoq+8n

Vsoq+8n
r2 ψ′soq+8n

ψsoq+8n
ψ′soq+8n

r3






, (21)

7Within a set of reasonable and intuitive assumptions [22].
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where8

Vsoq+8n
:= (q + 8n, 1) , (22)

ψsoq+8n
:=
�

2[(q+1)/2]+4n−1+δq,1 ,Fund
�

Sq

��

, (23)

are irreducible representation spaces of the Lie algebra

soq+8n ⊕Sq , (24)

with

Sq := triA ⊖ soA = 0, so2, su2, 0 , for q = 1,2, 4,8 (i.e., for R,C,H,O, resp.) , (25)

denoting the coset algebra of the triality symmetry triA of A [26]:

triA := {(A, B, C) |A(x y) = B(x)y + xC(y), A, B, C ∈ soA, x , y ∈ A} (26)

= 0, so⊕2
2 , so3

⊕3, so8 , for A= R,C,H,O , (27)

modded by the norm-preserving symmetry soAof A:

soA := soq = 0, so2, so4, so8 , for A= R,C,H,O . (28)

Actually, Sq is related to the reality properties of the spinors of soq+8n, and in Physics it is
named R-symmetry. Furthermore, Fund

�

Sq

�

denotes the smallest non-trivial representation
of the simple Lie algebra Sq (if any):

Fund
�

Sq

�

= −,2,2,− , for q = 1, 2,4, 8 , (29)

with real dimension

fundq := dimR Fund
�

Sq

�

= 1,2, 2,1 , for q = 1,2, 4,8 . (30)

Thus, the total real dimension of Tq,n
3 is

dimR(T
q,n
3 ) = q+ 3+ 8n+ fundq · 2[(q+1)/2]+4n+δq,1 . (31)

As mentioned above, Tq,n
3 (21) is the Hermitian part of a certain class of generalized matrix

algebras going under the name of rank-3 T-algebras, introduced sometime ago by Vinberg as
a unique,consistent generalization of rank-3, simple Jordan algebras, within its theory of ho-
mogeneous convex cones [22]: more precisely, Tq,n

3 has been dubbed exceptional T-algebra in
Sec. 4.3 of [1]. Upon a slight generalization (i.e., by including P + Ṗ copies of spinor irreprs.,
and correspondingly extending Sq to the “full-fledged” R-symmetry Sq

�

P, Ṗ
�

), Tq,n
3 gets gen-

eralized to Tq,n,P,Ṗ
3 (with P, Ṗ ∈ N ∪ {0}), which occur in the study of so-called homogeneous

real special manifolds.9 These are non-compact Riemannian spaces occurring as (vector multi-
plets’) scalar manifolds of N = 2-extended Maxwell-Einstein supergravity theories in D = 4+1

space-time dimensions, firstly discussed to some extent by Cecotti [28]. More recently, Tq,n,P,Ṗ
3

have appeared under the name of Vinberg special T- algebras in works on Vinberg’s theory of
homogeneous cones (and generalizations thereof) and on its relation to the entropy of ex-
tremal black holes in N = 2-extended Maxwell-Einstein supergravity theories in D = 3 + 1
space-time dimensions [23–25].

8[·] denotes the integer part throughout.
9And, of course, in their images under R-map and c-map (cfr. e.g. [27], and Refs. therein).
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The unique invariant structure of the algebra10 Tq,n
3 ≡ Tq,n,P,Ṗ

3

�

�

�

P=1,Ṗ=0
given by (21) is pro-

vided by its (formal) “determinant”. In order to define it, let us introduce (µ= 0,1, ..., q+ 1+ 8n)

Vµ :=
�

r1, r2,Vsoq+8n

�

, (32)

which, by recalling (6), is recognized to be a vector module of Spin (q+ 1+ 8n, 1); we also
denote the corresponding spinor of soq+1+8n,1 (which is chiral for q = 2,4, 8), of real dimension
fundq · 2[(q+1)/2]+4n+δq,1 , by ΨαA (where α = 1, ..., 2[(q+1)/2]+4n+δq,1 and A= 1, ..,fundq). Then,
the “determinant” of the generalized Hermitian matrix algebra Tq,n

3 , which defines the cubic
norm N of Tq,n

3 itself, is defined as

N
�

Tq,n
3

�

:=
1
2
ηµν

�

r3VµV ν + γµ
αβ
ΨαAΨ

β
A V ν
�

, (33)

where ηµν is the symmetric bilinear invariant of the vector module V (32) of Spin (q+ 1+ 8n, 1),
and γµ

αβ
are the gamma matrices of soq+1+8n,1.

Remarkably, Ferrar’s classification [29] of elements of a rank-3 Jordan algebras in terms
of invariant rank= 0,1, 2,3 can be generalized to the classification of the elements of Tq,n

3
depending on their invariant rank as well, defined as follows [18]:

rank-3 : N ̸= 0 ,
rank-2 : N= 0 ,
rank-1 : ∂N= 0 .

(34)

In those (ungauged) N = 2-extended Maxwell-Einstein supergravity theories in D = 4 + 1
space-time dimensions based on Tq,n

3 [28], the magnetic charges of extremal black strings (with
near-horizon geometry AdS3 ⊗ S2) fit into Tq,n

3 itself, and its Bekenstein-Hawking entropy SBS
enjoys the interestingly simple expression

SBS = π
Æ

|N| . (35)

We conclude this report by pointing out that the entropy of the extremal dyonic black holes in
the corresponding (ungauged) (3+ 1)-dimensional supergravity theory (obtained by compact-
ifying the fourth spacial dimension on S1 and keeping the massless sector) has been recently

discussed in [24]. Analogue formulæ hold when considering the most general case Tq,n,P,Ṗ
3

(with P, Ṗ ∈ N∪ {0}).

References

[1] P. Truini, A. Marrani and M. Rios, Magic star and exceptional periodicity: An approach
to quantum gravity, J. Phys.: Conf. Ser. 1194, 012106 (2019), doi:10.1088/1742-
6596/1194/1/012106.

[2] S. Mukai, Simple Lie algebra and Legendre variety, Nagoya Sūri Forum 3, 1 (1996), https:
//www.math.nagoya-u.ac.jp/~mukai/paper/warwick15.pdf.

[3] P. Truini, Exceptional Lie algebras, SU(3), and Jordan pairs, Pacific J. Math. 260, 227
(2012), doi:10.2140/pjm.2012.260.227.

10Correspondingly, Sq ≡ Sq(P, Ṗ)
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Abstract

We define the concept of Mixed Symmetry Quantum Phase Transition (MSQPT), consider-
ing each permutation symmetry sector µ of an identical particles system, as singularities
in the properties of the lowest-energy state into each µwhen shifting a Hamiltonian con-
trol parameter λ. A three-level Lipkin-Meshkov-Glick (LMG) model is chosen to typify
our construction. Firstly, we analyze the finite number N of particles case, proving the
presence of MSQPT precursors. Then, in the thermodynamic limit N →∞, we calculate
the lowest-energy density inside each sector µ, augmenting the control parameter space
by µ, and showing a phase diagram with four different quantum phases.
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1 Introduction

When studying quantum systems of identical particles, e.g. bosons and fermions, permutation
symmetry becomes crucial. A nontrivial example is that of N identical particles distributed
in a set of L levels (H⊗N

L as Hilbert space) and a second quantized Hamiltonian describing
pair correlations [1]. In particular, the condition of identical atoms allows to use permutation
symmetry SN to decompose H⊗N

L into a “Clebsh-Gordan” direct sum of unitary irreducible
representations (unirreps or sectors) of U(L). We shall use Young tableaux as a useful graphical
method to depict this decomposition.

It is common in the literature the restriction to the totally symmetric unirrep or sector when
studying quantum phase transitions (QPTs) of critical quantum systems in the thermodynamic
limit N → ∞, like in Refs. [2–4], reducing Hilbert space H⊗N

L dimension from LN to, for

036.1

https://scipost.org
https://scipost.org/SciPostPhysProc.14.036
mailto:albmayrey97@ugr.es
https://doi.org/10.21468/SciPostPhysProc.14
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhysProc.14.036&amp;domain=pdf&amp;date_stamp=2023-11-24
https://doi.org/10.21468/SciPostPhysProc.14.036


SciPost Phys. Proc. 14, 036 (2023)

example,
�N+L−1

N

�

= N + 1 for L = 2. This means to make the particles indistinguishable,
which is a broadly assumed procedure without any evident physical justification (usually for
computational benefit). Therefore, we are devoted to study the role of these often disregarded
mixed permutation symmetry sectors in this work. As a paradigmatic case, we will use the
Lipkin-Meshkov-Glick (LMG) Hamiltonian for L = 3 levels (2), where λ will be the control
parameter used to detect critical phenomena (QPTs). The case L = 2 (see [5]) is not considered
because all sectors can be reduced to the symmetric one, and the cases L > 3 provide an extra
difficulty when minimizing the energy surface of the Hamiltonian. We address the reader to
Ref. [6] for more information.

The organization of this article is the following; in Section 2 we focus on a simplified ver-
sion of the Hamiltonian for L = 3 levels, and examine the numerical/exact lowest-energy state
inside different permutation symmetry sectors for a finite number of particles N . In Section
3, we find mixed symmetry quantum phase transitions (MSQPTs) in the thermodynamic limit
N →∞ using variational states. At the end, in Sec. 4, we give the conclusions.

2 The 3-level LMG model. U(L) unirreps and QPT precursors

Models describing pairing correlations are usually described by a Hamiltonian in the second
quantization form

HL =
L
∑

i=1

N
∑

µ=1

ϵic
†
iµciµ −

L
∑

i, j,k,l=1

N
∑

µ,ν=1

λkl
i j c†

iµc jµc†
kνclν , (1)

where ciµ (c†
iµ) destroys (creates) a particle in the µ state of the level i. Precisely, there is a

finite number N of identical particles distributed over L energy levels (N -fold degenerate).
Pairs of particles are scattered between the L levels when considering the two-body residual
interactions of strength λ, so that the total number of particles remains constant.

In our case, we focus on L = 3 level systems and apply the following list of restrictions
to the Hamiltonian (1): Firstly, we define U(L) generators as Si j =

∑N
µ=1 c†

iµc jµ according
to the Jordan-Schwinger map [7, 8]. Secondly, we disregard interactions for particles in the
same level and consider equal interactions in different levels, i.e. λkl

i j =
λ

N(N−1)δikδ jl(1−δi j) .
Thirdly, we transform the Hamiltonian into an energy density (intensive quantity) by separat-
ing the interaction strength λ by the total particle pairs N(N−1). Fourthly, we place the levels
symmetrically about the level i = 2, ϵ3 = −ϵ1 = ε/N and ϵ2 = 0. Eventually, the Hamiltonian
turns into the 3-level simplified version of the LMG Hamiltonian,

H3 =
ε

N
(S33 − S11)−

λ

N(N − 1)

3
∑

i ̸= j=1

S2
i j . (2)

It can be regarded as an extension of the paradigmatic L = 2 levels LMG Hamiltonian used in
the shell model [9,10].

An interesting property of the 3-level LMG Hamiltonian (2) is that the λ-interaction only
scatters pairs of particles, and therefore, conserves the parityΠi = exp(iπSii) of the population
Sii in each level i = 1, 2,3. Consequently, the parity symmetry is described by the parity group
Z2×Z2×Z2 with the constraintΠ1Π2Π3 = (−1)N . This symmetry will be spontaneously broken
in the thermodynamic limit N →∞ leading to a highly degenerated ground state [11]. In
addition, if we choose basis vectors adapted to irreducible representations of the Lie group
U(3), the Hamiltonian matrix (2) will be block diagonal, and hence the procedure presented
in the following paragraphs.
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We want to focus on the decomposition of the N -fold tensor product Hilbert space H⊗N
L

of N L-level atoms into U(L) unirreps. In particular, we shall use Young tableaux and
Gelfand-Tsetlin (GT) patterns along this article since they are powerful diagrammatic meth-
ods (see [7, 12] for more details and definitions). The fundamental L × L representation
of U(L) is given by a Young box , and states of one particle by Weyl patterns/tableaux,
1 = |1〉, 2 = |2〉, 3 = |3〉, . . . In the case L = 3, we apply the Gram-Schmidt orthonormal-

ization procedure to the columns of a complex triangular matrix T in order to obtain unitary
matrices of U(3)

T =





1 0 0
α 1 0
β γ 1





G-S
−→ V =











1p
ℓ1

−ᾱ−γβ̄p
ℓ1ℓ2

−β̄+ᾱγ̄p
ℓ2

αp
ℓ1

1+ββ̄−αγβ̄p
ℓ1ℓ2

−γ̄p
ℓ2

βp
ℓ1

γ−βᾱ+γαᾱp
ℓ1ℓ2

1p
ℓ2











, (3)

which is parameterized by the complex parametersα,β ,γ ∈ C, where ℓ1 = |T †T |1 = 1+αᾱ+ ββ̄
and ℓ2 = |T †T |2 = 1+γγ̄+(β−αγ)

�

β̄ − ᾱγ̄
�

. Actually, the addition of the three Cartan phases
u j = eiθ j ∈ U(1), j = 1, 2,3 completes the parameterization as U = V · diag(u1, u2, u3) ∈U(3).
This parameterization is chosen for convenience and is derived from the Bruhat decomposi-
tion, which is a general version of the Gauss-Jordan elimination and is related to the Schubert
cell decomposition of flag manifolds [13]. However, there are many others relevant parame-
terizations in the field of spin coherent states such as [14–17].

The LN -dimensional Hilbert space H⊗N
L is represented by the N -fold tensor product repre-

sentation ⊗ (N). . . ⊗ . The Hilbert space is reducible into invariant subspaces, which are
graphically represented by Young frames of h1+ · · ·+hL = N boxes labeled by h= [h1, . . . , hL],
where hi is the number of boxes in a row i = 1, . . . , L, fulfilling h1 ≥ · · · ≥ hL .

We shall remind that Weyl patterns symbolize the different vectors of a given representation
(Young frame). They are in semistandard form when labels (numbers) inside the pattern in-
crease from the right to the left, and strictly increase from the top to the bottom. An important
result is that the number of semistandard form Weyl patterns is the dimension of the unirrep.
Another useful definition is the weight of a Weyl pattern, which is the vector w= (w1, . . . , wL)
whose components wk are the population of level k, with w1+ · · ·+wL = N . The lexicograph-
ical rule states that a state of weight w has lower weight than another with weight w′ if the
first non-zero coefficient of w − w′ is positive. Notably, the highest weight (HW) vector of a
unirrep h= [h1, h2, h3] of U(3) is w= (h1, h2, h3).

The semistandard form Weyl patterns are in one-to-one correspondence with Gelfand-
Tsetlin (GT) patterns [7], another useful diagrammatic method to express the vectors spanning
U(L) unirreps. GT patterns are labeled by vectors |m〉, and are useful for obtaining the eigen-
values and matrix elements 〈m|Si j|m′〉 of the collective operators Si j in each unirrep h. This
is called the Gelfand-Tsetlin method [18,19].

From this point on, we shall study the symmetry classification of the LMG U(3) Hamil-
tonian (2) eigenstates, and some QPT precursors. The free LMG U(3) Hamiltonian is ob-
tained by taking λ = 0 in (2), H(0) = ε

N (S33 − S11), ε > 0. According to the Lieb-Mattis
theorem [20, 21], the lowest-energy eigenstate is the highest weight vector of the fully sym-
metric unirrep h = [N , 0, 0], which corresponds to arrange all the particles in the level
i = 1, |ψ0〉 = |mhw〉 = 1 · · · 1 (N boxes). The excited states have an energy En =

n−N
N ε,

n = 1, . . . , 2N , and are highly degenerated, except for E0 and E2N . For instance, the states

1 · · · 1 2 and 1 · · · 1
2

.

The two-body interactions governed by λ lift the degeneracy of the eigenstates. For in-
stance, the lowest energy in the unirrep h = [3,1, 0] is below the third lowest energy in
h = [4, 0,0] for λ < 1, hence mixed symmetry sectors (such as h = [3, 1,0]) should not
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be disregarded in general when studying excited states and their energies.
At this point, it is convenient to define the concept of Mixed Symmetry Quantum Phase

Transition (MSQPT) in a nutshell. We want to analyze critical behavior into each Hilbert
subspace Hh corresponding to a unirrep h of U(3), as Hamiltonian evolution does not mix
different sectors h. Consequently, we choose the lowest-energy vector |ψh

0〉 inside each Hh,
and seek abrupt changes in its structure when shifting λ in the thermodynamic limit N →∞.
But before doing that, we should consider QPT precursors for finite N (exact eigenstates),
which are calculated with exact/numerical Hamiltonian eigenstates and can anticipate the
approximate situation of critical points. One of them is the fidelity [22, 23], measuring how
similar (overlap) two states are in the vicinity (δλ≪ 1) ofλ, Fψ(λ,δλ) = |〈ψ(λ)|ψ(λ+δλ)〉|2.
The fidelity reaches a minimum in the proximity of a critical point λ(0), when the state |ψ(λ)〉
suffers a drastic change of its structure. Another precursor, which is less sensitive to the step
size δλ, is the susceptibility

χψ(λ,δλ) = 2
1− Fψ(λ,δλ)

(δλ)2
, (4)

which reaches a maximum in the vicinity of the critical point λ(0).
Figure 1a shows the susceptibility of the exact/numerical ground state (GS) of the LMG

U(3) model for different number of particles N . We have done the calculations numerically,
giving a matrix form to the Si j operators using the GT basis |m〉 in each unirrep. In particular,
thanks to the Lieb-Mattis theorem [20,21], we know that the GS belongs to the fully symmetric
irrep, reducing the computations to h= [N , 0, 0] in this case. The susceptibility is sharper as N
increases, predicting a critical point around λ≃ 0.55ε for the highest N = 100 curve, which is
a precursor of the QPT eventually occurring exactly at λ(0) = 0.5ε as we will see in Section 3.

On the other hand, Figure 1b displays the susceptibility of the exact lowest-energy vector
inside different mixed symmetry sectors (unirreps h) for a fixed number of particles N = 30.
Now, the would-be critical points (maximum of the susceptibility) move along the different
sectors; they shift to the right from h= [30,0, 0] to h= [20,10, 0] (cyan dashed line), and to
the left from h= [20,10, 0] to h= [15, 15,0] (magenta dashed line). Consequently, the figure
envisages a quadruple point at the unirrep h = [2N/3, N/3, 0]. The maxima at the right in
the figure are precursor of another QPT at λ ≃ 1.5ε, but it is in a different scale and requires
a higher N to be properly characterized.

3 Thermodynamic limit and MSQPTs

We shall start this section talking about coherent states. They are excellent variational (semi-
classical) states, as they reproduce the structure and mean energy density of lowest-energy
states inside each symmetry sector h at N → ∞. For a detailed explanation, see the ref-
erence [24], and [5] for the U(2) case. In our case, we follow the Perelomov’s construc-
tion [25, 26] of the coherent states in a given unirrep h of U(L). Namely, we rotate the
HW vector state |mhw〉 of a unirrep h by a unitary matrix U ∈U(3) parameterized as in (3),
|h, U〉 = Kh(U)|h;α,β ,γ}, where |h;α,β ,γ} = eβS31 eαS21 eγS32 |mhw〉, and Kh(U) is a normal-
ization factor. For the totally symmetric unirrep h = [N , 0, 0], the highest weight state is
invariant under a U(2) subgroup, thus, any one of the exponential factors can be eliminated
to properly define a U(3) CS. The coherent state expectation values si j = 〈h, U |Si j|h, U〉 of the
basic symmetry operators Si j can be easily calculated in the differential representation (see
the Appendix A of [6] for a detailed calculation).

From now on, it is convenient to relabel U(3) unirreps h = [h1, h2, h3] by parameters
µ,ν (we only need two parameters because of the constraint h1 + h2 + h3 = N .). More ex-
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Figure 1: (a) Susceptibility χψ of the ground state ψh=[N ,0,0]
0 of the 3-level LMG

Hamiltonian (2) for different values of the control parameter λ and the total number
of particles N . It predicts a QPT whose critical point is around λ(0) ≃ 0.55. (b)
Susceptibility χψh

0
(in logarithmic scale) of the lowest-energy vectorψh

0 into different
sectors h for a fixed number of N = 30 atoms. The dashed lines interpolate between
the maxima of the susceptibilities, which are precursors of the would-be critical points
dividing phase I from phase II (cyan), and phase I from phase IV (magenta) (see later
on Figure 2 for the different phases). The turn away point, where both dashed lines
meet, corresponds to the unirrep h= [20, 10,0], where four phases will coincide (see
later on Sec. 3). We use ε units for λ and a step size δλ= 0.01 in both figures.

plicitly, h3 = νN , h2 = (1 − µ)(1 − ν)N , h1 = µ(1 − ν)N , for allν ∈ [0, 1
3], µ ∈ [

1
2 , 1−2ν

1−ν ],
becoming continuous parameters in the thermodynamic limit. Then, we are able to define
the energy surface of a Hamiltonian density H into the Hilbert space sector (µ,ν) as
EU
µ,ν(ε,λ) = limN→∞〈h, U |H|h, U〉. That is, the coherent state expectation value of the Hamil-

tonian density in the thermodynamic limit (N →∞). In the LMG U(3) case,

EU
µ,ν(ε,λ) = lim

N→∞

 

ε(s33 − s11)
N

−
λ
∑3

i ̸= j=1 s2
i j

N(N − 1)

!

, (5)

which depends on the type of unirrep (µ,ν), the complex coordinates of U (α,β and γ),
and the control parameters ε and λ. We fix ε and measure the energy surface and λ
in ε units, since EU

µ,ν(ε,λ) = εEU
µ,ν(1,λ/ε). In addition, we benefit from h = [h1, h2, h3]

and h′ = [h1 − h3, h2 − h3, 0] being equivalent SU(3) unirreps and obtain the expression
EU
µ,ν(ε,λ) = (1 − 3ν)EU

µ̃,0(ε, (1 − 3ν)λ), µ̃ = µ(1−ν)−ν
1−3ν , so we restrict to the study of the par-

ent case ν = 0,µ ∈ [1
2 , 1]. For µ = 1, we have the totally symmetric representations, with a

four-dimensional phase space α,β ∈ C and an energy surface

E(α,β)
1,0 (ε,λ) = ε

ββ̄ − 1

αᾱ+ ββ̄ + 1
−λ

α2
�

β̄2 + 1
�

+
�

β2 + 1
�

ᾱ2 + β̄2 + β2

�

αᾱ+ ββ̄ + 1
�2 , (6)

which is invariant under α→−α, β →−β , thus preserving the discrete parity symmetry inher-
ited from the Hamiltonian). For µ= 1/2, the representations are linked to rectangular Young
tableaux (h1 = N/2 = h2), and the energy surface EU

1
2 ,0
(ε,λ) = 1

2 E(γ,β ′)
1,0 (ε, λ2 ), β

′ = β − αγ,

can be obtained from the totally symmetric case. The intermediate values µ ∈ (1
2 , 1) give a

six-dimensional phase space (flag manifold structure [13]) α,β ,γ ∈ C, whose explicit energy
surface expression is bulky.
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Figure 2: Lowest-energy density E(0)µ (ε,λ) of the parental case (7) for different values
of the control parameter λ and the unirrep continuous parameter µ, varying from
µ = 1 (black curve) to µ = 1/2 (light yellow curve), with a step size of δµ = 0.01.
There are four different quantum phases in the phase diagram, which coincide at a
quadruple point (λ,µ)q = (3/2,2/3). The phases are separated by curves of critical
points in color red, magenta, green, and blue. Both axes are in ε units.

Henceforward we minimize in the phase space coordinates the energy density of the parent
case (take ν= 0,µ ∈ [1

2 , 1] in (5)), i.e. we find the minimum energy

E(0)µ (ε,λ) =minU∈U(3)E
U
µ,0(ε,λ) , ∀µ ∈

�

1
2

, 1
�

. (7)

As we can see in Figure 2, the representation label µ behaves as an additional control pa-
rameter, differentiating four different quantum phases (I, II, III and IV) in the λ-µ plane
(color lines). The transitions between phases for µ ̸= 1 can be understood as MSQPTs. We
can also find the aforementioned quadruple point at (λ,µ)q = (3ε/2,2/3), where the four
phases coexist. The MSQPTs are second-order phase transitions as the second derivatives
∂µµE(0)µ (ε,λ),∂λλE(0)µ (ε,λ), and ∂µλE(0)µ (ε,λ) are discontinuous at critical points.

The minimization gives many critical points α0,β0,γ0 in the phase space with the same
E(0)µ , so the lowest-energy state for a general µ is highly degenerated. This behavior is easier
to show in the fully symmetric case µ = 1 (lowest lines of Figure 2), where there are three
different phases and two second-order QPTs at λ(0)I↔II = ε/2 and λ(0)II↔III = 3ε/2. The critical
values of α and β which make the energy surface minimum are real numbers which have the
properties α±0 (ε,λ) = 0 ∀0 ≤ λ ≤ ε

2 , and β±0 (ε,λ) = 0 ∀0 ≤ λ ≤ 3ε
2 (check the reference [6]

for an explicit expression of the minimum energy surface and the critical points). Therefore,
there is a single minimum in phase I, 0≤ λ/ε≤ 1/2, located at α= β = 0; a double minimum
in phase II, 1/2≤ λ/ε≤ 3/2„ with β = 0; and a quadruple minimum in phase III, λ/ε≥ 3/2.
This degenerated minima effect is due to the spontaneous breakdown of the discrete parity
symmetry of the Hamiltonian, as in the limit N →∞, the four coherent states |α±0 ,β±0 〉 reach

the same minimum energy E(0)1 (minimization of the symmetric case µ= 1, ν= 0 in (5)). The
parity restoration of the GS is discussed in the references [27,28].

4 Conclusion

QPTs research in many-body systems usually presuppose the particle indistinguishability, re-
stricting the scope to the fully symmetric representation (µ= 1), which is often not a general
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procedure. That is why we have defined MSQPTs as QPTs of the lowest-energy state in a par-
ticular symmetry sector µ. As a test model, we have chosen an extension of the ubiquitous
LMG model to L = 3 levels.

Firstly, we have done numerical calculations for a finite number of particles N to obtain
QPT precursors, such as the susceptibility, which anticipate the QPT in the thermodynamic
limit N → ∞. In general, the precursors give a better approximation to the critical points
when increasing N .

Secondly, using coherent (semiclassical) states, we have considered the thermodynamic
limit N →∞ and minimized the energy surface in different unirreps. The critical points λ(0),
where the MSQPTs occur, turn out to depend on the representation index µ. Therefore, we
have extended the phase diagram in an extended control parameter space (λ,µ). In addition,
there are evidences of a quadruple point where four different phases coincide at µ= 2/3. We
have also discussed that the lowest-energy state for general representation µ is degenerated,
because of the spontaneous breakdown of the discrete parity symmetry of the Hamiltonian in
the limit N →∞.

To conclude, we propose for further research the possible overlap between MSQPT and
ESQPT [29], and the exploitation of permutation symmetry in the realm of quantum tech-
nologies [30].
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Abstract

Almost immediately after the seminal papers of Poincaré (1905,1906) and Einstein
(1905) on special relativity, wherein Poincaré established the full covariance of the
Maxwell-Lorentz equations under the scale-extended Poincaré group and Einstein ex-
plained the Lorentz transformation using his assumption that the one-way speed of light
in vacuo is constant and the same for all inertial observers (Einstein’s second postulate),
attempts were made to get at the Lorentz transformations from basic properties of space
and time but avoiding Einstein’s second postulate. Various such approaches usually in-
volve general consequences of the relativity principle, such as a group structure to the set
of all admissible inertial transformations and also assumptions about causality and/or
homogeneity of space-time combined with isotropy of space. The first such attempt is
usually attributed to von Ignatowsky in 1911. It was followed shortly thereafter by a
paper of Frank and Rothe published in the same year. Since then, papers have continued
to be written on the subject even up to the present. We elaborate on some of the results
of such papers paying special attention to a 1968 paper of Bacri and Lévy-Leblond where
possible kinematical groups include the de Sitter and anti-de Sitter groups and lead to
special relativity in de Sitter and anti-de Sitter spaces.
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1 Introduction

On Sept. 24, 1904, in a powerful and prophetic address to the International Congress of Arts
and Sciences in St. Louis, Missouri, Henri Poincaré ushered in the new relativity theory.1 Its

1The International Congress took place that year in St. Louis along with the other festivities of the 1904 World’s
Fair (Louisiana Purchase Exposition) celebrating the 100th anniversary of the Louisiana purchase of 1803.
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foundation was the “Principle of Relativity,” which, according to Poincaré, is [1]:

“That principle according to which the laws of physical phenomena should be the
same, whether for an observer fixed, or for an observer carried along in a uniform
movement of translation, so that we have not and could not have any means of dis-
cerning whether or not we are carried along in such a motion.”

Poincaré’s lecture, appropriately delivered in the “New World,” elevated the principle of rel-
ativity to a general law of physics on an equal footing with conservation of energy, which
necessarily entails its universality. That this is such was boldly reasserted by him in Ref. [2],
declaring that we shall “admit this law . . . and admit [it] without restriction.” The St. Louis
lecture was published and widely read in academic circles worldwide in the ensuing months.
A year later, in Albert Einstein’s first paper on special relativity [3], there is found without ref-
erence a somewhat weaker and less precise rewording of Poincaré’s statement of the relativity
principle. In contrast to Poincaré, Einstein made no claim as to its universality.

Space-time is a four-dimensional Hausdorff manifold M with a smooth differentiable struc-
ture on it. Points in M correspond to events and curves to world lines of particles. Following
Ehlers, Pirani and Schild (EPS) [4], [5] we take the curved analogs of straight world lines in
affine space to be those curves (geodesics) which are “world lines of freely falling particles”
and “behave infinitesimally like the straight lines of projective (or affine) four-space.” A sym-
metric affine connection specifies the family of geodesics, with geodesics being curves whose
“tangent directions” are “autoparallel.” Translations are one-parameter groups of transforma-
tions with possibly only local C∞ action on M , the geodesics being orbits of points under the
action of the one-parameter translation subgroups.

With geodesics representing world lines of inertial observers and with inertial transfor-
mations being mappings between such geodesics, defined possibly only locally in some cases,
our generalization of the relativity principle to curved space can be formulated in essentially
the same way as Poincaré’s statement of it. Just as in the affine case, the relativity principle
demands that: (i) inertial transformations from one inertial frame to another take geodesics
to geodesics and preserve parallelism of geodesics and (ii) “a group structure for the set of
all inertial transformations” [6] at least in a local sense. We call the set of all such inertial
transformations the relativity group or kinematical group of M . For the global formulation of
Lie groups of transformations acting on a manifold, due in its local form to Sophus Lie, we
refer the reader to [7].

2 Classification of possible kinematical groups

We assume that the kinematical or relativity group contains the rotation group SO(3) as a
subgroup. Furthermore, with translations defined as above and inertial boosts being defined
as “uniform movements of translation,” the kinematical group should be a subgroup of the
Lie group of transformations formed out of rotations, translations, inertial boosts and scale
transformation with (skew-symmetric) infinitesimal generators Li j , Pi , L0i (i, j = 1, 2,3) and
S, respectively. Assume scale transformations commute with rotations and inertial boosts,
and assuming rotational invariance, which implies that Pi , L0i are SO(3) vector operators, we
obtain

[Li j ,Lkℓ] = −δikL jℓ −δiℓL jk +δ jkLiℓ +δ jℓLik , (1)

[Li j ,L0k] = −δikL0 j +δ jkL0i , [Li j ,P0] = 0 , [Li j ,Pk] = −δikP j +δ jkPi , (2)

[S,Li j] = 0 , [S,L0i] = 0 . (3)
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For the other brackets we have [8]:

[P0,Pi] =ωiP0 + γi jP j +
1
2
εikεkmnLmn +αikL0k + κiS , (4)

[Pi ,P j] = ιi jP0 + νi jkPk +
1
2
µi jkεkmnLmn +ψi jkL0k +κi jS , (5)

[L0i ,P0] = χiP0 +λi jP j +
1
2
ζikεkmnLmn +ηikL0k +λiS , (6)

[L0i ,P j] = ρi jP0 +πi jkPk +
1
2
σi jkεkmnLmn +τi jkL0k +ωi jS , (7)

[L0i ,L0 j] = ξi jP0 + βi jkPk +
1
2
λi jkεkmnLmn + νi jkL0k +τi jS , (8)

[S,P0] = αP0 + βiPi +
1
2
γiεimnLmn +δiL0i + ζS , (9)

[S,Pi] = αiP0 + βi jP j +
1
2
γikεkmnLmn +δi jL0 j +ηiS . (10)

The other brackets can be simplifed by further exploiting rotational invariance and spa-
tial isotropy which implies that they must be expressible as linear combinations of the basic
generators with the (rotationally) covariant tensor δi j and pseudo-tensor εi jk where δi j is
the Kronecker delta and εi jk is the totally antisymmetric symbol. By using these facts we can
rewrite Eqns. (4) to (10) as [8]

[P0,Pi] =ωiP0 + γPi +
1
2
ϵ εimnLmn +αL0i +κiS , (11)

[Pi ,P j] = ιδi jP0 + νεi jkPk +µLi j +ψεi jkL0k + κδi jS , (12)

[L0i ,P0] = χiP0 +λPi +
1
2
ζεimnLmn +ηL0i +λiS , (13)

[L0i ,P j] = ρδi jP0 +πεi jkPk +σLi j + τ̃εi jkL0k +ωδi jS , (14)

[L0i ,L0 j] = ξδi jP0 + βεi jkPk + λ̃Li j + ν̃εi jkL0k +τδi jS , (15)

[S,P0] = αP0 + βiPi +
1
2
γiεimnLmn +δiL0i + ζS , (16)

[S,Pi] = αiP0 + β̃δi jP j +
1
2
γ̃εimnLmn +δL0i +ηiS . (17)

Next consider the following automorphisms of the relativity group, G: the parity operator, Π,
with action on g, the Lie algebra of G, given by

Π(P0) = P0 , Π(Pi) = −Pi , Π(Li j) = Li j , Π(L0i) = −L0i , Π(S) = S , (18)

and the time reversal operator, Θ, with action on g given by

Θ(P0) = −P0 , Θ(Pi) = Pi , Θ(Li j) = Li j , Θ(L0i) = −L0i , Θ(S) = S . (19)

Application of these automorphisms to the commutators, Eqns. (11) to (17) gives [8]

[P0,Pi] = αL0i , (20)

[Pi ,P j] = µLi j +κδi jS= µLi j , (21)

[L0i ,P0] = λPi , (22)

[L0i ,P j] = ρδi jP0 , (23)

[L0i ,L0 j] = λ̃Li j +τδi jS= λ̃Li j , (24)

[S,P0] = α̃P0 , (25)

[S,Pi] = β̃Pi , (26)

where we used the fact that the bracket is skew-symmetric to obtain κ= τ= 0.
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Proposition 1
α̃= β̃ = 1 . (27)

Proof: Making use of commutators of Eqns. (20) to (26) we obtain

β̃Pi = [S,Pi] =
1
λ
[S, [L0i ,P0]] = −

1
λ
[L0i , [P0,S]] =

α̃

λ
[L0i ,P0] = α̃Pi ,

which implies α̃= β̃ . To obtain α̃= 1, use [L01,P1] = ρP0 to get

α̃P0 = [S,P0] =
α̃

ρ
[S, [L01,P1]] =

α̃

ρ
[L01, [S,P1]] =

α̃2

ρ
[L01,P1] = α̃

2P0 .

Proposition 2 (Bacry, Lévy-Leblond [8] )

µ−ρα= 0 , (28)

λ̃−ρλ= 0 . (29)

Proof: Eq. (28) follows from the Jacobi identity

[Pi , [P j ,L0k]] + [P j , [L0k,Pi]] + [L0k, [Pi ,P j]] = 0 ,

together with [Li j ,L0k] = −δikL0 j + δ jkL0i and the commutators before Proposition I. For Eq.
(29) first use the the Jacobi identity

[P0, [Pi ,L0 j]] + [Pi , [L0 j ,P0]] + [L0 j , [P0,Pi]] = 0 ,

and the commutators before Proposition I to obtain

αλ̃−λµ= 0 .

Then use this together with Eq. (28) to obtain Eq. (29).

One can show that the remaining Jacobi identities do not lead to any further independent
constraints on the parameters in Eqns. (20) to (26) [8].

Propositions 1 and 2 imply the classification of admissible g depends upon three inde-
pendent real parameters ρ,α and λ. Let g = g(ρ,α,λ). Then any admissible g(ρ,α,λ) is iso-
morphic to g(ρ,α,λ) with ρ,α,λ taking values 1 or 0. The explicit isomorphism is obtained
by an appropriate scaling of generators, e.g. L̃0i = φλ(L0i) = λ−1/2L0i with λ > 0 so that

[L̃0i , L̃0 j] =
1
λ
[L0i ,L0 j] = Li j . Thus, up to such isomorphisms, it suffices to restrict ρ,α,λ to

values of 0 or 1. Following [8] we are led to the following cases:
Class R (relative time): ρ = 1:

R1. (α = 1, λ = 1) From Eqns. (28) and (29) we have µ ̸= 0 and λ̃ ̸= 0 and from the
commutation relations Eqns. (20) to (26) we obtain

g(1,1,1)
∼= CS⊕τ so(5) ,

with three possible real forms

RS⊕τ so(5) , RS⊕τ so(1,4) , RS⊕τ so(2, 3) ,

whereCS andRS respectively denote the one-dimensional Lie algebras overC andR generated
by S. (⊕τ means semidirect sum.)
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R2. (α= 0, λ= 1⇒ µ= 0, λ̃= 1)

g(1,0,1)
∼= (so(4)⊕CS)⊕τ t4 ,

where t4 is the four dimensional abelian Lie algebra (ideal) over C generated by the P0, Pi
(i = 1, 2,3). Up to isomorphism, all permissible real forms are2

(so(4)⊕RS)⊕τ t4 , and (so(1,3)⊕RS)⊕τ t4 ,

where now so(4) and t4 are real Lie algebras. The case (so(1, 3)⊕RS)⊕τ t4 describes standard
Lorentzian relativity exended by scale.

R3. (α= 1, λ= 0⇒ µ= 1, λ̃= 0)

g(1,1,0)
∼= CS⊕τ
¦

eso(4)(Li j ,Pi) ⊕τ t̃
4
(L0i ,P0)

©

,

where eso(4)(Li j ,Pi) ⊕τ t̃
4 is the semidirect sum of the so(4) generated by Li j and Pi (i = 1,2, 3)

with an abelian Lie algebra t̃4(L0i ,P0)
over C generated by P0 and the L0i (i = 1,2, 3). Permissible

real forms (up to isomorphism) are

RS⊕τ
�

eso(4)(Li j ,Pi) ⊕τ t̃
4
(L0i ,P0)

�

, and RS⊕τ
�

eso(1,3)(Li j ,Pi) ⊕τ t̃
4
(L0i ,P0)

�

︸ ︷︷ ︸

para-Poincaré Lie al gebra

.

R4. (α= 0, λ= 0⇒ µ= 0, λ̃= 0) Lie algebra of the (scale-extended) Carroll Group: [8]

g(1,0,0)
∼= (so(3)⊕τ t̃3L0i

⊕CS)⊕τ̃ t4Pµ .

There is only one acceptable real form. It is obtained by restricting g(1,0,0) to the reals. It is
the (real) Lie algebra of the (scale-extended) Carroll group.

Class Ã (absolute time): ρ = 0 (⇒ µ= λ̃= 0):3

Ã1. (α= 0, λ= 1)
g(0,0,1)

∼= {g(Li j ,L0k) ⊕CS}
︸ ︷︷ ︸

homogeneous Galilei Lie
algebra (scale extended)

⊕τt4P0,Pi
.

There is only one acceptable real form obtained by restricting g(0,0,1) to the reals. It is the
(real) Lie algebra of the (scale-extended) inhomogeneous Galilei group.

Ã2. (α= 1, λ= 0)

g(0,1,0)
∼= {{so(3)Li j

⊕CS} ⊕τ t3Pi
} ⊕τ t4(P0,L0i)

.

It’s easy to see that g(0,1,0)
∼= g(0,0,1) and that there is only one acceptable real form obtained

by restricting g(0,1,0) to the reals.
Ã3. (α= 1, λ= 1)

g(0,1,1)
∼= CS⊕τ n .

n is the ideal generated by Li j , L0i , P0, Pi and its two admissible real forms are the Lie algebras
of the two Newton-Hooke groups [8].

Ã4. (α= 0, λ= 0)
g(0,0,0)

∼= (so(3)Li j
⊕CS)⊕τ t7(L0i ,P0,Pi)

,

where t7(L0i ,P0,Pi)
is the 7 dimensional abelian ideal generated by the L0i , P0, Pi (i = 1, 2,3).

g(0,0,0) is the Lie algebra, extended by scale, of what is called the static group or Aristotle group.

2The reason why the real form containing so(2, 2) is not permitted is due to our assumption of rotational sym-
metry, which we made at the very start and which implies that admissible Lie algebras must contain the subalgebra
so(3).

3Our description of this class differs slighty from that in [8] so we put tildes on the A’s to distinguish them from
Bacry and Lévy-Lebond’s A’s in Ref. [8], i.e. Ã1 instead of A1 of Bacry, Lévy-Lebond etc.
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3 Reduction of symmetry and non-compactness of the evL0i

The classification just given is at the Lie algebra level. The corresponding kinematical groups
are obtained by suitable “exponentiation” [7] and restriction to subgroups [2]. As in [8],
we consider only those cases for which any one-parameter subgroup of boosts “in any given
direction forms a noncompact subgroup,” i.e. the subgroups evL0i are noncompact subgroups.
This eliminates several of the listed real forms in the above classification. In particular, the
first real form in the R2 case, which is {so(4)(Li j ,L0i) ⊕RS} ⊕τ t4, is excluded as a possible
kinematical group, since so(4)(Li j ,L0i) is compact.

Following Poincaŕe in Ref. [2], we must, due to physical requirements, restrict the kine-
matical group to a subgroup. It should be a subgroup of the scale extended group with scale
transformations depending upon the boost parameter, v: “. . . we should consider only certain
transformations in this group; we must assume that λ [the scale transformation] is a function
of v, and it is a question of choosing this function in such a way that this part of the group,
which will be denoted by P, is itself a group [2].” For standard Lorentzian relativity (the sec-
ond real form in the R2 case) this leads us to the result that λ = λv = ±1 (cf. [2]). Poincaré’s
argument for reduction of the scale extended Lorentz group to SO0(1, 3)×Σ2

∼= SO(1,3) with
Σ2 = {I4,−I4} runs as follows. Let

Λ(v) =







coshβ sinhβ 0 0
sinhβ coshβ 0 0

0 0 1 0
0 0 0 1







(β = arctanhv). “Any [homogeneous] transformation of the group P may be regarded as a
transformation of the form λvΛ(v) preceded and followed by suitable rotations” (KAK decom-
position for scale extended SO0(1,3) restricted to the homogeneous part of P). We easily show
that RπλvΛ(v)R−1

π = λvΛ(−v) where Rπ is a rotation about the y axis by π. Since the homo-
geneous part of P consists of all matrices of the form λvΛ(Rv)R′ with v ∈ R and R, R′ ∈ SO(3),
λvΛ(−v) is in P. It will equal λ−vΛ(−v) for λv = λ−v . So λv should be an even function of
v .

Now the inverse of λvΛ(v) is λv
−1Λ(−v). In order for this to be in P it must equal

λ−vΛ(−v) = λvΛ(−v) which leads to λ−1
v = λv . Hence λ2

v = 1 ⇒ λv = ±1 and, with ⋊
denoting semidirect product, we have:

Theorem 1 (Poincaré [2])
Reduction of symmetry for the SO0(1,3) real form of Case R2 (scale extended SO0(1, 3)⋊T4)

leads to P = SO(1, 3) ⋊ T4, the proper inhomogeneous Lorentz group, as the kinematical
group of special relativity. P contains space-time inversion −I4 and its connected component
is SO0(1,3)⋊T4.

Even though the homogeneous part of the Galilean group is not semisimple, Poincaré’s argu-
ments leading to Theorem 1 carry over to the scale extended Galilean group (Case Ã1) and
they lead to the same conclusions, namely that {(SO(3)⋊ N3)×Σ2} ⋊ T4 is the kinematical
group, where N3 is the 3 dimensional subgroup of Galilean boosts and Σ2 = {I4,−I4}, with
−I4 being space-time inversion.

For the real forms RS⊕τ so(1,4) and RS⊕τ so(2,3) of Case R1, the situtation regarding re-
duction of scale is even more interesting. It is due to the fact that the connected components of
the Lie groups associated with so(1,4) and so(2, 3) have group decompositions into subgroups
which involve SO(1,3) instead of SO0(1, 3) as one of the factors [9]. Since SO(1, 3) has two
disconnected components, the generalization of Poincaré’s argument to these cases is more
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complicated. It again leads to λv = ±1. However, we are free to set λv as +1 or −1 on either
component. This leads to several choices for the relativity group, involving improper O(1, 4)
or O(2, 3) transformations. Such additional structures could possibly lead to novel results in
descriptions of elementary systems [10], [11] for relativistic quantum mechanics on de Sitter
or anti-de Sitter space based on projective representations of O(1, 4) or O(2,3), respectively.
Although this is surely something well worth exploring, page limitations do not permit us to
go further into the matter.

4 Other approaches and conclusion

There are other approaches to describing possible space-time structures and associated kine-
matical groups. The causality approach starts with a partial ordering on space time, M . Causal
automorphisms on M are automorphisms which preserve the partial ordering. The set of
all causal automorphisms forms a group, which, for M being an affine space, turns out to
be the scale extended inhomogeneous orthochronous Lorentz group (Alexandrov-Zeeman re-
sult) [12], [13]. Lalan’s 1937 classification [14] of all possible linear kinematics in two space-
time dimensions compatible with the relativity principle is based on the Frank and Rothe pa-
per [15]. Another very interesting approach going back to V. Gorini [16] rests on a physical
assumption which essentially means that the set of inertial transformations taking frames at
rest to frames at rest is the group O(3). He proves that the only subgroups of GL(4,R) sat-
isfying this physical assumption are the proper orthochronous Galilean group and the proper
orthochronous Lorentz group, along with isomorphic copies of it obtained by a rescaling of the
boost generators [16].

In conclusion, incorporating scale symmetry into the analysis of classifications of possible
kinematical groups leads to more interesting possible structures regarding discrete transfor-
mations like time reversal and spatial inversion, especially for the cases involving the de Sitter
and anti-de Sitter groups.
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Abstract

In this paper we use the canonical complex structure J on R2n to introduce a twist of the
symplectic Dirac operator. This can be interpreted as the bosonic analogue of the Dirac
operators on a Hermitian manifold. Moreover, we prove that the algebra of these Dirac
operators is isomorphic to the Lie algebra su(1, 2) which leads to the Howe dual pair
(U(n),su(1, 2)).
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1 Introduction

The CCR (canonical commuting relation) and CAR (canonical anticommuting relation) alge-
bras are fundamental algebras in theoretical physics used for the study of bosons and fermions.
From a mathematical viewpoint, these algebras are named the Weyl algebra (or symplectic Clif-
ford algebra) and Clifford algebra. These algebras can be constructed in a very analogous way.
The Clifford algebra is constructed on a vector space V equipped with a symmetric bilinear
form B, whereas the Weyl algebra requires an even dimensional vector space equipped with a
skew-symmetric bilinear form (or symplectic form) ω. In both cases, one then constructs the
tensor algebra T (V ) where an ideal I(V ) is divided out. In the orthogonal setting, this is the
ideal IB(V ) with elements subject to the relation {u, v} = 2B(u, v). In the symplectic setting,
this is the ideal Iω(V ) generated by [u, v] = −ω(u, v).

There is, however, a fundamental difference: the Clifford algebra is finite-dimensional,
whereas the Weyl algebra is infinite-dimensional. For the spinors (orthogonal versus symplec-
tic) the same infinite-dimensional principle holds as for the Clifford algebras. As a matter of
fact, the symplectic spinors are the smooth vectors in the metaplectic representation [2]. Using
the generators of the Clifford (resp. Weyl) algebra, one can associate a natural first order spin
(resp. metaplectic) invariant differential operator by contracting the Clifford algebra elements
using the bilinear form B (resp. the symplectic form ω) with derivatives. This gives rise to

038.1

https://scipost.org
https://scipost.org/SciPostPhysProc.14.038
mailto:guner.muarem@uantwerpen.be
https://doi.org/10.21468/SciPostPhysProc.14
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhysProc.14.038&amp;domain=pdf&amp;date_stamp=2023-11-24
https://doi.org/10.21468/SciPostPhysProc.14.038


SciPost Phys. Proc. 14, 038 (2023)

the Dirac operator ∂x =
∑n

k=1 ek∂xk
where {e j , ek} = −2δi j and the symplectic Dirac operator

∑n
k=1

�

iqk∂yk
− ∂qk

∂xk

�

where [∂q j
, iqk] = iδ jk are the Heisenberg relations (see [1,2,4]).

The theory which studies the solutions of the Dirac operator is known as Clifford analysis
and can be seen as a hypercomplex function theory. Moreover, quite some generalisations
have occurred in the last two decades. This involves e.g. Clifford analysis on superspace and
Clifford analysis on (hyper)Kähler spaces. It is in the latter framework in which this paper is
situated, but then from a symplectic point of view. More precisely, we provide the foundations
of what we will call a Hermitian variant of symplectic Clifford analysis, where we incorporate
the additional datum of a compatible complex structure J on the flat symplectic space R2n.
This leads to the study of the symplectic Dirac operator on a Kähler manifold as was already
initiated in [2, 3]. However, the underlying invariance symmetry and the algebra generated
by these type of operators (and their duals) was never investigated.

2 Rudiments of symplectic Clifford analysis

Let us consider the canonical symplectic space R2n with coordinates (x , y) and the usual sym-
plectic form ω0 =

∑n
j=1 d x j ∧ d y j which has the matrix representation Ω0 =

�

0 In
−In 0

�

. Recall
that the symplectic group Sp(2n,R) is the group given by invertible linear transformations pre-
serving the non-degenerate skew-symmetric bilinear form from above and is given (in terms
of matrices) by

Sp(2n,R) = {M ∈ GL(2n,R) | M TΩ0M = Ω0} .

The group is non-compact and has dimension 2n2+n. Moreover, the corresponding Lie algebra
is denoted by sp(2n,R). The main difference with the orthogonal case, lies in the fact that
the metaplectic group (the double cover of the symplectic group) does not admit a finite-
dimensional representation (it is not a matrix group). This is a strong contrast with the spin
representation in the orthogonal case. Moreover, the orthogonal spinors S are realised as a
idempotent left ideal in the Clifford algebra, which is not the case for the symplectic spinors.
As mentioned, the symplectic equivalent of the spin representations are infinite dimensional,
which means that one needs to work with the theory of unitary representations.

2.1 The Schwartz space and metaplectic representation

For further convenience, we fix notation and define the Schwartz space, which plays a crucial
role in the construction of the metaplectic representation. On the space C∞(Rn,C) we define
(using the multi-index notation) the norm || f ||α,β := supq∈Rn |qα(Dβ f )(q)| for all α,β ∈ Nn.
The Schwartz space S(Rn) is the subspace of Lp(Rn) (for 1 ≤ p ≤∞) consisting of rapidly
decreasing functions and is given by

S(Rn,C) := { f ∈ C∞(Rn,C) : || f ||α,β <∞ , for all α,β ∈ Nn} .

We now describe (following [2]) the infinite-dimensional Segal-Shale-Weil representation
(also oscillator or metaplectic representation) of the metaplectic group. The smooth vectors of
the unitary representation m : Mp(2n)→ U(L2(Rn)) coincide with the Schwartz space S(Rn)
and are a model for the symplectic spinors S∞. Due to Stone-Von Neumann theorem the
representation is unique (up to unitary equivalence).
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2.2 The symplectic Clifford algebra and the related Dirac operator

Let (V,ω) be a symplectic vector space. The symplectic Clifford algebra Cls(V,ω) is defined as
the quotient algebra of the tensor algebra T (V ) of V , by the two-sided ideal

Iω := {v ⊗ u− u⊗ v +ω(v, u) : u, v ∈ V} .

In other words Cls(V,ω) := T (V )/Iω is the algebra generated by V in terms of the relation
[v, u] = −ω(v, u), where we have omitted the tensor product symbols. We refer to the symplec-
tic Clifford algebra on R2n as the nth Weyl algebra Wn with generators iq1, . . . , iqn,∂q1

, . . . ,∂qn

satisfying the commutation relations [q j , qk] = 0 and [∂q j
, qk] = δ jk.

Denote by F a suitable function space (e.g. the space of polynomials, or smooth funtions).
The symplectic Dirac operator on (R2n,ω0) is the first-order (in the base variables x and y)
differential operator acting on a symplectic spinor-valued functions space F ⊗ S∞ given by
Ds =
∑n

j=1(iq j∂y j
− ∂q j

∂x j
). With respect to the symplectic Fischer inner product (see [4]), we

obtain the dual operator Xs =
∑n

j=1(iq j x j + ∂q j
y j). These operators satisfy the relations:

[E+ n, Xs] = Xs ,

[E+ n, Ds] = −Ds ,

[Ds, Xs] = −i(E+ n) ,

where E=
∑n

j=1(x j∂x j
+ y j∂y j

) is the Euler operator. In other words, the three operators give
rise to a copy of the Lie algebra sl(2).

3 The interaction with a complex structure

3.1 Definition of the twisted symplectic Dirac operators

We will now introduce a complex structure J on the symplectic manifold (R2n,ω0) which is
compatible with the symplectic formω0. This means thatω0(x ,Jy) defines a Riemannian met-
ric g. Otherwise said, we will be working with the canonical Kähler manifold (R2n,ω0, g,J).
By Darboux’s theorem, we obtain, with respect to the canonical symplectic basis {e j}2n

j=1 the

following complex structure J=
�

0 −In
In 0

�

. This means that the action of the complex structure

J on R2n is given by

(x1, . . . , xn, y1, . . . , yn) 7→ (y1, . . . , yn,−x1, . . . ,−xn) .

The new differential operators acting on symplectic spinor-valued functions

D̃s =
n
∑

j=1

iq j∂x j
+ ∂y j

∂q j
, X̃s =

n
∑

j=1

x j∂q j
− i y jq j , E=

n
∑

j=1

x j∂x j
+ y j∂y j

,

also give rise to a copy of the Lie algebra sl(2). We call these first two operators the twists of Ds
and Xs. Both sets of operators, i.e. (Ds, Xs) and (D̃s, X̃s), are symplectic invariant, albeit under
the following two different realisations of the symplectic Lie algebra given by:






























X jk = x j∂xk
− yk∂y j

− (qk∂q j
+ 1

2δ jk) ,

Yjk = x j∂yk
+ xk∂y j

+ i∂q j
∂qk

,

Z jk = y j∂xk
+ yk∂x j

+ iq jqk ,

Yj j = x j∂y j
+ i

2∂
2
q j

,

Z j j = y j∂x j
+ i

2q2
j ,

and































X̃ jk = x j∂xk
− yk∂y j

+ qk∂q j
+ 1

2δ jk , 1≤ j ≤ k ≤ n ,

Ỹjk = x j∂yk
+ xk∂y j

− iq jqk , j < k = 1, . . . , n ,

Z̃ jk = y j∂xk
+ yk∂x j

− i∂q j
∂qk

, j < k = 1, . . . , n ,

Ỹj j = x j∂y j
− i

2q2
j , j = 1, . . . , n ,

Z̃ j j = y j∂x j
− i

2∂
2
q j

j = 1, . . . , n .
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Of course, it is not very useful that Ds and eDs are invariant under different (yet isomorphic)
sp(2n,R)-realisations. Therefore, we will perform a symmetry reduction so that both opera-
tors become invariant under one and the same Lie algebra. To that end, we need to find the
symplectic matrices which commute with the complex structure. We claim that

SpJ(2n,R) := {M ∈ Sp(2n,R) | MJ= JM} ,

defines a realisation for the unitary Lie group. In order to see this, assume that M is of the
block-form:
�

A B
C D

�

, where A, B, C and D are (n× n)−matrices. The condition that M is sym-
plectic is equivalent to the one of the following conditions: the matrices AT C and BT D are
symmetric and AT D − C T B = I . So, in order to determine SpJ(2n,R) we need to determine
the symplectic matrices M which commute with the complex structure J. The latter conditions
means that

MJ= JM ⇐⇒ J−1MJ= M

⇐⇒
�

0 I
−I 0

��

A B
C D

��

0 −I
I 0

�

=

�

A B
C D

�

⇐⇒
�

D −C
−B A

�

=

�

A B
C D

�

.

This implies A = D and B = −C . In other words the matrix M is of the form: M =
�

A B
−B A

�

.
Next, we still have the condition that M is symplectic, i.e.

M TΩM = Ω ⇐⇒
�

AT C T

BT DT

��

0 I
−I 0

��

A B
C D

�

=

�

0 I
−I 0

�

⇐⇒
�

−C T AT

−DT BT

��

A B
C D

�

=

�

−C T A+ AT C −C T B + AT D
−DT A+ BT C −DT B + BT D

�

=

�

0 I
−I 0

�

⇐⇒



















AT C = C T A ,

AT D− C T B = I ,

BT C − DT A= −I ,

BT D = DT B .

This means that AT C and BT D should be symmetric matrices and AT D−C T B = I . But now, due
to the first condition this reduces to BT A= AT B and AT A+ BT B = I . In other words, the ma-
trices we are looking for must be of the form M =

�

A B
−B A

�

with BT A= AT B and AT A+BT B = I ,
i.e.
�

AT −BT

BT AT

��

A B
−B A

�

=

�

AT A+ BT B AT B − BT A
BT A− AT B BT B + AT A

�

=

�

I 0
0 I

�

.

Which is exactly the condition for a unitary matrix. The map

Φ : SpJ(2n,R)→ U(n) : M 7→ A+ iB ,

gives the wanted isomorphism.

3.2 Unitary invariant symplectic Dirac operators

One can now check that the symplectic Dirac operator and its twist, are unitary invariant
differential operators. This can be done by verifying that the operators commute with the
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following realisation of unitary Lie algebra u(n):










A jk = y j∂xk
+ yk∂x j

− x j∂yk
− xk∂y j

+ i(q jqk − ∂q j
∂qk
) , 1≤ j < k ≤ n ,

B j j = y j∂x j
− x j∂y j

+ i
2

�

q2
j − ∂

2
q j

�

, 1≤ j ≤ n ,

C jk = x j∂xk
− xk∂x j

+ y j∂yk
− yk∂y j

+ q j∂qk
− qk∂q j

, 1≤ j < k ≤ n .

This means that we can refine the sp(2n)-invariant PDE Ds f = 0 into two u(n)-invariant
PDEs given by Ds f = 0 and eDs f = 0, for a symplectic spinor valued polynomial
f ∈ P(R2n,C) ⊗ S(Rn). In analogy with the orthogonal case, we call the solutions hermi-
tian symplectic monogenics (or h-symplectic monogenics in short).

3.3 Symplectic Dolbeault operators

Moreover, there is a second way of introducing the twist of the symplectic Dirac operator. Let
us define the following operators which are known in the literature as the symplectic Dolbeault

operators [3] defined by means of Dz =
Ds+ieDs

2 and D†
z := Ds−ieDs

2 . One easily verifies that

1
2
(Ds + ieDs) = −

n
∑

j=1

F j∂z j
, and

1
2
(Ds − ieDs) =

n
∑

j=1

F†
j∂z j

,

where we have introduced the symbols F j = (q j + ∂q j
), F†

j = (q j − ∂q j
) and ∂z j

:= 1
2(∂x j

+ i∂y j
)

is the Cauchy-Riemann operator in the relevant variable with conjugate ∂z j
:= 1

2(∂x j
− i∂y j

).
The structure of the operators Dz and D†

z is similar to the orthogonal case. However, the
raising/lowering operators F j and F†

j are used instead of isotropic Witt vectors f j and f†j (see
for instance [5] and the references therein).

3.4 Class of simultaneous solutions of Ds and eDs

We will now describe a wide class of examples of h-symplectic monogenics, by making the
link with holomorphic functions in several variables. Let f : Ω ⊂ Cn → C be a complex-
valued function in several complex variables which is of the class C1(Ω) (i.e. continuously
differentiable). We say that f is holomorphic (in several variables) if ∂z j

f (z1, . . . , zn) = 0 for
all 1≤ j ≤ n. Moreover, we denote the set of holomorphic functions in Ω by Hol(Ω).

In order not to overload notations, we use the summation convention. Suppose that we
have a function of the form F(x , y, q) = e−

1
2 |q|

2
H(x , y). Letting the symplectic Dirac operator

act on F gives:

Ds

�

e−
1
2 |q|

2
H(x , y)
�

= (iqk∂yk
− ∂xk

∂qk
)
�

e−
1
2 |q|

2
H(x , y)
�

= iqke−
1
2 |q|

2
∂yk

H(x , y) + e−
1
2 |q|

2
qk∂xk

H(x , y)

= e−
1
2 |q|

2
qk(∂xk

+ i∂yk
)H(x , y) .

We note that this equals zero if (∂xk
+ i∂yk

)H(x , y) = 0 for all k = 1, . . . , n, i.e. if H(x , y) is a
holomorphic function in several variables. Completely similar,

eDs

�

e−
1
2 |q|

2
H(x , y)
�

= (iqk∂xk
+ ∂yk

∂qk
)
�

e−
1
2 |q|

2
H(x , y)
�

= e−
1
2 |q|

2
qk(i∂xk

− ∂yk
)H(x , y)

= ie−
1
2 |q|

2
qk(∂xk

+ i∂yk
)H(x , y) ,

which is zero for holomorphic H(x , y).
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This means that every function of the form e−
1
2 (q

2
1+···+q2

n)H(x , y) with H an holomorphic
function in several variables is a solution of both Ds and eDs. This observation generalises the
class of solutions obtained by Habermann in [2] for n = 1. It turned out that there are much
more solutions than the ones of this form. In order to describe these systematically, we will
need the notion of Howe dualities and corresponding Fischer decompositions. This will be
done in full detail in our upcoming paper [6]. In the following section we will reveal the
algebraic structures required for this approach.

4 A unitary Howe duality associated with Ds and eDs

Recall that the Lie algebra su(1, 2) is a quasi-split real form of the complex Lie algebra sl(3)
and is defined in terms of matrices as

su(1,2) =











α β ic
γ α−α −β
id −γ −α.



 | c, d ∈ R & α,β ,γ ∈ C







.

A basis of the Lie algebra su(1,2) is given by the the following eight matrices:

H1 =





1 0 0
0 0 0
0 0 −1



 , H2 =





i 0 0
0 −2i 0
0 0 i



 ,

X1 =





0 1 0
0 0 −1
0 0 0



 , X2 =





0 i 0
0 0 i
0 0 0



 , X3 =





0 0 i
0 0 0
0 0 0



 ,

Y1 =





0 0 0
1 0 0
0 −1 0



 , Y2 =





0 0 0
i 0 0
0 i 0



 , Y3 =





0 0 0
0 0 0
i 0 0



 .

The commutation relations of these matrices give rise to the following table:

[·, ·] H1 H2 X1 X2 X3 Y1 Y2 Y3

H1 0 0 X1 X2 2X3 −Y1 −Y2 −2Y3
H2 0 3X2 −3X1 0 −3Y2 3Y1 0
X1 0 2X3 0 H1 H2 −Y2
X2 0 0 H2 −H1 −Y1
X3 0 −X2 −X1 −H1
Y1 0 −2Y3 0
Y2 0 0
Y3 0

The Lie algebra generated by the symplectic Dirac operators Ds, eDs and their duals Xs, eXs
gives rise to a copy of the Lie algebra su(1,2). In order to close the algebra, we introduce the
following differential operators:

O :=
n
∑

j=1

i(x j∂y j
− y j∂x j

) + ∂ 2
q j
− q2

j , ∆ :=
n
∑

j=1

∂ 2
x j
+ ∂ 2

y j
, and r2 :=

n
∑

j=1

x j
2 + y j

2 .

It follows from straightforward calculations that the eight operators can be identified with the
matrices from above: H1 ↔ E, H2 ↔ O, X1 ↔ X t , X2 ↔ Xs, X3 ↔ r2, Y1 ↔ eDs, Y2 ↔ Ds
and Y3↔∆.
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1. We have two copies of the Heisenberg algebra: Alg{Ds, D̃s,∆} ∼= Alg{Xs, eXs, r2} ∼= h3.

2. We have three copies of sl(2): Alg{D, D†,E} ∼= Alg{D̃, D̃†,E} ∼= Alg{∆, r2,E} ∼= sl(2).

This means that there is a canonical su(1,2)-action on the space of spinor valued polynomials
P(R2n,C) ⊗ S(Rn) where restricting to the subalgebra Alg(Ds, Xs) corresponds to sl(2)-copy
obtained in the Howe duality for symplectic Clifford analysis (see [4] for more details). Now,
taking into account the symplectic Dirac operators and its twists, we obtain the dual pair
U(n)× su(1,2) (i.e. the underlying group of invariance, together with the algebra generated
by the operators and their duals).

We now focus on the reduction of the symplectic spinor space. In the orthogonal case, the
spinor space S decomposes under the action of the unitary group U(n) as S=

⊕

r S(r), with S(r)
inequivalent irreducible pieces, which are eigenspaces of the fermionic quantum oscillator (also
called spin-Euler operator, see for instance [5]). In the symplectic case, the relevant operator
for decomposing the infinite dimensional spinor space is the bosonic quantum oscillator. The
Hamiltonian of the quantum oscillator, the so-called Hermite operator, is given by

H : S(Rn)→ S(Rn) , f (q) 7→
1
2

n
∑

j=1

�

∂ 2
q j
− q2

j

�

f (q) .

Note that we can write O =
∑n

j=1 i(x j∂y j
− y j∂x j

)+2H, so that the Hermite operator is in fact
the spinor-valued part of the operator O, i.e. the differential operator in ∂q j

and the variables
q j . Moreover, the eigenspaces can be identified with the irreducible decomposition of S∞ into
u(n)-irreducible representations. This means that the symplectic spinor space S∞ decomposes
into u(n)-irreducible representations eS∞(k) of dimension

�n+k−1
k

�

which can be thought of as k-
homogeneous polynomials or the eigenspaces of the Hermite operator H.

Moreover, the solutions of the corresponding Dirac operators, called monogenics, can be
introduced from a purely representation theoretical viewpoint. In general, this boils down to
determining the decomposition (this is called a Fischer decomposition) Pk(Rm,C)⊗S where S
is the spinor space, which is S in the orthogonal case and S∞ in the symplectic case, where
we take m = 2n in particular. We denote by Mk the k-homogeneous solutions of the Dirac
operator ∂x =
∑m

j=1 e j∂x j
, these are called monogenics. They can be defined as follows:

Mk↔ (k, 0, . . . , 0)⊠S= (k)⊠
�

1
2

, . . . ,±
1
2

�

∼=
�

k+
1
2

, . . . ,±
1
2

�

,

where ⊠ denotes the Cartan product of the so(m)-representations and (k, 0, . . . , 0) is the space
of k-homogeneous harmonics (solutions of the Laplacian). In the symplectic case, we have:

Ms
k↔ (k, 0, . . . , 0)s ⊠S∞ = (k)s ⊠

��

−
1
2

, . . . ,−
1
2

�

⊕
�

−
1
2

, . . . ,−
3
2

��

∼=
�

k−
1
2

, . . . ,−
1
2

�

⊕
�

k−
1
2

, . . . ,−
3
2

�

,

where (k, 0, . . . , 0)s is the space of k-homogeneous polynomials. In order to obtain an algebraic
characterisation of the space of h-symplectic monogenics, one proceeds as follows. First of all,
we note that we need to consider the symplectic spinors S∞ from an unitary viewpoint. We saw
that S∞ decomposes as an infinite direct sum of finite dimensional u(n)-modules eS∞(k) which
are in fact eigenspaces of the Hermite operator. We denote the branched spinor space (which is
in fact a direct sum of u(n)-irreps) bygS∞. However, the space of k-homogeneous polynomials
is not irreducible as a u(n)-module and we denote the branched module by Ý(k). This means
that the Cartan product Mhs

k ↔Ý(k)⊠gS∞ would be a well-educated guess as a representation

038.7

https://scipost.org
https://scipost.org/SciPostPhysProc.14.038


SciPost Phys. Proc. 14, 038 (2023)

theoretical definition of the h-symplectic monogenics. Recall that these are the symplectic
spinor-valued polynomial functions f ∈ P(R2n,C) ⊗ S(Rn) such that Ds f = eDs f = 0. The
explicit calculation of the Cartan product (and more generally the tensor product) will be
done in [6]. Moreover, as an application we will prove a Fischer decomposition for the Howe
dual pair we obtained in this paper.

5 Conclusion

In this paper we investigated a Howe dual pair occurring in symplectic Clifford analysis by
allowing a compatible complex structure. This Howe duality is of the form (G,g′) where G is
the underlying invariance group for which the relevant Dirac operators are invariant and g′ is
the algebra generated by the Dirac operators and their duals. Depending on the orthogonal or
symplectic framework, we have the following ‘types’ of Clifford analysis and refinements:

1. Orthogonal geometry (giving rise to a Clifford algebra)

(a) Clifford analysis: SO(n)× osp(1|2)
(b) Hermitian Clifford analysis U(n)× osp(2|2)
(c) Quaternionic Clifford analysis USp(n)× osp(4|2)

2. Symplectic geometry (giving rise to a Weyl algebra)

(a) Symplectic Clifford analysis: Sp(2n)× sl(2)
(b) Hermitian symplectic Clifford analysis: U(n)× su(1,2)

(c) Quaternionic symplectic Clifford analysis: USp(n)×?

Thus far, we extended the framework of hermitian Clifford analysis in the presence of a sym-
plectic structure in the case of the (flat) Kähler manifold R2n. It is an interesting question to
further reduce the symmetry to the compact symplectic groupUSp(n) so that we have the chain
Sp(2n) ⊃ U(n) ⊃ USp(n). In our furture work [6], we will describe the Fischer decomposition
accompanying this new Howe dual pair.
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Abstract

We show that the behaviour in phase space of the Wigner function associated to the
electromagnetic modes carries the information of both, the entanglement properties be-
tween matter and field, and the regions in parameter space where quantum phase tran-
sitions take place. A finer classification for the continuous phase transitions is obtained
through the computation of the surface of minimum fidelity.
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1 Introduction

Quantum phase transitions (QPT) are studied in nuclear, molecular, quantum optics, and con-
densed matter physics, and have potential applications in the design of quantum technolo-
gies [1]. The Wigner function gives a complete description of a quantum system in phase
space; it allows for the calculation of all the quantities that the usual wave function gives,
and negative values in the function appear as a consequence of interference between distant
points in phase space. In a generalized Dicke model of 3-level atoms interacting with 2 electro-
magnetic modes, it may be used to analyse the behaviour in phase space of the two radiation
modes of light across the finite phase diagram of the quantum ground state, and supply further
evidence of the quantum phase transitions revealed by the fidelity criterion.

When the linear entropy for all the subsystems is calculated and compared with the be-
haviour of the Wigner function, we see that the entanglement between the substates responds
to how the bulk of the ground state changes from a subset of the basis with a major contribution
from one kind of photons, to a subset with a major contribution of the other one.
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2 The generalised Dicke model

The multipolar Hamiltonian for the dipole interaction between a 2-mode radiation field and a
3-level atomic system in the long wave approximation (ħh= 1) is

H= HD +Hint ,

with

HD =
3
∑

j<k

Ω jk a†
jk a jk +

3
∑

j=1

ω j A j j ,

and

Hint = −
1
p

Na

3
∑

j<k

µ jk

�

A jk +Ak j

�

�

a jk + a†
jk

�

.

Here, Na denotes the number of particles, a†
jk, a jk are creation and annihilation photon oper-

ators, Ω jk is the frequency of the mode which promotes transitions between the atomic levels

ω j andωk, Ai j are the matter operators obeying the U(3) algebra, with
∑3

k=1 Akk = Na Imatter,
and µ jk is the coupling parameter between atomic levels ω j and ωk.
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Figure 1: Atomic configurations for 3-level systems, showing the possible transitions
and coupling strengths µi j .

We have the atomic configurations shown in Figure 1, customarily labelled by Ξ, Λ, and
V , due to their shape resembling these letters, and where we label the atomic energy levels
following ω1 ≤ω2 ≤ω3 and for simplicity fix ω1 = 0 and ω3 = 1; therefore, all energies are
measured in terms of ħhω3. Note that particular atomic configurations are obtained by making
an appropriate dipolar strength µi j vanish.

2.1 Variational study

A variational study involving coherent states for both matter and field provides a good ap-
proximation of the ground state energy surface per particle [2, 3]. Figure 2 shows the phase
diagrams from a variational study using coherent test states, for the different atomic configu-
rations Ξ, Λ, and V (from left to right), as well as the order of the transitions according to the
Ehrenfest classification. We distinguish a normal region (N , in medium grey) where the atoms
decay individually, and collective regions Si j where the decay is proportional to Na(Na + 1)
and in which only one kind of photon contributes to the ground state. Continuous black lines
denote the separatrices dividing these regions.

It is important to note that the signature of the phase diagram remains when the symme-
tries of the Hamiltonian are restored in the variational solution and the thermodynamic limit
Na→∞ is taken.
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Figure 2: Phase diagrams from a variational study using coherent test states, for the
different atomic configurations Ξ, Λ, and V (from left to right). The order of the tran-
sitions according to the Ehrenfest classification is shown. The parameters used are:
Ξ-configuration: ω2/ω3 = 1/3; Λ- configuration: ω2/ω3 = 1/10; V -configuration:
ω2/ω3 = 8/10. Here, x i j = µi j/µc is the dimensionless dipolar coupling strength,
where µc stands for its critical value in the two-level system {i j} in the limit Na→∞.

2.2 Numerical quantum solution

The exact calculation of the ground state involves a numerical diagonalisation of the Hamil-
tonian matrix. The Hamiltonian is invariant under parity transformations of the form

Π1 = eiπK1 , Π2 = eiπK2 ,

where Ks, s = 1, 2, are constants of motion when the rotating wave approximation (RWA) is
taken [7]. Accordingly, the Hilbert space H divides naturally into four subspaces

H =Hee ⊕Heo ⊕Hoe ⊕Hoo ,

where subscripts σ = {ee, eo, oe, oo} denote the even e or odd o parity of Π1 and Π2, respec-
tively.

We use basis states labeled by |ν12,ν13,ν23〉 ⊗ |n1, n2, n3〉, with n1 + n2 + n3 = Na and
ν jk = 0, 1, · · · ,∞, which denote Fock states.

Since the dimension of the Hilbert space is dim(H) =∞, we need to use a truncation
criterion. For the set of eigenvalues of K1, K2, we take this criterion as follows [8]: choose
values kimax to satisfy

1−F(k1max, k2max)≤ 10−10 ,

where F(k1, k2) = | 〈ψ(k1, k2) |ψ(k1+2, k2+2)〉 |2 is the fidelity between the state |ψ(k1, k2)〉
containing all eigenvalues up to k1 and k2, and the state |ψ(k1+2, k2+2)〉. This ensures that
the energy calculated remains without variation to one part in 10−8. Other criteria may be
used, of course, depending on the problem in question.

3 Fidelity as signature of QPT in finite systems

Quantum phase transitions are determined by singularities in the wave function of the ground
state, and these may be studied by the method of Ginzburg-Landau, or using catastrophe
theory, in the thermodynamic limit [4]. Another criterion is by the loci where the fidelity
between neighbouring states |Ψg(ξ1)〉, |Ψg(ξ2)〉 along parametric lines ξ(t) in parameter space

F(ρξ(t),ρξ(t+δ)) = |〈Ψg(ξ(t)) |Ψg(ξ(t +δ))〉|2 ,
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presents a minimum (see e.g. [5, 6] and references therein). We have followed this method
for finite systems to find the separatrices in parameter space. We call these quantum phase
transitions, in contrast to other terminology that appears in the literature, since the consti-
tution of the ground state changes significantly as one crosses a separatrix. The surface of
minimum fidelity is calculated by considering neighbouring points in directions parallel to the
axes (x jk = 0), along identity lines, and along their orthogonal directions, thereby finding the
local minima. Here, x jk = µ jk/µc , where

µc =
1
2

q

Ω jk(ωk −ω j) ,

stands for the critical coupling value in a two-level { jk} system, in the limit Na →∞. Thus,
x jk is the dimensionless dipolar coupling.

In the case of the generalised quantum Rabi model, the quantum separatrices for a single 3-
level atom interacting dipolarly with two modes of electromagnetic field are given in Figure 3,
for the three atomic configurations, Ξ, Λ, and V (from left to right), when in resonance with
the field modes [7]. The parity of the Hilbert subspace in which the ground state lives is
marked by colours and by the letters {ee, eo, oe, oo}, and we see that a much richer structure
appears in contrast with the limit Na→∞ shown in Fig. 2.

Figure 3: Quantum phase diagrams for the three atomic configurations, Ξ, Λ, and
V (from left to right), for one atom when in resonance with the field modes. Differ-
ent types of transitions are shown (see text). For the Ξ-configuration we have used
Ω12 = 1/4, Ω23 = 3/4 andω2 = 1/4; for the Λ-configuration Ω13 = 1, Ω23 = 9/10,
and ω2 = 1/10; and for the V -configuration Ω12 = 4/5, Ω13 = 1 and ω2 = 4/5.

Quantum phase transitions for a finite system appear where the ground state changes
abruptly, and this may be determined by calculating the fidelity or the fidelity susceptibility
between neighbouring states. We can distinguish three types of loci of points where this takes
place (cf. Figure 3):

1. Dashed lines: discontinuous transitions, the fidelity between neighbouring states falls
to zero, and the separatrix in this case borders along orthogonal Hilbert subspaces of
different parity;

2. Continuous lines: stable continuous transitions, F(ξ) ̸= 0 and it remains different from
zero as Na increases;

3. Dotted lines: unstable continuous transitions, F(ξ) ̸= 0 but reaches zero in the large Na
limit.

This classification is further corroborated through the behaviour of the Wigner function for
each field mode, as we shall see in the next section. Note that stable and unstable continuous
transitions can also be distinguished by means of the Bures distance, which measures the dif-
ference of two probability densities of the quantum system; for the stable continuous transition
the value of the Bures distance will be smaller than for the unstable continuous transition.
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4 Wigner function in the Λ-configuration

First order quantum phase transitions, according to the Ehrenfest classification, can be always
associated to zero fidelity values, i.e., discontinuous transitions, and the corresponding eigen-
states are orthogonal.

A finer classification of the continuous transitions is more evident through the study of
the Wigner function, since this classification is based on whether the bulk of the ground state
remains in a sub-basis of the total basis or not. Here we shall focus on the Λ-configuration,
which appears to have a richer structure.

We may use the parity operators for the Λ-configuration

K1 = ν13 + ν23 +A33 ,

K2 = ν23 +A11 +A33 ,

to replace the electromagnetic quanta oscillation numbers

ν13 = k1 − k2 + n1 , ν23 = k2 − n1 − n3 ,

and thus denote the ground state of the system as

|ψgs〉=
∑

k1,k2

Na
∑

n1,n3

Ck1,k2,n1,n3
× |k1 − k2 + n1, k2 − n1 − n3, n1, Na − n1 − n3, n3〉 ,

from which we calculate the reduced density matrices ϱ jk ( j < k) for modes ν jk.
Notice that for the case of a single atom, for maximum values of x jk = 6 and for the desired

precision of 10−10 established in Sec. 2.2, the ground state function lives in a Hilbert space
of dimension dim (H) = 1395, while for a precision of 10−15 the dimension must at least be
dim (H) = 2079 [8].

Thus, the Wigner functions for the reduced density matrices are

W13(q, p) =
∑

k1,k2,k′1

∑

n1,n3

Ck1,k2,n1,n3
C∗k′1,k2,n1,n3

W|k1−k2+n1〉〈k′1−k2+n1|(q, p) ,

W23(q, p) =
∑

k1,k2,k′2

∑

n1,n3

Ck1,k2,n1,n3
C∗k1,k′2,n1,n3

W|k2−n1−n3〉〈k′2−n1−n3|(q, p) ,

where W|n〉〈m|(q, p) is the Weyl symbol for the operator ρnm = |n〉〈m| [9,10].
We may plot these Wigner functions as functions of the field quadratures (q, p) at various

points at either side of a separatrix, to see their behaviour as the system undergoes a phase
transition [7].

Figure 4 shows the behaviour of W13 as the system goes through a stable-continuous tran-
sition (red dot along a continuous grey evaluation trajectory). The elongation presenting a
bimodal distribution is a consequence of photon contribution ν13 becoming significant. Re-
gions where the Wigner function W13 is negative (black) appear as we move away from the
normal region and cross the separatrix, because the number of photons in mode ν13 grows
from zero: we now have a superposition of states with different values of ν13.

Figure 5 shows the behaviour of both, W13 and W23, as the system goes through an
unstable-continuous transition (red dot along a continuous grey evaluation trajectory): close
to the separatrix in dotted lines both photon contributions are significant. We note that both
Wigner functions present elongated (bimodal) distributions. Above the separatrix the contri-
bution of photons ν23 dominates and W23 has major regions with negative values; when the
transition occurs, the field mode contributions to the ground state change their roles.
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Figure 4: Behaviour of the Wigner function W13 and W23, as the system goes through
a stable-continuous transition. Regions where it becomes negative (black) reflect
the existence of a superposition of states with different values of ν13. (In each case,
the continuous dim grey line is the evaluation trajectory, the red dot indicates the
evaluation point in parameter space.) Note that, through this transition, W23 does
not change.

Figure 5: Behaviour of W13 and W23 as the system goes through an unstable-
continuous transition. Across the transition the field mode contributions to the
ground state change their roles S13 ⇋ S23. (In each case, the continuous dim grey
line is the evaluation trajectory, the red dot indicates the evaluation point in param-
eter space.)

We see that the Wigner function characterises completely the phase diagram. In the nor-
mal region the Wigner function describes a classical behaviour of the field (W takes positive
values) and at least one photon mode remains in the vacuum, while the collective region is
characterised by a Wigner function in which the quantumness of the photon modes is clearly
shown; it divides itself into two regions, in each of which a single radiation mode dominates.

Videos showing the behaviour of the Wigner function for each mode, along the full trajec-
tory shown in Figure 5, may be found for all the atomic configurations in the website of IOP
Physica Scripta: Ξ-configuration; Λ-configuration; V -configuration.

4.1 Correlation between Wigner function and entanglement

Bimodality and negativity of Wigner function reflect which field mode dominates in the super-
radiant region, and not the parity of the state. This is evident when we compare it with an
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entanglement measure (e.g., the linear entropy) [7]. We define

Sν1
= 1− Tr
�

ρ2
ν1

�

,

Sν2
= 1− Tr
�

ρ2
ν2

�

,

Sν−m = 1− Tr
�

ρ2
ν1ν2

�

,

to be, respectively, the linear entropy measuring correlation between field mode 1 and the rest
of the system (matter + field mode 2), the linear entropy measuring correlation between field
mode 2 and the rest of the system (matter + field mode 1), and the linear entropy measuring
correlation between matter and field modes 1 and 2.

Figure 6 shows their plots along a trajectory which crosses all detected transitions in pa-
rameter space. When the ground state is dominated by the vacuum state of the field (small
values of the coupling parameters inside the Normal region), the correlation between one
mode of the field, say i, and the rest of the system (matter + field mode j with i ̸= j), is
null SLi

= 0 and the Wigner function is unimodal. This field-mode i vs. matter + field-mode
j entanglement reaches its maximum as soon as we cross into the super-radiant region, the
Wigner function showing negative values at a vicinity of the origin of quadrature q and small
non-zero values of quadrature p. It then falls rapidly to zero as soon as we enter the region
where field mode j dominates, even if a parity change is not had.

Figure 6: Plots of the different linear entropies Sν1, Sν2, and Sν−m, along a trajectory
which crosses all detected transitions in parameter space.

5 Conclusion

We have shown the results of the characteristics of the ground state for a single three-level
atom interacting dipolarly with a two-mode electromagnetic field. The symmetries of the
system allow for the division the quantum state space into subspaces which have a well-defined
parity. We have used a fidelity criterion to determine the quantum phase transitions for the
three three-level configurations.

We calculated the Wigner function for each of the electromagnetic modesΩ13 andΩ23, and
showed the behaviour of these in various regions of the parameter space, which supplies fur-
ther evidence of the quantum phase transitions revealed by the fidelity criterion; the regions
where it takes negative values (the system exhibiting non-classical behaviour) were deter-
mined. Besides providing the phase transitions and a finer classification of them, it is interest-
ing to note that the Wigner function can be and has been measured experimentally [11,12].

The linear entropy for all the subsystems was calculated and compared with the behaviour
of the Wigner function; we see that the entanglement between the substates responds to how
the bulk of the ground state changes from a subset of the basis with a major contribution from
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one kind of photons, to a subset with a major contribution of the other one, and not to the
state parity even for large values of the coupling parameters.
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Abstract

Current quantum theories of an elementary free particle assume unitary space inversion
and anti-unitary time reversal operators. In so doing robust classes of possible theories
are discarded. The present work shows that consistent theories can be derived through a
strictly deductive development from the principle of relativistic invariance and position
covariance, also with anti-unitary space inversion and unitary time reversal operators.
In doing so the class of possible consistent theories is extended for positive but also zero
mass particles. In particular, consistent theories for a Klein-Gordon particle are derived
and the non-localizability theorem for a non zero helicity massless particle is extended.
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1 Introduction

Relativistic quantum theories of single free particle can be deductively derived from the princi-
ples of relativistic invariance and covariance [1] - [4]; the first principle implies that the Hilbert
space of the quantum theory of a free particle must admit a transformer triplet (U , ◁S, ◁T)
formed by a unitary representation U of the universal covering group P̃↑+ of the proper or-
thochronus Poincaré group P↑+ and by the operators ◁S and ◁T, which realize the quantum
transformations implied by the transformations of P↑+, by space inversion ◁s and by time re-
versal ◁t, respectively. Yet the literature, except some works [5] [6] with specific aims different
from the present one, excludes transformer triplets with ◁S anti-unitary or with ◁T unitary, from
the pionering works of Wigner, Bargmann [1] - [3], to subsequent investigations [4] - [9] . In
so doing robust classes of triplets, and hence of possible theories, are lost. For instance, there
is no such a triplet for a consistent theory of Klein-Gordon particles.1

The motivation for the exclusion of ◁T unitary or ◁S anti-unitary was their implication of
negative spectral values for the hamiltonian operator P0, values deemed inconsistent because

1Klein-Gordon theory, indeed, was obtained through canonical quantization [10], [11], but it predicts inconsis-
tencies, such as negative probabilities [12].

040.1

https://scipost.org
https://scipost.org/SciPostPhysProc.14.040
mailto:giuseppe.nistico@unical.it
https://doi.org/10.21468/SciPostPhysProc.14
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhysProc.14.040&amp;domain=pdf&amp;date_stamp=2023-11-24
https://doi.org/10.21468/SciPostPhysProc.14.040


SciPost Phys. Proc. 14, 040 (2023)

P0 was identified with the positive relativistic kinetic energy operator Ekin = µ(1 − Q̇2)−1/2,
where Q̇ is the “velocity” operator. But remark 3.1 shall show that the hamiltonian operator P0
does not always coincide with Ekin, so that a unitary ◁T or an anti-unitary ◁S can be consistent.

In the present article we show how a strictly deductive development of consistent quantum
theories of elementary free particle can be successfully carried out without apriori preclusions
about the unitary or anti-unitary character of ◁S or ◁T. As results, classes of consistent possible
theories for a positive mass particle are expicitly identified, which meaningfully extend the
class of the current theories; in particular, consistent theories of Klein-Gordon particle are
derived. Also in the case of a massless particle the approach extends the class of possible
theories. Furthermore, the non-localizability theorem for non zero helicity massless particles
is extended to the new theories with ◁T unitary or ◁S anti-unitary.

Section 2 shows how the relativistic invariance principle implies that every theory of ele-
mentary free particle admits a transformer triplet. In section 3 the class of possible consistent
theories for a positive mass particle is identified; this class contains consistent theories with ◁S
anti-unitary, e.g. consistent theories of Klein-Gordon particle. Section 4 identifies the class of
consistent theories for a zero mass elementary free particle; once again, besides the current
theories, it contains theories with ◁S anti-unitary or ◁T unitary. A more accurate and more gen-
eral argument is presented, which denies localizability of non zero helicity mass zero particles

2 General implications of Poincaré invariance

2.1 Prerequisites and notation

First of all, it is worth to fix the notaion for any quantum theory based on a Hilbert space H:

- Ω(H) denotes the set of all self-adjoint operators representing observables;

- S(H) denotes the set of all density operators ρ identified with quantum states;

- U(H) denotes the group of all unitary unitary operators;

- V(H) is the larger group of all unitary or anti-unitary operators.

The Poincaré group P is a very important mathematical structure for the present work, be-
cause it is the group of symmetry transformations for a free particle. P is the group generated
by P↑+∪{◁t, ◁s}, where P↑+ is the proper orthochronus Poincaré group, ◁t and ◁s are the time re-
versal and space inversion transformations. The proper orthochronus group P↑+ is a connected
group generated by 10 one-parameter subgroups, namely the subgroup T0 of time transla-
tions, the three subgroups T j ( j = 1, 2,3) of spatial translations, the three subgroups R j of
spatial rotations, the three subgroups B j of Lorentz boosts, relative to the three spatial axes
x j . Time reversal ◁t and space inversion ◁s are not connected with the identity transformation
e ∈ P . Given any vector x = (x0,x) ∈ IR4, where x0 is called the time component of x and
x = (x1, x2, x3) is called the spatial component of x , time reversal ◁t transforms x = (x0,x)
into (−x0,x) and space inversion ◁s transforms x = (x0,x) into (x0,−x).

The universal covering group of P↑+ is the semidirect product P̃↑+ = IR4⃝s SL(2, IC) of the
time-space translation group IR4 and the group SL(2, IC) = {Λ ∈ GL(2, IC) | detΛ = 1}. Ac-
cordingly, P̃↑+ is simply connected and there is a canonical homomorphism h : P̃↑+ → P↑+,
g̃ → h( g̃) ∈ P↑+, which restricts to an isomorphism within a small enough neighborhood of the
identity (0, 1I

IC2 ) of P̃↑+. By T̃0, T̃ j , R̃ j , B̃ j , L̃
↑
+ we denote the subgroups of P̃↑+ which correspond

to the subgoroups T0, T j ,R j , B j , L
↑
+ of P↑+, through the homomorphism h.
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2.2 Quantum theoretical implications for an elementary free particle

Since a free particle is a particular kind of isolated system, we begin by showing the derivation
of the general structure of the quantum theory of an isolated system. By F we denote the class
of the (inertial) reference frames that move uniformly with respect to each other. A physical
system is an isolated system if the following invariance principle holds.

IP The theory of an isolated system is invariant with respect to changes of frames within F .

If Σ belongs to F , then Σg denotes the frame related to Σ by such g, for every g ∈ P . Given an
observableA represented by the operator A∈ Ω(H), letMA be a procedure to measureA; then
the invariance principle implies that another measuring procedure M′A must exist, which is
with respect toΣg identical to what is MA with respect toΣ, otherwise the principle IP would
be violated. Hence, IP implies the existence [12] of the so called quantum transformation
associated to g, i.e., of a mapping

Sg : Ω(H)→ Ω(H) , A→ Sg[A] ,

where Sg[A] is the self-adjoint operator that represents the observable measured by M′A.

To every element g̃ of the covering group P̃↑+ we can associate the quantum transformation
Sh( g̃) ≡ S g̃ through the canonical homomorphism h. In [12] it is proved that the properties of
quantum transformations, under a continuity condition for g̃ → S g̃ , imply that

Imp.1. a continuous unitary representation U of P̃↑+ exists such that S g̃[A] = U g̃AU−1
g̃ , and

Imp.2. two operators ◁S, ◁T ∈ V(H) exist such that S
◁s[A] = ◁SA◁S−1 and S◁t[A] = ◁TA◁T−1.

Thus, the principle IP has the following fundamental implication.

(FI) The quantum theory of an isolated system admits a transformer triplet (U , ◁S, ◁T) such
that implications Imp.1 and Imp.2 hold.

Given a transformer triplet (U , ◁S, ◁T), let P0, Pj , J j , K j ∈ Ω(H) be the selfadjoint generators of
U; so [12], if g̃ ∈ T̃0 (resp., T̃ j , R̃ j , B̃ j) is identified by the parameter t (resp., a, θ , u), then

U g̃ = eiP0 t , (resp., U g̃ = eiPj a, U g̃ = eJ jθ , U g̃ = eiK j
1
2 ln 1+u

1−u ) . (1)

The generator P0 relative to time translations is the hamiltonian operator, so that

(i)
d
d t

At ≡ Ȧt = i[P0, At] , (ii)
d
d t
ρt ≡ ρ̇t = −i[P0,ρt] . (2)

By “elementary” free particle we mean an isolated system whose quantum theory has a
unique three-operator Q ≡ (Q1,Q2,Q3) with Q j ∈ Ω(H), called position operator, such that

(U(P̃↑+), ◁S, ◁T;Q) is an irreducible system of operators, and satisfying the following conditions.

(Q.1) [Q j ,Qk] = IO, for all j, k = 1,2, 3; this condition establishes that a measurement of
position yields all three values of the coordinates of the same specimen of the system.

(Q.2) For every g ∈ P , the position operator Q and the transformed position operator Sg[Q]
satisfy the transformation properties of position with respect to g.

As proved in [12], the transformer triplet (U , ◁S, ◁T) of the quantum theory of an elementary
free particle must be irreducible. Thus, the identification of all possible theories of an elemen-
tary free particle can be carried out in two steps: first by identifying all irreducible transformer
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triplets (U , ◁S, ◁T), and then selecting those triplets for which a unique position operator Q ex-
ists.

The mathematical group structural properties of P imply [12], [16] that each irreducible
triplet (U , ◁S, ◁T) is characterized by a number µ ∈ IC, called mass, with µ2 ∈ IR, such that
P2

0 − P2 = µ21I.

3 Quantum theories of positive mass elementary free particle

To identify the positive mass possible theories, we shall identify the irreducible triplets with
µ > 0; then, the triplets admitting a three-operator Q satisfying (Q.1), (Q.2) are singled out.

3.1 Positive mass irreducible triplets

Following [12], for any pair (µ, s), where µ > 0 and s is an integral or half-integral number
s ∈ 1

2 IN called spin, there is at least one irreducible triplet. Conversely, every irreducible triplet
is characterized by one such a pair. The following theorem yields a first classification.

Theorem 3.1. If (U , ◁S, ◁T) is an irreducible triplet with non-negative mass µ≥ 0, then
i) σ(P0) = (−∞,−µ] or σ(P0) = [µ,∞) or σ(P0) = (−∞,−µ]∪ [µ,∞), where σ(P0) is the
spectrum of P0.

Moreover, σ(P0) = (−∞,−µ]∪ [µ,∞) if and only if ◁T is unitary or ◁S is anti-unitary.
ii) Each class I(µ, s) of all irreducible triplets with positive mass µ > 0 decomposes as

I(µ, s) = I−(µ, s)∪ I+(µ, s)∪ I−+(µ, s) , (3)

where I−(µ, s), I+(µ, s) and I−+(µ, s) are respectively the classes of irreducible triplets with
σ(P0) = (−∞,−µ], σ(P0) = [µ,∞) and σ(P0) = (−∞,−µ]∪ [µ,∞).

The representation U of a triplet in I+(µ, s) or I−(µ, s) can be irreducible or not. We refer
to [12] for a complete identification of the irreducible triplets of I±(µ, s) with U irreducible.
Therein also instances of triplet in I+(µ, s) and I+(µ, s) with U reducible are explicitly shown.

The representation U of a triplet in I−+(µ, s) is always reducible [12], namely U = U+⊕U−

where U± belongs to a triplet in I±(µ, s). Moreover, U+ is reducible if and only if U− is
reducible.

The class of all irreducible triplets of I−+(µ, s) with U+ irreducible can be found in [12],
where also triplets of I−+(µ, s) with U+ reducible are concretely shown.

3.2 Theories of elementary free particle with positive mass

To determine the possible theories of positive mass elemetary free particle, we have to select
irreducible triplets of I(µ, s) identified in [12] for which a position Q satisfying (Q.1) and
(Q.2) exists. Condition (Q.2) can be only partially imposed. In fact, while the covariance
properties with respect to translations, rotations, time reversal and space inversion are known
and explicitly expressed by the following relations [12]

(i) [Q j , Pk] = iδ jk , (ii) [J j ,Qk] = iε jklQ l , (iii) ◁TQ= Q◁T , (iv) ◁SQ= −Q◁T , (4)

the explicit relations that establish the transformation properties of position with respect to
boosts are not available, yet [12]. However, conditions (4) are sufficient to uniquely identify
Q for some subclasses of irreducible triplets, according to the following theorem [12].
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Theorem 3.2. Given a triplet in I+(µ, 0) with U irreducible there is a unique three-
operator Q, satisfying (Q.1) and (4). Modulo unitary isomorphism, the resulting theory has
Hilbert space H = L2(IR3, IC2s+1, dν), where dν(p) = dp1dp2dp3

p0
with p0 =
p

µ2 + p2,

– generators defined by

(Pjψ)(p) = p jψ(p) , (P0ψ)(p) = p0ψ(p) , Jk = J(0)k , K j = K(0)j , (5)

where J(0)k = −i
�

pl
∂
∂ p j
− p j

∂
∂ pl

�

, K(0)j = ip0
∂
∂ p j

;

– ◁S= Υ , ◁T=KΥ , where K and Υ are defined by Kψ(p) =ψ(p), (Υψ)(p) =ψ(−p).

– The position operator is Q= F, where F is the Newton-Wigner [13] operator defined by

F j = i
∂

∂ p j
−

i
2p2

0

p j . (6)

Analogously, there is only one theory based on a triplet in I−(µ, 0) with U irreducible. It
differs from that in I+(µ, 0) by P0 = −p0 and K j = −K

(0)
j . There are only two theories based

on triplets of I−+(µ, 0) with U+ irreducible. They share the Hilbert space and generators:2

H = L2(IR3, IC2s+1, dν)⊕ L2(IR3, IC2s+1, dν)

Pj =

�

p j 0
0 p j

�

, P0 =

�

p0 0
0 −p0

�

, Jk =

�

J(0)k 0
0 J(0)k

�

, K j =

�

K(0)j 0

0 −K(0)j

�

. (7)

The two theories differ for the different pairs (◁S1, ◁T1), (◁S2, ◁T2) of space inversion and time

reversal operators; indeed ◁S1 = ◁S2 =

�

0 1
1 0

�

K while ◁T1 =KΥ
�

1 0
0 1

�

and ◁T2 =

�

0 1
1 0

�

.

For both theories the position operator is Q=

�

F 0
0 F

�

.

For all triplets with s > 0 (Q.1) and (4) are not sufficient [12] to completely identify Q.

Remark 3.1. In both theories based on I−+(µ, 0) the hamiltonian operator P0 has also negative

spectral values. But since the “velocity” is Q̇ = d
d t Q = i[P0,Q] =

� p
p0

0
0 − p

p0

�

, we compute

that Ekin = µ(1− Q̇2)−1/2 = p0 > IO, i.e. the theories are consistent.

3.3 Conclusions for the positive mass case

According to section 3.2, four classes of possible consistent theories are completely determined
by following the present approach, with U or U+ irreducible. However, the class of theories
based on I±(µ, 0) with U reducible and the class of theories based on I−+(µ, 0) with U+

reducible are not empty; concrete examples are given in [12]. They are new species theories,
i.e. they correspond to none of the known theories. Hence, our approach extends the class of
consistent theories of positive mass elementary spin 0 free particle.

Moreover, it provides consistent theories for Klein-Gordon particles. Indeed, by means of
a unitary transformation, operated by the operator Z = Z1Z2, where Z2 =

1p
p0

1I and Z1 is the

2If ψ ∈ L2(IR3, IC2s+1, dν)⊕ L2(IR3, IC2s+1, dν), we write ψ≡ψ1 ⊕ψ2 ≡
�

ψ1

ψ2

�

, ψ1,ψ2 ∈ L2(IR3, IC2s+1, dν)).
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inverse of the Fourier-Plancherel operator, the theories based on I−+(µ, 0) turn out to be equiv-
alent to two theories with Hilbert space Ĥ = Z

�

L2(IR3, dν)⊕ L2(IR3, dν)
�

≡ L2(IR3)⊕ L2(IR3),
with the self-adjoint generators

P̂j =

�

−i ∂∂ x j
0

0 −i ∂∂ x j

�

, P̂0 =
Æ

µ2 −∇2

�

1 0
0 −1

�

,

Ĵ j = −i
�

xk
∂

∂ x l
− x l

∂

∂ xk

�

�

1 0
0 1

�

, K̂ j =
1
2

�

x j

Æ

µ2 −∇2 +
Æ

µ2 −∇2 x j

�

�

1 0
0 −1

�

,

while ◁̂T1 = K
�

1 0
0 1

�

, ◁̂S1 = KΥ
�

0 1
1 0

�

, and ◁̂T2 =

�

0 1
1 0

�

and ◁̂S2 = KΥ
�

0 1
1 0

�

.

The position operator is Q̂ j =

�

x j 0
0 x j

�

.

These P̂j , Ĵ j , K̂ j , Ĥ are generators and Hilbert space of Klein-Gordon theory of spin-0
particle [10] [11]. However, since the position operator is the multiplication operator, the
position probability density must be ρ(t,x) = |ψ̂1(t,x)|2 + |ψ̂2(t,x)|2, hence non-negative.
Thus, our extended class includes consistent theories for Klein-Gordon particle free from the
inconsistent negative probabilities of the early theory.

It turns out [12] that in all triplets with non zero spin, the position operator Q is not
uniquely determined by (Q.1) and (4). On the other hand, the transformation properties
of position with respect to boosts, expressed for instance by a relation for [K j ,Qk], are not
available in order to better identify Q by imposing them.

To each solution Q of (Q.1) and (4) there correspond a different [K j ,Qk], in general. For
instance, Dirac theory for spin 1/2 particle [14] [15] is completely characterized by the relation
[K j ,Qk] = −

i
2(Q jQ̇k+Q̇kQ j) satisfied by the posistion operator of Dirac theory; however, other

solutions Q yielding other relations for [K j ,Qk] are theoretically consistent too.

4 Quantum theories of zero mass elementary free particle

Analogously to the positive mass case, the possible quantum theories of zero mass particle are
determined first by identifying the class I0 of the irreducible transformer triplets with µ = 0,
and then by selecting those triplets that admit a unique position operator. According to theo-
rem 3.1.i the class I0 decomposes as I+0 = I+0 ∪ I

−
0 ∪ I

−+
0 , where I−0 (resp., I+0 , I−+0 ) denotes

the class of irreducible triplets with σ(P0) = (−∞, 0] (resp., σ(P0) = [0,∞), σ(P0) = IR).

4.1 Zero mass irreducible triplets

In [16] the irreducible triplets of I+0 and I−0 with U irreducible, and of I−+0 with U+ irreducible
are completely identified. The results are collected by the following statement.

Theorem 4.1. Modulo unitary isomorphisms, there is only one triplet (U , ◁S, ◁T) in I+0 and
in I−0 with U irreducible, whose Hilbert space is H = L2(IR3, dν), and

(Pjψ)(p) = p jψ(p), P0ψ(p) = ±p0ψ(p), J j = J(0)j , K j = ±K
(0)
j , ◁S= Υ , ◁T=KΥ .

If (U , ◁S, ◁T) is an irreducible triplet of I−+0 with U+ irreducible, then m ∈ ZZ exists such
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that H = L2(IR3, dν)⊕ L2(IR3, dν) and

P0 =

�

p0 0
0 −p0

�

, Pj =

�

p j 0
0 p j

�

,

J j =

�

J(0)j + j j 0

0 J(0)j − j j

�

, K j =

�

K(0)j + k j 0

0 −K(0)j + k j

�

,

where j1 =
m
2

p1p0

p2
1+p2

2
, j2 =

m
2

p2p0

p2
1+p2

2
, j3 = 0, k1 = −

m
2

p2p3

p2
1+p2

2
, k2 =

m
2

p3p1

p2
1+p2

2
, k3 = 0.

With m= 0 there are six triplets, each characterized by a different pair (◁Tn, ◁Sn), n= 1,2, ..., 6.

For every m ̸= 0 in I−+0 there are two triplets with different pairs (◁Ta, ◁Sa) and (◁Tb, ◁Sb).

Remark 4.1. For the zero mass case the helicity operator λ̂= J·P
p0

plays an important role.

Theorem 4.1 and (5) imply [16] that λ̂= 0 for the triplets in I±0 .
Using theorem 4.1 we see that λ̂= −m

2 for every triplet of I−+0 with U+ irreducible.

4.2 The theories of elementary free particle with zero mass

The possible theories of elementary free particle with zero mass can now be identified by
selecting the triplets that admit a unique position operator. One conclusion shared by the
past approaches states that no position operator exists for massless particles with non-zero
helicity. Yet, the theoretical structures where such non-existence is proven [7] [9] are triplets
where ◁S is unitary and ◁T is anti-unitary. The present approach highlights that this is a serious
shortcoming, because according to theorem 3.1 these structures must be triplets in I+0 or I−0 .
But according to section 4.1 irreducible triplets with non-zero helicity can exist only in I−+0 .
Therefore, these proofs do not apply.

In fact our approach proves the following theorems [16].

Theorem 4.2. If λ̂ ̸= 0, then in every triplet of I0 there is no three-operator satisfying
(Q.1) and (4.i), (4.ii).

Theorem 4.3. For the triplet of I+0 or of I−0 , with U irreducible, there is only one three-
operator satisfying (Q.1) and (4), namely Newton-Wigner operator Q= F.

Since the search for a position operator must be restricted to triplets with λ̂ = 0, in I−+0
only triplets with m= 0 have to be checked.

Theorem 4.4. The triplets of I−+0 with a three-operator satisfying (Q.1) and (4) are three of

the six triplets with m= 0 of theorem 4.1, characterized by ◁T1 =

�

0 1
1 0

�

, ◁S1 =K
�

0 1
1 0

�

,

by ◁T2 = ◁T1,◁S2 = Υ

�

1 0
0 −1

�

and by ◁T3 =KΥ
�

0 1
1 0

�

; ◁S3 =

�

0 1
−1 0

�

K.

In all the three theories Q=

�

F 0
0 F

�

.

4.3 Conclusions for the zero mass case

The current literature in fact restricts the search for theories of massless elementary free par-
ticle to triplets with ◁T anti-unitary and ◁S unitary, i.e. to triplets of I+0 and I−0 . Our approach
proves that consistent theories can be developed also if ◁T is unitary or ◁S is anti-unitary. As a
consequence, the class of possible theories extends to include a subclass of I−+0 .
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Furthermore, the non-existence proofs of a position operator for non zero helicity massless
particles extends to the larger class of possible theories, because the operators ◁T and ◁S play
no role in the new theorem 4.2.
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Abstract

Gyrogroups are new algebraic structures that appeared in 1988 in the study of Ein-
stein’s velocity addition in the special relativity theory. These new algebraic struc-
tures were studied intensively by Abraham Ungar. The first gyrogroup that was con-
sidered into account is the unit ball of Euclidean space R3 endowed with Einstein’s ve-
locity addition. The second geometric example of a gyrogroup is the complex unit disk
D = {z ∈ C : |z| < 1}. To construct a gyrogroup structure on D, we choose two elements
z1, z2 ∈ D and define the Möbius addition by z1 ⊕ z2 =

z1+z2

1+z̄1z2
. Then (D,⊕) is a gyrocom-

mutative gyrogroup. If we define r ⊙ x =
(1+|x |)r−(1−|x |)r

(1+|x |)r+(1−|x |)r
x
|x | , where x ∈ D and r ∈ R, then

(D,⊕,⊙) will be a real gyrovector space. This paper aims to survey the main properties
of these Möbius gyrogroup and Möbius gyrovector space.
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1 Introduction

Throughout this paper, Ĉ = C ∪ ∞ denotes the extended complex plane and C,
D = {z ∈ C : |z| < 1} is the complex open unit disk. We refer the interested readers to
consult [1,2] for more information on this topic.

If G is a non-empty set and “+" is a binary operation, then (G,+) is called a groupoid. A
permutation f : G → G with this property that f (x + y) = f (x) + f (y), x , y ∈ G, is said
to be an automorphism of G. The set of all automorphisms of G is denoted by Aut (G). A
gyrogroup [3] is a groupoid (G,+) satisfying the following axioms:

1. G has a left identity under the binary operation, “+".

2. Each element of G has a left inverse.
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3. There exists a mapping gyr : G × G→ Aut (G) which satisfies the following conditions:

(a) For each three elements, a, b, and c of G, a + (b + c) = (a + b) + gyr[a, b]c. This
property is named the left gyroassociativity of G.

(b) For every two elements a, b ∈ G, gyr[a+ b, a] = gyr[a, b]. This equality is called
the left loop property.

It is custom to wite gyr[a, b] as gyr(a, b). This algebraic structure share interesting analogous
theorems with classical group theory.

If (G,⊕) is a gyrogroup, then the following properties of G are important in the context of
gyrogroup theory [4]:

1. If a⊕ b = a⊕ c then b = c; (general left cancelation law)

2. For each a ∈ G, gyr[0, a] = I ;

3. If x is a left inverse of a, then gyr[x , a] = I ;

4. gyr[a, a] = I ;

5. Every left identity is a right identity;

6. The left identity is unique;

7. Every left inverse is a right inverse;

8. The left inverse of each element is unique;

9. For arbitrary elements a, b ∈ G, ⊖a⊕ (a⊕ b) = b; (left cancelation law)

10. For arbitrary elements a, b, x ∈ G, gyr[a, b]x = ⊖(a⊕b)⊕(a⊕(b⊕x)); (gyrator identity)

11. For all elements a, b ∈ G, gyr[a, 0] = gyr[0, b] = I and gyr[a, b]0= 0;

12. For arbitrary elements a, b, x ∈ G, gyr[a, b]⊖x = ⊖gyr[a, b]x .

The Möbius transformations are defined as the linear fractional transformations f (z) = az+b
cz+d

of Ĉ, where a, b, c and d are complex numbers satisfying ad − bc ̸= 0. These transformations
constitute a group under composition of functions. This group is isomorphic to the group
PGL(2,C) = GL(2,C)

Z(GL(2,C)) . By restricting conditions to 2 × 2 matrices with det A = 1, we will
have the special linear group SL(2,R), which is well-known that it maps upper-half plane to
itself [2].

The Möbius transformations of complex open disk D are defined as the mappings given
by z 7→ eiθ a+z

1+āz = eiθ (a ⊕ z), where a, z ∈ D and θ ∈ R. By seeing this transformation as
an addition ⊕, we will have Möbius addition of complex open unit disk which is given by
x ⊕ y = x+y

1+ x̄ y , where x , y ∈ D, and x̄ denotes the conjugate of x . It is easy to see that Möbius
addition is neither associative nor commutative. For the sake of fixing the lack of associativity
and commutativity, Abraham Ungar introduced the gyrations of these algebraic structures as

gyr[x , y]z =
x ⊕ y
y ⊕ x

z =
1+ x ȳ
1+ x̄ y

z ,

where x , y, z ∈ D [5,6]. This definition will make a gyrogroup structure on D. It is well-known
that the gyrators of this gyrogroup is not closed under composition of functions. We refer to [7]
for applications of gyrogroup theory in non-Euclidean geometry.
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2 Möbius structures

Recall that the Möbius addition of two elements x and y in D is defined as x ⊕ y = x+y
1+ x̄ y .

It is easy to see that for each element z ∈ D, ⊖z = −z. The gyrator gyr[a, b] is defined as
gyr[a, b](x) = a⊕b

b⊕a x = 1+ab̄
1+āb x . This proves that gyr[a, b](c ⊕ d) = gyr[a, b](c)⊕gyr[a, b](d). It

is well-known that in each gyrogroup gyr−1[a, b] = gyr[b, a] and by definition of a gyrogroup,
all gyrations are automorphisms. By definition of a gyrator, gyr[a, b](b⊕ a) = a ⊕ b and so
(D,⊕) is gyrocommutative.

Following Ungar [6], by some calculations one can see that gyr[u, v](w) = w + 2Au+Bv
D ,

where A= −u.w || v ||2 +v.w+2(u.v)(v.w), B = −v.w || u ||2 −u.w, D = 1+2u.v+ || u ||2|| v ||2

and u, v, w ∈ Vs, where Vs is generalization of Möbius disk gyrogroup, (D,⊕) to s-ball of V,
Vs = {Vs ∈ V :|| v ||< s}, and its inner product and norm, . and || . ||, are inherited from its
space V and + denotes the addition of vectors in V. Note that the Möbius addition and Möbius
scalar multiplication in Vs reduce to the vector addition and scalar multiplication, respectively,
as s tends to infinity.

Ferreira and Ren [8], studied the algebraic structure of Möbius gyrogroups by a Clifford
algebra approach. They started from an arbitrary real inner product space of dimension n and
then construct a paravector space from which it is possible to study the Möbius gyrogroups.
The most important result of Ferreira and Ren is giving a characterization of the Möbius sub-
gyrogroups of D.

A triple (P,⊕,⊙) consisting a non-empty set P together with two binary operations ⊕ and
⊙ are called a real gyrovector space, if for all real numbers r, r1, r2 and all elements x , y, z ∈ P
the following are satisfied: (i) (G,⊕) is a gyrogroup; (ii) (r1 + r2)⊙ x = r1 ⊙ x + r2 ⊙ x; (iii)
r1r2⊙ x = r1⊙ (r2⊙ x); 1⊙ x = x; gyr[x , y](r ⊙ z) = r⊙gyr[x , y](z); gyr[r1 ⊙ x , r2 ⊙ x] = I .
The gyrovector space is the main object of Ungar’s theory of analytic hyperbolic geometry
[4]. Kinyon and Ungar [9], applied the relationshops between the geometric and algebraic
properties of the Möbius gyrovector space to obtain an interesting geometric picture of these
objects.

Suppose I = (−1, 1), x , y ∈ I and r ∈ R. Define x ⊕ y = x+y
1+x y and r ⊙ x = (1+x)r−(1−x)r

(1+x)r+(1−x)r .
Then it is easy to see that I is a real vector space. Kinyon and Ungar [9] presented an interesting
discussion to show that this real verctor space can be generalized to the real gyrovector space
(D,⊕,⊙) in which x ⊕ y = x+y

1+x y and r ⊙ x = (1+|x |)r−(1−|x |)r
(1+|x |)r+(1−|x |)r

x
|x | , x , y ∈ D and r ∈ R. The first

example, I, is an interesting algebraic example for the Euclidean geometry, but the second one,
(D,⊕), is an important algebraic example for hyperbolic geometry.

Watanabe [10] introduced the notion of gyrolinear indipendence of vectors inD. To define,
we assume that a finite subset A= {a1, a2, . . . , an} of vectors in D is given. If for each permuta-
tionσ ∈ Sn, rσ(1)⊙aσ(1) ⊕ rσ(2)⊙aσ(2) ⊕ . . . rσ(n)⊙aσ(n) = 0 implies that r1 = r2 = . . .= rn = 0,
then A is called a gyrolinear independent set of D. By [10, Lemma 8], every vector of a finite
gyrolinearly independent set A is non-zero, and every subset of A is also gyrolinearly indepen-
dent.

Demirel [11] gave an important sharp inequality between members of D. He proved
that if x1, x2, . . . , xn are non-zero elements of D, then | ⊕n

j=1 x j| ≤ ⊕n
j=1|x j|, where

⊕n
j=1|x j|= |x1|+ |x2|+ . . . |xn|, |x j| = |x j ⊖ 0|, and

⊕n
j=1 x j = (. . . ((x1 ⊕ x2)⊕ x3)⊕ . . .⊕ xn−1)⊕ xn .

Abe and Watanabe [12] proved that every finitely generated gyrovector subspace in the
Möbius gyrovector space is the intersection of the vector subspace generated by the same
generators and the Möbius ball. They applied this result to present a notion of orthogonal
gyrodecomposition and determined its relationship with the orthogonal decomposition. The
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most important result of this paper is related to the following two questions in the Möbius
gyrovector space (D,⊕,⊙).

1. {r1 ⊙ a1 ⊕ r2 ⊙ a2 | r1, r2 ∈ R} = {s2 ⊙ a2 ⊕ s1 ⊙ a1 | s1, s2 ∈ R}?

2. r ⊙ (s1 ⊙ a1 ⊕ s2 ⊙ a2) ∈ {r1 ⊙ a1 ⊕ r2 ⊙ a2 | r1, r2 ∈ R}?

They gave an affirmative answer to both Questions 1 and 2.

3 Concluding remark

In this paper we survey most important result in literature on the Möbius gyrogroup (D,⊕)
and Möbius gyrovector space (D,⊕,⊙). Ferreira and Ren [8] characterized all subgyrogroups
of the Möbius gyrogroup (D,⊕). We end this paper with the following question:

Question 3.1. Is there any characterization of subgyrovector spaces of (D,⊕,⊙)?
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Abstract

The clock hypothesis plays an important role in the theory of relativity. To test this hy-
pothesis, a mechanical model of an ideal clock is needed. Such a model should have
the phase of its intrinsic periodic motion increasing linearly with the affine parameter
of the clock’s center of mass worldline. A class of relativistic rotators introduced by
Staruszkiewicz in the context of an ideal clock is studied. A singularity in the inverse
Legendre transform leading from the Hamiltonian to the Lagrangian leads to new pos-
sible Lagrangians characterized by fixed values of mass and spin. In free motion the
rotators exhibit intrinsic motion with the speed of light and fixed frequency.

Copyright T. Pietrzak and Ł. Bratek.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 17-12-2022
Accepted 11-08-2023
Published 24-11-2023

Check for
updates

doi:10.21468/SciPostPhysProc.14.042

1 Introduction

By definition an ideal clock always measures its proper time. The equality of time measured
by natural clocks and that of ideal clock has been verified to a high degree of precision [1],
however it is not known whether this equality always holds true. Discrepancies could occur
for extreme accelerations of order c2/L where L is a length scale characterising a given system
(e.g. 1029 m

s2 for electron’s Zitterbewegung frequency). Accelerations that high are not yet
experimentally attainable. Nevertheless, an attempt can be made to theoretically test the
clock hypothesis (which refers to classical concepts) within the same framework one uses to
describe real mechanical systems. In this respect a classical model of the ideal clock must be
devised.1

1A spatially extended quantum field-theoretical model of a clock devised in the clock hypothesis context [2]
goes beyond this conceptual limitation. The authors concluded that no device built according to the rules of quantum
field theory can measure proper time along its path. It is also known that for any timelike worldline in any spacetime,
there is a sufficiently small light clock that accurately measures the proper time [3], however this kind of clock is
not a mechanical system.
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As a purely mathematical construct unrelated to any material mechanism, an ideal clock
would be a simple non-quantum device. The mechanism of such a clock could be designed
in the following way. In the momentum rest frame, the image of the spatial direction of the
Pauli-Lubański four-vector could be identified with the equator on the Riemann sphere of null
directions and used as the clock’s face. On the other hand, the image of a null direction (car-
rying the spinning degrees of freedom) would be a point moving about the equator, counting
the number of times the phase has been increased by 2π, and thus represent the clock’s hand.

Such a model has been proposed by Staruszkiewicz [4]. It is based on the concept of a
relativistic rotator – a dynamical system described by position, single null direction (thus with
5 degrees of freedom) and, additionally, two-dimensional parameters – mass m and length l
used to set the values of Casimir invariants, respectively, to m2 and −1

4 m4l2. It seems that the
model provides the simplest mechanical system whose clocking frequency could be fixed this
way. Among the entirety of Lagrangians possible for the family of relativistic rotators consid-
ered in [4], there are only two which satisfy the last requirement above. As later shown at
the Lagrangian level [5] the unique Lagrangians are defective when interpreted as dynamical
systems with 5 degrees of freedom (the Hessian rank is 4, not 5). This explained the observa-
tion [6] that in free motion of the clock the phase, and hence the clocking frequency, remained
indeterminate as functions of the proper time of the center of momentum frame, contrary to
the original motivation.

A possible way to find the required Lagrangian and stabilise the clocking frequency leads
through the inverse Legendre transformation (from the Hamiltonian to a Lagrangian). As ob-
served for the rotator in [7], a singularity in this transformation distinguishes intrinsic motion
with the speed of light. This changes the analytic form of the required Lagrangian.2

2 Staruszkiewicz class of relativistic rotators.

A class of relativistic rotators is defined by the following Hamiltonian action introduced by
Staruszkiewicz [4]

S = −m

∫

dλ
p

ẋ ẋ f (ξ) , ξ≡ −l2 k̇̇k

(kẋ)2
, f ′(ξ) ̸≡ 0 . (1)

Here,3 the dot denotes differentiation with respect to λ – an arbitrary parameter along the
worldline, and f can be arbitrary non-constant and positive function of a reparametrization
invariant argument ξ depending on the spinning degrees of freedom through a null direction
k (the latter property means that ξ must be a Poincaré scalar, independent of arbitrary scale
of null vector k).

Representations of the Poincaré group are enumerated by the eigenvalues of two Casimir
operators (for the case of massive representations). These operators are the square of the mo-
mentum four-vector C1 = pµpµ and the square of the Pauli-Lubański four-vector C2 =WµWµ,
where:

Wµ =
1
2
ϵµναβ pνMαβ , Mαβ = xαpβ − xβ pα +Σαβ .

The expression Σαβ represents the internal angular momentum (spin). To find suitable La-
grangians in the considered class of rotators one can proceed as follows. The conserved quan-
tities pα and Mαβ are determined from the action (1) (with Σαβ = kαπβ − kβπα), where the

2These results can be considered new as they are based on yet unpublished paper [7].
3Throughout this paper xµ denotes the position vector, kµ is the single null direction carrying the spinning

degrees of freedom. The scalar product is denoted by x y ≡ ηαβ xα yβ = xα yα (Einstein’s summation convention
is used), where (ηαβ ) = diag(1,−1,−1,−1), and ε0123 = 1 for the Levi-Civita completely anti-symmetric pseudo-
tensor. Greek indices run over 0,1, 2,3 and 0 stands for the time component.
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momenta canonically conjugated to xµ and kµ read, respectively,

pµ = m

�

f (ξ)
ẋµ
p

ẋ ẋ
− 2ξ f ′(ξ)

p
ẋ ẋ

kẋ
kµ

�

, and πµ = 2m

p
ẋ ẋ

k̇̇k
ξ f ′(ξ)k̇µ .

The corresponding Casimir invariants can now be calculated

C1 = m2[ f 2(ξ)− 4ξ f (ξ) f ′(ξ)] , C2 = −4m4l2ξ f 2(ξ)[ f ′(ξ)]2 .

By requiring that C1 ≡ m2 and C2 ≡ −
1
4 m4l2 (identically), one gets two first-order differential

equations that, remarkably, have a common solution of the form f (ξ) =
q

1±
p

ξ. The
Hamiltonian action describing these rotators takes on the form

S = −m

∫

dλ
p

ẋ ẋ

√

√

√

√1±

√

√

√

−l2 k̇̇k

(kẋ)2
+

∫

dλΛ kk , (2)

with Λ being a Lagrange multiplier. As will be explained below, the dynamical system defined
by the action (2) is not suitable as a clock. However, it is equivalent to a geometric model of a
spinning particle introduced earlier in a different context by Lyakhovich, Segal, and Sharapov
[8] and as such can be used with success.

3 Hessian rank deficiency for subluminal intrinsic motion

In the Lagrangian form of dynamics, there are s Lagrangian equations

d
dλ
∂ L
∂ q̇i
−
∂ L
∂ qi
= 0 , i = 1, 2, . . . , s ,

for a dynamical system with s (physical) degrees of freedom. In this form the Lagrangian L is
assumed to be a function of s generalised coordinates qi =Qi(λ) and the corresponding veloc-
ities v i = Q̇i(λ) that altogether characterise the physical state of the system. Differentiating
the Lagrange equations with respect to the independent parameterization λ, one gets a system
of second-order equations

Hi ja
j =
∂ L
∂ qi
−
∂ 2 L
∂ v i∂ q j

v j −
∂ 2 L
∂ λ∂ v i

, Hi j ≡
∂ 2 L
∂ v i∂ v j

.

Provided that det[Hi j] ̸≡ 0 for this system, one can express accelerations ai = Q̈i(λ) as in-
dependent functions of positions and velocities. When the Hessian determinant det(Hi j) is
non-vanishing the Lagrangian is called regular, otherwise it is called singular. For a singu-
lar Lagrangian, there is an infinite number of accelerations available from which a dynamical
system can choose at any stage of its motion. The regularity (or singularity) is a qualitative
feature, independent of the particular coordinates in which the Lagrangian has been expressed.

Note, that the discussion just above assumes that the Lagrangian has been expressed in
terms of the physical degrees of freedom only. In a more general situation, the notion of a
Lagrangian regularity or singularity becomes context-dependent. The reason for this is that,
in describing a dynamical system, one can use a Lagrangian involving only s physical degrees
of freedom or a Lagrangian in an extended configuration space involving additional r, non-
dynamical degrees of freedom. The Hessian square matrix has dimension s in the first case
and dimension s + r in the extended case. In both cases, however, the Hessian rank must
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not be lower than s. The use of a Lagrangian description involving spurious or auxiliary de-
grees of freedom often makes the description more transparent or easier to tackle with, for
example, fully covariant. In order not to come into confusion, instead of referring to singu-
larity/regularity of a Lagrangian it would be better to refer to the rank of the Hessian matrix
(denoted with Rk(H)) as it is not changed when additional gauge degrees of freedom are
introduced and, accordingly, the Lagrangian is rewritten in an extended configuration space.

A good example is provided by the ordinary point particle. Its Lagrangian in the covariant
form L = −m

p
ẋ ẋ is singular – it involves a spurious gauge degree of freedom. In the gauge

λ = x0 one gets a regular Lagrangian L = −m
p

1− ẋ ẋ , where ẋ is the spatial velocity vector.
In both cases, the Hessian rank is 3 and equals the number of degrees of freedom considered
physical in the context of a point particle. Similarly, when it comes to a relativistic rotator, the
Lagrangian recast in a form involving only the 5 physical degrees of freedom characteristic of
a genuine rotator should be regular, which means that the determinant of the corresponding
5×5 Hessian matrix must be non-vanishing. This implies that the rank of the full 8×8 Hessian
matrix of the original singular Lagrangian (1) involving also non-dynamical degrees of freedom
should be 5 too.

One can verify the condition Rk(H) = 5 for all members of the considered family of
relativistic rotators (1) regarded as dynamical systems with 5 physical degrees of freedom.
Following the calculation presented in [5], one can start with Cartesian coordinates (x , y, z)
and spherical angles (ϕ,θ ) describing the position and the null direction in a reference sys-
tem of some inertial observer. The arbitrary parameter λ can be set to be proportional to
the time of that observer, λ = l−1 t. Then, in terms of the vector matrices V = [ ẋ , ẏ , ż]T ,
N = [sinθ cosϕ, sinθ sinϕ, cosθ]T and W =

�

θ̇ , ϕ̇ sinθ
�T

, the Lagrangian form (1) gets re-
duced to

L = −m
p

1− V T V f (ξ) , with ξ=
W T W

(1− N T V )2
and f ′(ξ) ̸≡ 0 . (3)

The Hessian determinant can be found by taking components of vectors V and W as inde-
pendent velocity variables (linearly related to the original set of velocities) and using some
identities for determinants of block matrices. As shown in [5], the resulting determinant reads

det[Hi j]∝ f 3 (ξ)
�

f ′ (ξ)
�2
�

1+ 2ξ
�

f ′(ξ)
f (ξ)

+
f ′′(ξ)
f ′(ξ)

��

,

where the proportionality factor (not shown) is independent of f . Hence, only with f satis-
fying the differential equation

�

f (ξ) + 2ξ f ′(ξ)
�

f ′(ξ) + 2ξ f (ξ) f ′′(ξ) = 0 the Lagrangian (3)
will be singular. This equation has only one solution such that f ′(ξ) ̸≡ 0, namely

f (ξ) = a
q

1± b
p

ξ ,

with a and b being positive integration constants to be set by the Casimir parameters.
Now it becomes clear that the only Lagrangian with deficient rank in the investigated

family of relativistic rotators (1) is that defined by the action (2) (its Hessian rank is 4, not
5). In consequence of this the phase of the clocking mechanism has the nature of a gauge
variable [5, 9], which is the reason why the dynamical system (2) cannot be interpreted as a
clock.

4 Singularities in the inverse Legendre transformation. Zitterbe-
wegung with the speed of light.

According to Dirac’s method [10], the Hamiltonian for a (reparametrization invariant) rela-
tivistic system is a linear combination of first-class constraints (whose Poisson bracket with

042.4

https://scipost.org
https://scipost.org/SciPostPhysProc.14.042


SciPost Phys. Proc. 14, 042 (2023)

all other constraints is vanishing). The coefficients of this combination are arbitrary functions
of the independent parameter. There are four such constraints for the Lagrangian (2): the
first two follow from the requirement imposed on both Casimir invariants: C1≡pp≃m2 and
C2≡−detGram(p, k,π)≃−1

4 m4l2; the other two constraints concern the particular realisation
of the spinning degrees of freedom described by a null direction k (with the corresponding
conjugate momentum π): kk ≃ 0 and kπ ≃ 0 – the latter ensures that the physical state is
independent of the arbitrary scale of k. All of these constraints are first-class. Remembering
that one can use any equivalent combination of constraints, it immediately follows that the
total Hamiltonian, as implied by the original Lagrangian form (2), can be taken as [9]

H =
u1

2m

�

pp−m2
�

+
u2

2m

�

pp+
4

l2m2
(kp)2ππ
�

+ u3kπ+ u4kk , (4)

with ui ’s being independent arbitrary functions.4 Now the Hamiltonian constraints follow from
the equations ∂ui

H = 0 while the velocities are defined through the Hamiltonian equations:

ẋµ =
∂H
∂ pµ

=
u1 + u2

m
pµ + u2

4 (kp)(ππ)
l2m3

kµ , k̇µ =
∂H
∂ πµ

= u2
4 (kp)2

l2m3
πµ + u3kµ . (5)

Now, the Hamiltonian form (4) can be assumed as a starting point. All Lagrangians correspond-
ing to the Hamiltonian (4) can be obtained by applying the inverse Legendre transformation.
The form of the resulting Lagrangian L ≡ pẋ + π̇k−H, when expressed in terms of the veloci-
ties, is subject to the invertibility of the map (5) restricted to the submanifold defined by the
Hamiltonian constraints. On this submanifold induced is a corresponding map between two
sets of scalar variables {u1, u2, u3, kp, pπ} and {k̇̇k, k̇ẋ , ẋẋ , kẋ , k̇k} which is easier to investigate:

ẋ ẋ = u2
1 − u2

2 , kẋ = (u1 + u2)
kp
m

, k̇̇k = −
4(kp)2

l2m2
u2

2 ,

k̇ẋ = (u1 + u2)
�

4(kp)(pπ)
m3l2

u2 + u3

�

kp
m

, k̇k = 0 .
(6)

The number of new constraints for velocities depends on the rank of the Jacobi matrix of the
above mapping. It can be shown that this rank depends only on the variables u1, u2, and
equals 4 for u2

1 ̸= u2
2 ̸= 0, 3 for u1 = u2 ̸= 0, and 2 for u1 = −u2 ̸= 0.

In passing from the Hamiltonian to the Lagrangian, one may first assume that u1 + u2 ̸= 0
and u2 ̸= 0. Then the momenta expressed as functions of velocities and ui ’s read

pµ =
m

u1 + u2
ẋµ −

l2m(u1 + u2)2(k̇̇k− 2u3k̇k)
4(kẋ)2u2

kµ

kẋ
, πµ =

l2m(u1 + u2)2

4(kẋ)2u2
(k̇µ − u3kµ) .

From the constraint equations pp−m2 = 0 and pp+ 4
l2m2 (kp)2(ππ) = 0 two conditions for u1

and u2 follow:
ẋ ẋ

(u1 + u2)2
+

u1 + u2

2u2
ξ= 1 , and

(u1 + u2)2

4u2
2

ξ= 1 . (7)

The resulting u1, u2 can be expressed as independent functions of the velocities, provided that
the Jacobian determinant of the transformation (7) — regarded as one leading from variables

4The Hamiltonian formulation of the whole class of relativistic rotators defined by the general Lagrangian (1)
was presented in [9]. This formulation uses the minimal phase space in terms of four-vectors. There is also
possible a description of dynamical systems in extended phase spaces that upon reduction should recover the
minimal Hamiltonian form. In the case of the particular Lagrangian (2) such an approach was presented by Das
and Ghosh [11] who also obtained the Hamiltonian (4). They started with a counterpart of Lagrangian (2) written
in an extended space exploiting a trick, introduced by Lukierski Stichel and Zakrzewski [12], in which additional
auxiliary variables allow one to make the time derivative structure of the original Lagrangian easier to tackle with.
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( ẋ ẋ ,ξ) to variables (u1, u2) which, up to a constant factor, is equal to ξ ẋ ẋ
u3

2(u1+u2)
— is non-zero.

In this case the resulting Lagrangian overlaps with that in the action integral (2). However,
assuming that the condition ẋ ẋ ̸= 0 is not satisfied, two other Lagrangians are possible.

In the first case u1 = u2, and the corresponding new velocity constraints follow:

ẋ ẋ
kẋ
= 0 , l2 k̇̇k

kẋ
+ kẋ = 0 .

Then, from (6), u1 = χ, u2 = χ, u3 = ν, kp = m
2χ kẋ and pπ= l2m2

2kẋ

�

k̇ẋ
kẋ −ν
�

with χ and ν being

arbitrary functions. After discarding a total derivative involving k̇k and the higher order terms
in the velocity constraints, the resulting Lagrangian can be cast in the following form linear in
these constraints

L =
mκ
2

ẋ ẋ
kẋ
+

m
4κ

�

l2 k̇̇k
kẋ
+ kẋ

�

+Λ kk . (8)

Here, κ(χ)≡ kp
m is a new variable independent of velocities while Λ is a Lagrange multiplier.

In the second case, for u1 = −u2, a restricted Legendre transformation should be con-
sidered with pµ left (for a while) unaltered. Using equations (5) and (6), one can find that

π = ∓ lm2

2
k̇−u3k

kp
p
−k̇̇k

and u2 = ∓
lm
2kp

p

−k̇̇k. Now, integrating away the term linear in k̇k, another

Lagrangian is obtained in the form

L = pẋ ±
lm2

2

p

−k̇̇k
kp

+Λ kk . (9)

Inferred from equations (5) and (6) the result ẋµ = ± lm2

2

p
−k̇̇k
(kp)2 kµ can be re-obtained by per-

forming arbitrary variations of the Lagrangian with respect to pµ, hence eẋ = ± lm2

2

p
−k̇̇k

2(kp)2 ek for
any vector eµ, and this fact can be used to eliminate pµ from (9). Accordingly, the alternative
form of the above Lagrangian can be taken to be

L = m

�

−4l2 k̇̇k
(ek)2(eẋ)2

�1/4

eẋ +Λ kk ,

which involves arbitrary (timelike) eµ (then the condition ek ̸= 0 is satisfied) playing the role
of the initial momentum p.

Unlike the Lagrangian (2), the new Lagrangians (8) and (9) have analytic structure com-
patible with the constraint ẋẋ = 0. They describe intrinsic motion with the speed of light (see
Appendix).

5 Conclusion

In this paper, the present status of Staruszkiewicz’s relativistic rotators in free motion was
discussed. The original motivation behind introducing the rotators was the idea of devising
a model of an ideal clock that could be used to test the clock hypothesis [4]. However, the
constraints imposed on the Casimir invariants for the purpose of realising the quantum irre-
ducibility idea on the classical level, lead to Lagrangians with deficient Hessian rank (which is
4 instead of 5) when subluminal intrinsic motion is assumed from the start. In consequence
of this the clocking rate remains arbitrary function of the proper time in the momentum rest
frame.
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However, at the level of constrained Hamiltonians, one makes no a priori assumptions
about the velocities. Constraints on velocities may appear when passing from the Hamiltonian
to the Lagrangian. With this method one recovers the original Lagrangian with subluminal
motion when the rank of the inverse Legendre transformation is maximal. For a lower rank
(when this transformation becomes singular) one obtains two new Lagrangians (8) and (9)
with intrinsic motion with the speed of light (the motion of the momentum rest frame is still
subluminal). The solutions are presented in Appendix.

The dynamical systems described by the new Lagrangians exhibit behaviour that can
viewed as a counterpart of Zitterbewegung known for two states of Dirac’s free electron (see
the interesting and original discussion by Breit [13]). The existence of the two systems con-
forms with the distinguished role of the constraint ẋẋ = 0. It remains to investigate how these
systems would behave when appropriately coupled with the electromagnetic or gravitational
field.

A Appendix

For both Lagrangians, the momentum P≡∂ ẋ is conserved, hence P=me, where e is a constant
unit future-oriented timelike four-vector and m is a mass parameter. The equation ∂ΛL=0
implies kk=0. The arbitrary parameterization λ and the arbitrary scale of k can be chosen
so that eẋ=1 and ke=1. Furthermore, the spatial vector n defined by k=e+n is unit and
orthogonal to e: nn=− 1 and ne=0.

For the Lagrangian (9), the equation ∂p L=0 implies ẋ=(l/2)Ω(e+n)withΩ≡
p
−ṅṅ, which

in turn givesΩ=2/l from the previous condition ėx=1 which is now seen to identify λwith the
time t in the momentum frame (in which the time axis is directed along e). Finally, ẋ=e+ n.
The momentumΠ≡∂k̇ L reduces toΠ=−(ml2/4)ṅ. Since ∂k L=−me+2Λ(e+n), the respective
Lagrangian equation reduces to the equation for large circles on a unit sphere, n̈+(2/l)2n=0,
where the Lagrange multiplier Λ=m/2 was earlier determined upon taking the scalar product
n(Π̇ − ∂k L)=0 and using the identity ṅṅ+ nn̈=0 satisfied by any vector with constant product
nn. The solution reads n=a cosφ+ b sinφ, where φ=(2/l)t is the phase, a and b are constant
vectors such that aa=− 1=bb, ab=0, ae=0=be. Substituting this in the other equation for x
and integrating, one obtains x=et+(l/2) (a sinφ − b cosφ). The phase φ=(2/l)t is a unique
function of the proper time t in the momentum frame and ẋ ẋ=0.

For the Lagrangian (8), the conserved momentum P≡∂ ẋ L=me implies

κ

kẋ
ẋ=e−

1
4κ

�

1−
l2 k̇̇k+2κ2 ẋ ẋ
(kẋ)2

�

k , hence κ=ek .

Now, taking scalar products of the above equation with e and ẋ , and with itself, one gets three
equations from which one finds that kẋ=2(ke)(eẋ), l2k̇k̇+(kẋ)2=0, and ẋ ẋ=0. This in turn
implies ẋ/(eẋ)=2e − k/(ke). By applying the gauge eẋ=1 and ke=1 as in the previous case,
and then the decomposition k=e+n, one finally obtains ṅṅ= − 4/l2 and ẋ=e − n (note the
sign difference with the previous case). Then one finds in an analogous way as before, that
n̈+(2/l)2n=0, however withΛ=−m/4. This leads to a solution x=et−(l/2) (a sinφ − b cosφ)
with φ=(2/l)t.
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Abstract

Symmetries and their applications always played an important role in I.E. Segal’s work.
I shall exemplify this, starting with his correct proof (at the Lie group level) of what
physicists call the “O’Raifeartaigh theorem”, continuing with his incidental introduc-
tion in 1951 of the (1953) Inönü–Wigner contractions, of which the passage from AdS
(SO(2,3)) to Poincaré is an important example, and with his interest in conformal groups
in the latter part of last century. Since the 60s Flato and I had many fruitful interactions
with him around these topics. In a last section I succintly relate these interests in symme-
tries with several of ours, especially elementary particles symmetries and deformation
quantization, and with an ongoing program combining both.
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1 Prologue

In July 2018 a special session dedicated to Irving Ezra Segal (13 September 1918 – 30 August,
1998) was organized during the first day of the 32nd International Colloquium on Group The-
oretical Methods in Physics (Group32) that was held at Czech Technical University in Prague,
Czech Republic, from Monday 9th July until Friday 13th July 2018. It was meant to be a
homage to this immense scientist on the occasion of the centenary of his birth and became a
commemoration. In the Notices of the American Mathematical Society [33] were published
contributions concerning the life and work of I. E. Segal by a number of leading scientists, part
of whom are/were not with us anymore [Baez, John C.; Beschler, Edwin F.; Gross, Leonard;
Kostant, Bertram; Nelson, Edward; Vergne, Michèle; Wightman, Arthur S.]. Among these I
will only quote what Edward Nelson (1932 - 2014) said of him (p. 661): It is rare for a mathe-
matician to produce a life work that at the time can be fully and confidently evaluated by no one,
but the full impact of the work of Irving Ezra Segal will become known only to future generations.

The text of my invited talk in that special session was sent by me in December 2018 to the
organizers, and sent by them to IOP in early 2019, together with all other contributions. In
April 2019 the editors informed me that the Proceedings of Group32 were published, with a
link that recently changed to https://iopscience.iop.org/issue/1742-6596/1194/1 (IOP pub-
lishes a very large number of conference proceedings, mostly in physics.) In December 2021,
looking for a more precise reference, I was surprised not to find there my contribution. Ap-
parently someone at IOP “forgot” to include my contribution, without informing me nor the
organizers of the fact. The organizers of Group34 (in Strasbourg) very kindly agreed to in-
clude my text, which as the reader can see deals indeed with “Group Theoretical Methods in
Physics”, in the Proceedings of Group34. The sections of the following text are essentially my
original (December 2018) contribution to Group32.

2 Some history, anecdotes and background material

2.1 First interactions with Segal

The first interactions we (Moshe Flato and I) had with I.E. Segal were probably on the occa-
sion of the controversy that arose in 1965 around what physicists still call “the O’Raifeartaigh
theorem”. Indeed in 1965 Moshe and I submitted to the Physical Review Letters (PRL) a con-
tribution [19] criticizing that of Lochlainn O’Raifeartaigh, published there the same year [26].
In the latter paper was “proved” that the so-called “internal” (unitary) and external (Poincaré)
symmetries of elementary particles can be combined only by direct product. In our rebuttal
Moshe insisted that we write that the proof (of O’Raifeartaigh, who by the way became a good
friend after we met) was “lacking mathematical rigor,” a qualification which incidentally (es-
pecially at that time) many physicists might consider as a compliment. Our formulation was
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deliberately provocative, because Moshe felt that we were criticizing a “result” which, for a
variety of reasons, many in the “main stream” wanted to be true.

Remark. The “theorem” of O’Raifeartaigh was formulated at the Lie algebra level, where
the proof is not correct because it implicitly assumes that there is a common domain of analytic
vectors for all the generators of an algebra containing both symmetries. In fact, as it was
formulated, the result is even wrong, as we exemplified later with counterexamples. The result
was proved shortly afterward by Res Jost and, independently, by Irving Segal [30] but only in
the more limited context of unitary representations of Lie groups. In those days “elementary
particle spectroscopy” was performed mimicking what had been done in atomic and molecular
spectroscopy, where one uses a unitary group of symmetries of the (known) forces. As a student
of Racah, Moshe mastered these techniques. The latter approach was extended somehow to
nuclear physics, then to particle physics. That is how, to distinguish between neutrons and
protons, Heisenberg introduced in 1932 “isospin,” with SU(2) symmetry. When “strange”
particles were discovered in the 50s, it became natural to try and use as “internal” symmetry a
rank-2 compact Lie group. In early 1961 Fronsdal and Ben Lee, with Behrends and Dreitlein,
all present then at UPenn, studied all of these. At the same time Salam asked his PhD student
Ne’eman to study only SU(3), in what was then coined “the Eight-Fold way” by Gell’Mann
because its eight-dimensional adjoint representation could be associated with mesons of spin
0 and 1, and baryons of spin 1

2 . Since spin is a property associated with the “external” Poincaré
group, it was simpler to assume that the two are related by direct product. Hence the interest
in the “O’Raifeartaigh theorem.” For this and much more see e.g. Section 2 in [35] and
references therein. The Editors of PRL objected to our formulation. In line with the famous
Einstein quote (“The important thing is not to stop questioning, curiosity has its reason for
existing.”) Moshe insisted on keeping it “as is.” The matter went up to the President of the
American Physical Society, who at that time was Felix Bloch, who consulted his close friend
Isidor Rabi. [In short, Rabi discovered NMR, which is at the base of MRI, due to Bloch.] Rabi
naturally asked who is insisting that much. When he learned that it was Moshe, who a few
years earlier, when Rabi was giving a trimester course in Jerusalem, kept asking hard questions
which he often could not answer, he said: “If he insists he must have good reasons for it. Do
as he wishes.” The Editors of PRL followed his advice.

2.2 ICM 1966 and around

The following year (in April 1966), at a conference in Gif-sur-Yvette on “the extension of the
Poincaré group to the internal symmetries of elementary particles” which Moshe (then 29)
naturally co-organized, Christian Fronsdal told Moshe: “You wrote that impolite paper.” This
was the beginning of a long friendship, which lasts to this day and is at the origin of important
scientific works, many of which deal with applications of group theory in physics, and related
issues on quantization.

Shortly afterward (16–26 August 1966) an important mathematical event happened: the
International Congress of Mathematicians (where the acronym ICM came into wide usage).
Until then the scientific exchanges between the USSR and “the West” had been very limited.
A record number of mathematicians attended (4,282 according to official statistics), of which
1,479 came from the USSR, 672 from other “Socialist countries” in Europe, while over 1,200
came from “Western countries”, including 280 from France: Moshe (then still only citizen of
Israel but working in France since October 1963) and I were among the latter. Irving Segal
came from the US. I remember that we and many from the French delegation traveled to
Moscow on a Tupolev plane, organized as in a train with compartments seating eight. In
Moscow, we were accommodated, together with many “ordinary” participants (some VIPs,
among them Segal if I remember correctly, were accommodated in “smaller” hotels closer to
the Kremlin), in the huge hotel Ukraina (opened in 1957, the largest hotel in Europe), one of
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the seven Stalinist skyscrapers in Moscow with a height of 206 meters (including the spire, 73
meters long) and total floor area ca. 88,000m2, a small city in itself. On every floor there were
“etazhniks” supposed to help but in fact checking on the guests. (We encountered the same
system 10 years later in Taipei. . . ).

The opening ceremony of ICM 1966, as it is now known, was held in the Kremlin. During
the long party which followed we met, and instantly became friends with, many leading Soviet
scientists like Nikolay Nikolayevich Bogolyubov (who invited us to Dubna after the Congress),
Ludwig Dmitrievich Faddeev and Israel Moiseevich Gelfand. There were also a number of
cultural events, both official and optional. I remember that, near a centrally located hotel,
we (Moshe and I) and Segal were looking for a taxi in order to get to one such event. Segal
entered in a random run, trying to get one, to no avail. Moshe, who spoke fluent Russian
(though he could not read nor write it), calmly managed with the doorman of the hotel to get
one for the three of us.

At the end of 1966 we made our first visit to the US, starting with Princeton at the invitation
of E.P. Wigner with whom Moshe (being a student of Racah) had established connection. We
also went to Brookhaven National Laboratory (where my cousin Rudolph Sternheimer spent
most of his career, and where the editor of PRL, Sam Goudsmith, was located). Very gener-
ously Segal invited us to MIT, then and during our following visits (in 1969 and later) and
accommodated us in the Sheraton Commander near Harvard square.

We had many subjects of common interest, mostly around group theory in relation with
physics (for some, see below). On the anecdotical side, at some point during our second visit to
US (in 1969, with Jacques Simon) the discussion came around Fock space [22]. Segal insisted
that it should be called “Fock – Cook space” because his student Joseph M.Cook made it more
precise in his 1951 Thesis in Chicago (ProQuest Dissertations Publishing, 1951. T-01196).
Not surprisingly that unusual terminology did not catch. [F.J. Dyson wrote in Mathematical
Reviews, about the announcement in PNAS: “The author has set up a mathematically precise
and rigorous formulation of the theory of a linear quantized field, avoiding the use of singular
functions. The formalism is equivalent to the usual one, only it is more carefully constructed,
so that every operator is a well-defined Hilbert space operator and every equation has an
unambiguous meaning. Fields obeying either Fermi or Bose statistics are included.”]

2.3 Later interactions.

An anecdotical event, among our later interactions, also related to the Soviet Union (of the
latter days) is the following. Our first visit to Leningrad (also technically the last one, because
our subsequent visits were to St. Petersburg ...) occured in the Spring of 1989. We (Moshe and
I) were accommodated in a recent Finnish-built hotel, not very fancy and at the entrance of
the city when coming from the airport, but functional. Alain Connes, who visited at the same
time, had a nice room in a top floor of Hotel Evropeiskaya (now back to its original splendor
and named Grand Hotel Europe); however at the time the hotel was rather run down and e.g.
water reached his room only a few hours per day!

If I remember correctly it was then that we met in the USSR another visitor, Irving Segal,
who introduced us to his second wife Martha Fox, whom he had married in 1985. [His first
wife, Osa Skotting, had left him at some point (some said for another woman) and not long
afterward remarried in 1986 with an old flame of her, Saunders Mac Lane, whom we met on
many occasions in the University of Chicago, always dressed in tartan trousers (the MacLean
tartan, of course).]

Interestingly we met both Irving and Martha shortly thereafter at a workshop in Varna,
where we were all accommodated in a nice “rest house” for the “nomenklatura” of the Bulgar-
ian Communist party. There we met also for the first time Vladimir Drinfeld and a number of
other “Eastern bloc” mathematicians. We were warned by our Bulgarian friend Ivan Todorov
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(who, as physicist and Academician, had access to information that was not widely publicized)
to be careful when drinking wine, because after the Chernobyl disaster in April 1986, many
agricultural products (including mushrooms and especially wines) produced in the following
months and years were contaminated. [At that time French authorities claimed that the Cher-
nobyl radioactive cloud did not cross the Rhine, which of course nobody believed.] In any
case there were still enough older wines in Bulgaria for us to enjoy in the evenings, and we
did, including with Martha who liked the company of these (then younger) scientists. One
evening Irving spent some time in scientific discussions with a distinguished colleague after
which, seeing us in the lobby, he said: “Martha you are tired, please come”. Martha denied
being tired but then Irving insisted:“Martha you are tired, and besides you have some duties
to perform.” At this point Joe Wolf quipped: “Not here I hope!” She had to leave. I told
the story later to some friends in the US, and one of them remarked: “It must have worked
because recently at MIT Segal has been distributing cigars on the occasion of the birth of their
daughter Miriam.”

3 Contractions, conformal group & covariant equations

3.1 A tachyonic survey of contractions and related notions

In 1951, in a side remark at the end of an article [28], Segal introduced the notion of con-
tractions of Lie algebras, that was “introduced in physics” in a more explicit form two years
later [25] by Eugene Wigner and Erdal Inönü. [The latter was the son of Ismet Inönü who in
1938 succeeded Ataturk as president of Turkey. Eventually Erdal (1926 – 2007) had a political
career, becoming himself interim Prime Minister in 1993.] The notion has been studied and
generalized by a number of people. For an informative more recent paper, see e.g. [36]. (I
had something to do with its publication.)

The 1951 paper by Segal was analyzed in Mathematical Reviews by Roger Godememt. It in-
cluded some nasty remarks (something rare in the Reviews but not infrequent with Godement),
in particular, after giving a number of simpler proofs of a few results, Godement wrote: “Tout
cela est très facile. L’article se termine par quelques exemples inspirés de problèmes physiques,
à propos desquels l’auteur émet des opinions et suggestions dont la discussion demanderait
des connaissances cosmologiques et métaphysiques que le rapporteur n’a malheureusement
pas eu le temps d’acquérir.” [All this is very easy. The paper ends with some examples inspired
by physical problems; in connection with these the author expresses opinions and suggestions,
the discussion of which would require cosmological and metaphysical knowlegde which the
reviewer unfortunately did not have the time to obtain.] These examples include the notion
of contractions of Lie algebras, and more!

In a nutshell, a typical example of contraction consists in multiplying part of the generators
of some linear basis of a Lie algebra by a parameter εwhich then is made 0. In particular, when
multiplying the Lorentz boosts of the Lie algebra so(3,1) by ε→ 0, one obtains the Lie algebra
of the Euclidean group E(3) (so(3) ·R3).

The notion of contractions of Lie algebras is a kind of inverse of the more precise notion
that became known, ten years later, after the seminal paper by Murray Gerstenhaber [23],
as deformations of (Lie) algebras. Immediately thereafter it became clear to many, especially
in France where Moshe Flato had arrived in 1963, that the symmetry of special relativity
(the Poincaré Lie algebra so(3, 1) ·R4) is a deformation of that of Newtonian mechanics (the
Galilean Lie algebra, semi-direct product of E(3) in which the R3 are velocity translations, and
of space-time translations). Or, conversely, that Newtonian mechanics is a contraction (in the
sense of Segal), of special relativity.
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These notions were extensively discussed at the above-mentioned April 1966 conference
in Gif. In other words, special relativity can be viewed, from the symmetries viewpoint, as a
deformation. A natural question, which already then arose in the mind of Moshe, was then
to ask whether quantum mechanics, the other major physical discovery of the first half of last
century, can also be viewed as a deformation. It was more or less felt, because of the notion
of “classical limit” and though in this case we deal with an infinite dimensional Lie algebra,
that classical mechanics is a kind of contraction (when ħh→ 0) of the more elaborate notion of
quantum mechanics. But the inverse operation is far from obvious, if only because in quantum
mechanics the bracket is the commutator of operators on some Hilbert space while in classical
mechanics we deal with the Poisson bracket of classical observables, functions on some phase
space.

At the same time, in 1963/64, I participated in the Cartan–Schwartz seminar at IHP (Insti-
tut Henri Poincaré) on the (proof of the) seminal theorem of Atiyah and Singer on the index
of elliptic operators, which had just been announced without a proof. My share (2 talks), on
the Schwartz side, in the Spring of 1964, was the multiplicative property of the analytic index,
crucial for achieving dimensional reduction that was an important ingredient of the proof.
Moshe followed that important seminar. But it was only more than a dozen years later, af-
ter we developed what became known as deformation quantization, that we realized that the
composition of symbols of differential operators was a deformation of the commutative prod-
uct of functions (what we called a star-product), or conversely that the commutative product
is a contraction of our star-product.

3.2 Conformal groups and conformally covariant equations

The conformal group (here, the Lie group SO(4, 2) or a covering of it) was introduced ten
years before Segal was born as a symmetry of Maxwell equations by Harry Bateman (in 1908
and 1910) [3, 4] and Ebenezer Cunningham (in 1910) [9]. In 1936 (a year after an article,
also in Ann. Math., in which he studied the extension of the electron wave equation to de
Sitter spaces) Dirac [11] made this fact more precise. Yet not many realized the fact, possibly
because in addition to the Poincaré group (a group of linear transformations of space-time)
there were 4 generators of “inversions”, nonlinear transformations. For a long time many (in-
cluding textbooks authors and some colleagues physicists of Moshe in Dijon) were convinced
that the Poincaré group is the most general group of invariance of special relativity.

We were introduced to this group in 1965 by Roger Penrose during a visit to David Bohm
at Birbeck College of the university of London. We were impressed by Roger Penrose. When
we told that to André Lichnerowicz he remarked: “Half of what he says is true.” That half
proved to be seminal and worth a Nobel prize. Inasmuch as the conformal group is concerned
we made immediate use of it in a number of papers in a variety of contexts [7,20].

In December 1969 Moshe was visiting KTH (the Royal Institute of Technology) in Stock-
holm, at the time when Gell’mann gave there the traditional scientific lecture on the occasion
of his Nobel prize. For an unknown reason, he chose to center his talk on the conformal group,
which by then we knew very well, in particular because we had studied in detail the conformal
covariance of field equations [17]. Moshe (then 32) did not hesitate to interrupt him a few
times, asking from the back of the auditorium (im)pertinent questions to which Gell’Mann’s
only answer was: “Good question.” Eventually Moshe said that he did not ask for marks for
his questions, but would like answers. At that point Gell’Mann, who is known to be very fast,
remarked: “I didn’t know there would be specialists in the audience.” Then Moshe, who was
even faster, replied: “Until now you insulted only me, now you are insulting the Nobel Com-
mittee, who is sitting here [in the first row].” That is not a good way to make friends. After
the lecture half of the Committee members, instead of joining Gell’Mann for a lunch at the US
Embassy, joined Moshe for a (better) lunch at the French Embassy, in honor of Samuel Beckett
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who that year was the Nobel laureate in Literature (but had sent his publisher to collect the
Prize, prefering to remain in sunny Tunisia with his young companions).

For some more information on Moshe Flato (who coincidentally was born September 17,
4 days and 19 years after Segal, and, like Segal, died in 1998, almost 3 months after Segal)
see e.g. [14,15].

In addition to the above mentioned papers, we published a few other papers around the
conformal group. Moshe had discussed the issue with Segal, who at first didn’t seem interested
in the idea. But the question apparently remained in his mind and not long afterward he dealt
with the conformal group from a different point of view. In his first of many publications on the
subject [31] (reviewed by Victor Guillemin) and [32] appears the universal covering space of
the conformal compactification of Minkowski space, in connection with a simple explanation
for the “red shift” observed by astronomers in studying quasars. At the time, though he had
many more important contributions (albeit mostly of mathematical nature) Segal was very
proud of his explanation, in spite of the fact that many astronomers were critical, because
while his explanation worked well for some galaxies, it did not work so well for others, which
Segal did not consider. That is one more example of what Sir Michael Atiyah said at the
International Congress of Mathematical Physics in London in 2000 (his contribution there
was published in [2]): “Mathematicians and physicists are two communities separated by a
common language.” This refers to a famous saying which is often attributed to George Bernard
Shaw but seems to date back to Oscar Wilde (in “The Canterville Ghost”, 1887): “We have
really everything in common with America nowadays, except, of course, language.”

3.3 Relativistically Covariant Equations

In 1960 Segal published an important paper [29] in the first volume of the Journal of Mathe-
matical Physics, extensively (often with personal remarks, e.g. in relation with QED) analyzed
in Mathematical Reviews by Arthur Wightman, in a review much longer than the abstract of
the paper. Among many interesting ideas, that were further developed in subsequent papers,
appears there a Poisson bracket on the (infinite dimensional) space of initial conditions for the
Klein Gordon equation.

Our interest in that structure was triggered by the approach we made, from the 70s to
the 90s and in parallel with deformation quantization (see below), of many nonlinear evolu-
tion equations of physics, as covariant under a kind of deformation of the symmetry of linear
(free) part. [That approach has not yet attracted enough attention from specialists of these
PDEs and ODEs, possibly because the tools used, involving e.g. group representations and
their cohomologies, which serve as a basis for a careful analytical study of such equations,
are foreign to PDEs specialists.] It culminated in the “tour de force” extensive [18] study of
CED (classical electrodynamics), namely “Asymptotic completeness, global existence and the
infrared problem for the Maxwell-Dirac equations” (see also references therein and a few later
developments), where it is explained in detail.

Very appropriately it is dedicated to the memory of Julian Schwinger, “the chief creator
of QED” (certainly in its analytical form). Indeed a rigorous passage from CED to QED, from
the point of view of deformation quantization, will require a Hamiltonian structure on the
space of initial conditions for CED, of the kind introduced by Segal, the quantized fields being
considered as functionals on that space. That is one more example of how our works were,
and should be in the future, intimately intertwined with those of Segal.
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4 AdS, AdS/CFT, deformation quantization & perspectives

In this section I succintly present my ongoing research on the convergence of topics which we
were concerned with in the 60s, around symmetries of elementary particles, with later works
(from the 70s) on the essence of quantization and around conformal groups. The former are
closely related to our above mentioned first interaction with Segal and the latter to applica-
tions in physics of mathematical tools he developed, in relation with both quantization and
conformal groups. An early presentation can be found e.g. in [35].

4.1 Classical limit, deformation quantization and avatars

Since that part is developed in numerous reviews, by many, I shall here give only an ultra-
short presentation, starting with the connection with Segal’s contractions. Indeed, the fact
that classical mechanics is, in a sense, a “contraction” of quantum mechanics, was essentially
known to many, one of the first being Dirac [10], and has been expressed precisely e.g. by Hepp
in [24]. Quite naturally the idea that quantization should be some kind of a deformation was
“in the back of the mind” of many, but how to express that precisely was far from obvious.
After [5, 6] appeared one of them demanded from André Lichnerowicz to be quoted for the
idea, but André did not know how we could include “the back of the mind” of that person in
our list of references! [Incidentally our 1977 UCLA preprint of [5, 6] was sent to Annals of
Physics by Schwinger, who had published in 1960 [27] a short paper which turned out to be
related to it.]

That it should be possible to formulate such an idea in a mathematically precise way was
implicitly felt by Dirac in [12], where he went on by developing his approach to quantization
of constrained systems (in geometrical language, coupled second class constraints reduces R2n

phase space to a symplectic submanifold, and first class constraints reduce it further to what
we called a Poisson manifold):

. . . One should examine closely even the elementary and the satisfactory features of our
Quantum Mechanics and criticize them and try to modify them, because there may still be
faults in them. The only way in which one can hope to proceed on those lines is by looking
at the basic features of our present Quantum Theory from all possible points of view. Two
points of view may be mathematically equivalent and you may think for that reason if you
understand one of them you need not bother about the other and can neglect it. But it may
be that one point of view may suggest a future development which another point does not
suggest, and although in their present state the two points of view are equivalent they may
lead to different possibilities for the future. Therefore, I think that we cannot afford to neglect
any possible point of view for looking at Quantum Mechanics and in particular its relation to
Classical Mechanics. Any point of view which gives us any interesting feature and any novel
idea should be closely examined to see whether they suggest any modification or any way of
developing the theory along new lines. . .

That is the path we followed in our foundational papers [5,6] that are extensively quoted,
directly and even more implicitly. The notion became a classic, and constitutes an item in
the Mathematics Subject Classification. For a detailed review see e.g. [13]. The even more
developed notions of quantum groups and of noncommutative geometry, which had different
origins, appeared essentially shortly afterward and may be considered as avatars. For this and
more, see e.g. [34,35].

4.2 AdS, AdS/CFT and particle physics

As is well known, the Anti de Sitter group AdS4, SO(2,3) (or a covering of it), can be viewed
either as the conformal group of a 2+1 dimensional flat space-time, or a deformation (with
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negative curvature) of the Poincaré group of usual Minkowski (3+1) dimensional space-time,
the latter being a “Segal” contraction of AdS4. That has many physical consequences, includ-
ing for particle physics, which have been studied by many authors, especially since the 70s.
See e.g. [1] (which has been quoted by Witten as an early instance of the AdS/CFT correspon-
dence) and references therein, where e.g. is shown how AdS representations contract to the
Poincaré group, and many later papers by us and others.

The two massless representations of the Poincaré group in 2+1 dimensions have a unique
extension to representations of its conformal group AdS4 (that feature exists in any higher
dimension). The latter were discovered in 1963 by Dirac and called by him “singletons”. We
called them “Rac” for the scalar perticle (because it has only one component, “Rac” means
only in Hebrew) and “Di” for the helicity 1

2 one (which has 2 components), on the pattern of
Dirac’s “bra” and “ket”.

Among the many applications to particle physics, including with conformal symmetry, one
should mention that the photon can be considered as dynamically composed of two Racs, in
a way compatible with QED [16], and that the leptons can also be considered as composites
of singletons [21], in a way generalizing the electroweak unification theory. Thus, in the
same way as (special) relativity and quantum mechanics can be considered as deformations,
deforming Minkowski space to Anti de Sitter (with a tiny negative curvature) can explain
photons and leptons as composites. A natural question is how to extend that to the heavier
hadrons.

The approach I am advocating ( [35] and work in progress, in particular a Springer Brief
in Mathematical Physics with Milen Yakimov), based on the strong belief that one passes from
one level of physical theories to another by a deformation in some category, is to deform the
symmetry one step further, to some quantized Anti de Sitter (qAdS), possibly with multiple
parameters (commuting so far, since one does not know yet how to do treat deformations
with noncommutative parameters, e.g. quaternions), and even at roots of unity since the
Hopf algebra of quantum groups at roots of unity is finite dimensional. Maybe one could
then find the “internal symmetries” as symmetries of the deformation “parameters”, putting
on solid ground that “colossus with clay feet” called the Standard Model. Vast programme,
as could have said de Gaulle. Interestingly the development of the required mathematics (of
independent interest) would be related to a number of Segal’s works.

5 Conclusion

The above scientific and anecdotical samples show how, in spite of being a generation apart,
our lives have been “intertwined” for over 30 years with that of I.E. Segal. The use of sym-
metries in physics have been a kind of watermark throughout our works, beyond their ap-
parent diversity. A special mention is due to the conformal group (of Minkowski space-time)
which has played an important role throughout the works of I.E. Segal, in particular in his
late cosmological applications. In this century, very modestly, I have been trying to develop
(unconventional in a different way) consequences in that direction.
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Abstract
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A physically relevant example is analysed in considerable detail.
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1 Introduction

Models of geometrodynamics of extended distributions of (super)charge, known as nonlinear
σ-models with topological Wess–Zumino terms, remain an active field of physical and math-
ematical research, not least because of their applicability in the description of a wide range
of dynamical systems, from the critical field theory of collective excitations of quantum spin
chains all the way to classical superstring theory, and because of the great wealth of the un-
derlying mathematics. The hierarchical higher-geometric structures – a.k.a. p-gerbes and their
morphisms – associated with background (p + 2)-form fields in these models, which couple
to the worldvolume (super)charge current through distinguished Cheeger–Simons differential
characters generalising the standard line holonomy (as derived for p = 1 in [1–4]), have long
been known not only to give rise to a canonical prequantisation of the models, as in [1, 5],
and to provide a natural cohomological classification of the models themselves, their boundary
conditions and generic defects, but also – to lead to a categorification of their prequantisable
group-theoretic symmetries, including the gauged ones, and more general dualities (e.g., T -
duality). These correspondences can oftentimes be implemented by certain defect networks
embedded in the σ-model spacetime, to which sheaf-theoretic data of k > 0-cells of the weak
(p+ 1)-categories with p-gerbes as 0-cells are pulled back along the σ-model field in order to
render the Dirac–Feynman amplitude of the σ-model with defects well-defined, cp. [4–7]. In
particular, the distinguished topological defects, studied at some length in [3–6, 8], enter the
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generalised world-sheet orbifold construction of [4, 8] of the σ-model on the space M/Gσ
of orbits of an action of a rigid-symmetry group Gσ on the target space M of the original
σ-model, in which they serve to model the so-called Gσ-twisted sector of the orbifold theory,
instrumental in the gauging of Gσ. Finally, in some highly symmetric settings, such as, e.g.,
that of the Wess–Zumino–Witten (WZW) σ-model, there are defects realising the generating
symmetries of the σ-model [3,4,6,9] which encode highly nontrivial information on the ensu-
ing quantum field theory, such as, e.g., its fusion rules and Moore–Seiberg data. Therefore, it is
clear that understanding the structure of the fully fledged higher categories behind the topo-
logical couplings of poly-phase σ-models, and constructing concrete examples of their k-cells,
is a goal of fundamental relevance to the study of these important field theories.

This note gives a concise account of a proposal, advanced in [9] on the basis of the earlier
studies [4–7], for an effective structurisation of the stratified target spaces and the higher-
geometric objects over them defining the 2d σ-model in the presence of defects compatible
with configurational symmetries of the bulk field theory. The proposal is formulated in the
most general (target-space) Z/2Z-graded setting of the Green–Schwarz-type super-σ-model
and uses mixed group-theoretic, simplicial and cohomological tools. It paves the way to a
systematic construction of maximally supersymmetric defects in the flat Z/2Z-graded target
geometry, and leads to interesting novel predictions for a higher-geometric target-space reali-
sation of the non-perturbative data of the bulk theory in the highly (super)symmetric setting
of the WZW(-type) models with Lie-(super)group targets.

2 A bicategory for the super-σ-model with defects

The 2d super-σ-model is a lagrangean theory of (super)fields from the mapping supermanifold
[Σ, M] = HomsMan(Σ, M) defined for a closed oriented (Graßmann-)even manifold Σ (the
‘spacetime’ of the model) and a supermanifold M . For M even, [Σ, M] is represented by
C∞(Σ, M) and we obtain a theory of embeddings shaped by an interplay between forces
sourced by two tensor fields on the target space M : a metric tensor g and a closed 3-form
Kalb–Ramond field χ with periods from 2πZ. For M properly graded, the inner-Hom functor
[Σ, M] is to be evaluated on the nested family of superpoints R0|N , N ∈ N×, both tensors
are even, and the ‘metric’ g typically degenerates in the Graßmann-odd directions. In either
setting, the 3-form geometrises, in the sense of [10], as a gerbe G with connective structure
of curvature χ. The gerbe trivialises upon pullback to the 2d worldsheet Σ, thereby defining
– for ∂Σ= ; – the topological Wess–Zumino (WZ) coupling of χ to the charged-loop current
in M , given by the surface holonomy [1] of G along the image of Σ in M .

In the boundary σ-model, with ∂Σ ̸= ;, specifying the gerbe G alone is not sufficient
to obtain a consistent field theory as the topological term becomes ill-defined. Instead, a dis-
tinguished 1-cell from the bicategory BGrb∇(M) of (1-)gerbes over M is required to exist
over a submanifold ιD : D ,→ M into which ∂Σ is constrained to map, to wit, a trivialisa-
tion TD : ι∗DG ∼= Iω in terms of a trivial gerbe Iω associated with a global de Rham primitive
ω ∈ Ω2(D) of χ, cp. [2]. The trivialisation is to be pulled back to ∂Σ by the σ-model field.

The boundary σ-model can be viewed as a two-phase field theory in which the bulk phase,
defined by the triple (M , g,G) abuts onto the empty phase (R0|0, 0,I0) across the boundary
domain wall (or boundary defect) ∂Σ. In this picture, the target space is the stratified super-
manifold eM ≡ M ⊔R0|0, and the two limiting field configurations at the defect are modelled
by the two mappings ι1 ≡ ιD : D −→ M ⊂ eM and ι2 : D ¹¹Ë R0|0 ⊂ eM . This is the point of de-
parture for a far-reaching generalisation, contemplated in [3,4], in which an arbitrary number
of phases coexist over 2d patches within Σ, separated by defect lines which, in turn, intersect
at a discretuum of defect junctions, graded by their valence. The physical prototype of this sit-
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uation is the decomposition of a demagnetised ferromagnetic medium into Weiss domains of
uniform magnetisation which jumps across domain walls between them, and the most natural
application of defects in the field-theoretic setting under consideration is the modelling of the
twisted sector in the theory with the target space given by the orbispace of an action (not neces-
sarily free or proper) of a symmetry group Gσ ⊂ Isom(M , g) of the σ-model for [Σ, M] – this
orbifold σ-model can be defined in terms of (Gσ-classes of) patchwise continuous field con-
figurations in M with Gσ-jump discontinuities localised at an arbitrarily fine mesh of defect
lines carrying data of a Gσ-equivariant structure on G [4,7,11,12].

The above considerations set the stage for a precise definition of the poly-phase super-
σ-model: It starts with a splitting of Σ ∈ ∂ −1; by an embedded defect graph Γ ⊂ Σ into a
family {Di}i∈I of (topologically) closed 2d domains Di which compose the extended world-
sheet bΣ = ⊔i∈I Di and intersect at a family {L(i, j)}(i, j)∈IΓ⊂I×2 of closed oriented defect lines
L(i, j). The latter form the extended defect graph bΓ = ⊔(i, j)∈IΓ Li, j ⊂ bΣ ×Σ bΣ ≡ bΣ[2] and
join transversally at defect junctions whose ensemble V = ⊔ν≥3 Vν decomposes into subsets
Vν ⊂ bΣ[ν] of junctions of a fixed valence ν, further split as Vν = ⊔ϵν∈(Z/2Z)×ν Vϵν , ϵν = (ϵ

(ν)
k,k+1),

k ∈ 1, n into subcomponents Vϵν with distinct cyclic ((ν,ν + 1) ≡ (ν, 1)) sequences of in-

coming (ϵ(ν)k,k+1 = +1) and out-going (ϵ(ν)k,k+1 = −1) defect lines, cp. [4]. There are canonical

projections p1, p2 : bΓ −→ bΣ (assigning to a given defect line the corresponding components
of the boundaries of the two domains separated by it) and pϵνk,k+1 : Vϵν −→ bΓ (assigning to
a given defect junction the endpoints of the defect lines converging at it, in anti-clockwise
cyclic order), satisfying the obvious identities of order 2, e.g., p2 ◦ p(+++)1,2 = p1 ◦ p(+++)2,3 for
two defect lines L1,2 and L2,3 in-coming at υ ∈ V(+++). To the manifolds (with boundary)
bΣ,bΓ and Vν, we associate the respective strata M0, M1 and Mν−1 = ⊔ϵν∈(Z/2Z)×ν Tϵν of the
target supermanifold (possibly further stratified, as in the boundary example above), which
determine a natural decomposition Fσ ≡ [bΣ, M0] ⊔ [bΓ , M1] ⊔ ⊔ν≥3 ⊔ϵν∈(Z/2Z)×ν [Vϵν , Tϵν] of
the space of σ-model fields. These target strata are endowed with smooth structure maps
ι1, ι2 : M1 −→ M0 and πϵνk,k+1 : Tϵν −→ M1 subject to relations of order 2 mirroring those
satisfied by their worldsheet counterparts, requisite for the consistency of the field-theoretic
framework. The structure maps give rise to a family of pullback operators: ∆ = ι∗2 − ι

∗
1

and ∆ϵν =
∑ν

k=1 ϵ
(ν)
k,k+1π

ϵv ∗
k,k+1 which obey the identities ∆ϵν ◦ ∆ = 0 and thus establish

a relative-cohomological structure on M ≡ M0 ⊔ M1 ⊔ ⊔ν≥3 ⊔ϵν∈(Z/2Z)×ν Tϵν in which the
form Ω ≡ (χ,ω, 0) ∈ Ω3(M0) ⊕ Ω2(M1) ⊕ Ω1(Mν≥3) acquires the status of a relative de
Rham 3-cocycle, cp. [7, Sec. 7.2], and the defect strata M1 and Tϵν play the rôle of corre-
spondence spaces: The former supports a trivialisation of the ∆-image of the ‘bulk’ gerbe G
on M0, whereas the latter carries a secondary trivialisation of the ∆ϵν-image of that primary
trivialisation. In order to motivate this result of the in-depth analysis reported in [4], let us
consider the special case in which ιD× : D× ≡ (ι1, ι2)(M1) ,→ M×2

0 is an embedding, and
the connected component S1 ⊂ Γ mapped to M1 separates diffeomorphic domains D1 and
D2. Invoking the Wong–Affleck ‘folding trick’ [13], we may then regard the defect line as a
boundary defect in the σ-model on D1 (onto which D2 has been ‘folded’) with the target
supermanifold M×2

0 and the gerbe pr∗1G ⊗ pr∗2G
∗ (the dualisation of pr∗2G reflects the flip of

the orientation accompanying the ‘folding’, cp. [14]), and with the boundary S1 sent to D×.
The reasoning of [2], referred to previously, now calls for a trivialisation pr∗1G ⊗ pr∗2G

∗ ∼= Iω,
or, equivalently, a so-called gerbe bi-module Φ : ι∗1G ∼= ι

∗
2G ⊗ Iω over M1. This turns out to

be the right structure for an arbitrary choice of the correspondence space (M1, ι·), cp. [4].
Note in the passing that there is always the distinguished identity defect, mapping to the com-
ponent M0 ⊂ M1 with ιA↾M0

≡ idM0
and Φ↾M0

≡ idG . There is no equally straightforward
and general argument elucidating the gerbe-theoretic structure to be pulled back to the Vϵν ,
but we may give a heuristic reasoning which emphasises the main idea behind the rigorous
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construction while circumnavigating its technicalities, given ibidem. In it, we assume all lines
to be in-coming at υ for the sake of simplicity and drop the sign labels. Thus, whenever
I(ν) ≡ (π1,2,π2,3, . . . ,πν−1,ν,πν,1)(T(++···+)) ⊂ M×ν1 is a submanifold, and the value of the ac-
tion functional of the σ-model is invariant under homotopy moves of the defect within Σ,
i.e., when we are dealing with a topological defect in a conformally invariant σ-model, we
may – upon cutting out a disc centred on a given υ ∈ V(++···+) whose boundary intersects
each line emanating from υ once, and subsequently cutting out from it another disc of ra-
dius r ≈ 0 with the same properties – deform the defect lines Lk,k+1 on the ensuing annulus
in such a way that the angular distance between the nearest neighbours (Lk,k+1, Lk+1,k+2) is
ϵ ≈ 0(≈ νϵ). Now we should be able to read off the sought-after vertex structure from the
limit ϵ↘ 0 succeeded by r ↘ 0. The former leaves us with a single defect line mapped into
M (ν)1 = {(q1, q2, . . . , qν) ∈ M×ν1 | ι2(qk) = ι1(qk+1), k ∈ 1,ν− 1} and carrying the data of
the composite 1-isomorphism (Φν ⊗ idIω1+ω2+···+ων−1

) ◦ · · · ◦ (Φ3 ⊗ idIω1+ω2
) ◦ (Φ2 ⊗ idIω1

) ◦ Φ1

with (Φk,ωk) = pr∗k(Φ,ω), representing the fusion of the ν gerbe bi-modules. The latter re-
produces the endpoint eυ of the fused defect, or, equivalently, a junction between it and the
identity defect stretching from eυ to the boundary of the big disc (and mapping to M0 ⊂ M (ν)1
in a natural manner). In order to understand what ought to be put at the junction, we fold
the disc along the fused defect and its identity extension, whereupon we obtain a half-disc
worldsheet with a piecewise boundary condition at the fold (the other part of its boundary has
a different status, and so we do not consider it here). At this stage, we may apply a dimen-
sionally reduced variant of the folding trick to the boundary (Chan–Paton) degrees of freedom
at the defect junction eυ mapped to T(++···+), whereby it transpires that eυ should carry a
trivialisation of (Φν,1 ⊗ idω1,2+ω2,3+···+ων−1,ν

) ◦ · · · ◦ (Φ3,4 ⊗ idIω1,2+ω2,3
) ◦ (Φ2,3 ⊗ idIω1,2

) ◦ Φ1,2

for (Φk,k+1,ωk,k+1) = π∗k,k+1(Φ,ω) (this makes sense as Φ is represented by a principal C×-
bundle). The heuristic argument does not fix the (global) connection of the trivialisation, it is
only the detailed computation of [4] which shows that it should be null. Altogether, we end up
with the superstring background B= (M,B,J ) composed of: the bulk target M= (M0, g,G)
in which (M0, g) is a quasi-metric supermanifold with a gerbe G of curvature χ over it; the G-
bi-brane B = (M1, ι·,ω,Φ) with the bimodule Φ : ι∗1G ∼= ι

∗
2G⊗Iω; and the (G,B)-inter-bi-brane

J = ⊔ν≥3 ⊔ϵν∈(Z/2Z)×ν (Tϵν ,π
ϵν
·,· ,ϕϵν) with the component fusion 2-isomorphisms

ϕϵν :
�

Φ
(ν)
ν,1 ⊗ idI

∆ϵνω−ω
(ν)
ν,1

�

◦ · · · ◦
�

Φ
(ν)
3,4 ⊗ idI

ω
(ν)
1,2+ω

(ν)
2,3

�

◦
�

Φ
(ν)
2,3 ⊗ idI

ω
(ν)
1,2

�

◦Φ(ν)1,2
∼= idπϵν ∗1 G ,

where (Φ(ν)k,k+1,ω(ν)k,k+1)≡ π
ϵν ∗
k,k+1(Φ

ϵ
(ν)
k,k+1 ,ϵ(ν)k,k+1ω), and where πϵν1 = ι1 ◦π

ϵν
1,2 if ϵ(ν)1,2 = +1, and

= ι2 ◦π
(ϵν)
1,2 if ϵ(ν)1,2 = −1. The superfield theory is determined by the Dirac–Feynman amplitude

ADF[ξ] = exp(iSσ[ξ]) on Fσ in which the action ‘functional’ splits Sσ[ξ] = Smetr[ξ]+SWZ[ξ]
into the ‘metric’ term Smetr[ξ] =

∫

Σ
Vol(Σ,ξ∗g) and the ‘topological’ WZ term given by the

decorated-surface holonomy exp(iSWZ[ξ]) = Hol(G,Φ,(ϕ·))(ξ|Γ ) of [4].
The higher-supergeometric elements G,Φ and ϕϵν of B are distinguished 0-, 1- and 2-

cells, respectively, of BGrb∇(M), cp. [15, 16]. The fundamental property of and the main
rationale for physical interest in these objects, discussed at length in, i.a., [1, 2, 5], is that
they canonically determine – via cohomological transgression, originally proposed in [1] – a
prequantisation of the above superfield theory and encode a lot of non-trivial information on
its (nonperturbative) structure, cp. [17] for a recent review.
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3 The trinity: Simpliciality, symmetry and semisimplicity

The construction of the poly-phase super-σ-model from the previous section features subman-
ifolds of Segal’s nerve of the Σ-fibred pair groupoid PairΣ(bΣ) of the extended worldsheet.
The nerve is a canonical example of a simplicial manifold, and the identities of order 2 sat-
isfied by the structure maps pϵνk,k+1 and pA are readily seen to follow from the elementary

simplicial identities obeyed by the face maps of PairΣ(bΣ). The order-2 relations between the
structure maps πϵνk,k+1 and ιA of the background B are a target-space realisation of their
worldsheet counterparts. They give rise to subsets in another simplicial supermanifold, to wit,
the nerve of the pair groupoid Pair(M0) of the bulk target space (cp., D× and I(ν)). While
there is no a priori reason to expect that components of the stratified target M form a simpli-
cial supermanifold, there are important circumstances in which they do: This happens, e.g., in
σ-models with topological defects with induction, studied in [4] in the context of orbifolding,
in which defect junctions of valence ν > 3 can be obtained from binary trees of defect junc-
tions of valence 3 in a limiting procedure in which the lengths of all internal edges are sent
to 0, at no cost in the value of the action functional (owing to the topological nature of the
defects). As a result, fusion 2-isomorphisms for the junctions of higher valence are induced,
through (vertical) composition, from the elementary ones for trivalent junctions which define
the binary-tree resolutions, cp. [4] and our heuresis in the previous section. Such an intrinsi-
cally semi-simplicial structure is promoted to a fully fledged simplicial one through adjunction
of the identity defect, encountered previously, whose gerbe-theoretic data idG are provided by
the bulk gerbe itself [16]. This defect can be drawn anywhere in the worldsheet (in particular,
it can be attached to any defect junction, whereby the valence of the junction is increased by
1). Its existence suggests the incorporation of the degeneracy maps of a simplicial target.

Our hitherto considerations lead us to the definition of a simplicial superstring back-
ground with the target given by (a submanifold in) a stratified simplicial superman-
ifold (M•, d(•)· , s(•)· ) with face maps d(n+1)

i : Mn+1 −→ Mn and degeneracy maps

s(n)i : Mn −→ Mn+1 defined for i ∈ 0, n+ 1 and for all n ∈ N, and subject to

the standard simplicial identities. The d(n+1)
i reproduce the previously considered struc-

ture maps (for all but the ν-th line in-coming) uniquely as (ι1, ι2) = (d(1)1 , d(1)0 ) and

(π(3)1,2,π(3)2,3,π(3)1,3) = (d
(2)
2 , d(2)0 , d(2)1 ), and – for v > 3 – also π(v)1,v = d(2)1 ◦ d(3)1 ◦ · · · ◦ d(v−1)

1

and π(v)k,k+1 = d(2)2 ◦ d(3)2 ◦ · · · ◦ d(v−k)
2 ◦ d(v−k+1)

0 ◦ d(v−k+2)
0 ◦ d(v−1)

0 for k ∈ 1, v − 1, consistently

with the identities of order 2 mentioned earlier. The s(n)i account for the existence of the flat

identity (sub-)bi-brane s(0)∗0 Φ ≡ idG : s(0)∗0 d(1)∗1 G = G ∼= G = s(0)∗0 d(1)∗0 G ⊗ Is(0)∗0 ω
and allow to

write down fusion 2-isomorphisms for defect junctions with identity defect lines attached.
As simpliciality seems to be favoured by topological defects, which are transmissive to

the Virasoro currents of a conformal σ-model, the Segal–Sugawara realisation of the Vira-
soro algebra within the universal enveloping algebra of a Kač–Moody algebra of a simple Lie
algebra, known, e.g., from the study of the WZW σ-model, suggests a natural direction of en-
hancement of our construction: Focusing on σ-models with a rich configurational symmetry
(e.g., those with targets given by homogeneous spaces of Lie supergroups), we may combine
simpliciality with symmetry to further constrain the geometry of the supertarget and the sim-
plicial gerbe over it. The point of departure is the identification of the bicategorial realisa-
tion of rigid symmetries of the σ-model, which is readily achieved for symmetries induced by
isometries of the metric bulk target (M0, g). Thus, we consider a Lie supergroup Gσ together
with actions Mnλ : Gσ × Mn −→ Mn, n ∈ N, and so also with the fundamental vector fields
Kn

X = −(X ⊗ idOMn
)◦Mnλ

∗ over the Mn ≡ (|Mn|,OMn
), labelled by elements of the tangent Lie

superalgebra gσ ∋ X of Gσ. The structure maps π(ν)k,k+1 and ιA are assumed Gσ-equivariant
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to ensure a natural alignment of the bulk and defect-quiver variations of the action functional
engendered by the Kn

X , cp. [4, 18]. We then say that Gσ is a Lie supergroup of prequanti-
sable rigid (configurational) symmetries of the super-σ-model if (i) Ω is Gσ-invariant; (ii)
the action admits a generalised relative (co)momentum κ· : gσ −→ Ω1(M0) ⊕ Ω0(M1) such
that DM·κX = −ıKX

Ω, where DM· is the relative de Rham differential [18, Prop. 2.8]; and (iii)
it lifts to the higher-geometric components of B as a Gσ-indexed1 family of 1-isomorphisms
Λg : M0λ

∗
gG ∼= G and 2-isomorphisms λg : (ι∗2Λg ⊗ idIω)◦M1λ

∗
gΦ
∼= Φ◦ ι∗1Λg satisfying the co-

herence identities Mν−1λ
∗
gϕϵν = (ϕϵν◦id)•(id◦λ

(ν)
g 1,2)•(id◦λ

(ν)
g 2,3◦id)•· · ·•(id◦λ

(ν)
g ν−1,ν◦id)•(λ

(ν)
g ν,1◦id)

(in which some canonical 2-isomorphisms have been dropped for brevity). The existence of
such a coherent lift is a necessary and sufficient condition for the invariance of the decorated-
surface holonomy under the symmetry transformations ξ 7→ M·λg ◦ ξ, and can be read off
from [18, Thm. 4.4]. The marriage between simpliciality and symmetry thus defined can be
neatly established by declaring the structure maps of (M•, d(•)· , s(•)· ) Gσ-equivariant and, ac-
cordingly, by propagating a given bulk symmetry M0λ over M• to engender a simplicial Gσ-
space with an action M•λ : Gσ ×M• −→ M•. This yields maximally (super)symmetric defects.

Drawing further motivation from the WZW σ-model, with its generating bi-chiral loop-
group symmetries and the corresponding maximally symmetric bi-branes of [3, 4, 6] which
are supported over orbits of the bulk-group action, we come to the final stage of the rather
natural structurisation of the super-σ-model. It boils down to imposing the requirement of
semisimplicity upon the simplicial target Gσ-supermanifold, by which we mean a (disjoint-sum)
decomposition of (M•, d(•)· , s(•)· , M•λ) into orbits of the simplicial Gσ-action. The demand that
these support – as a token of quantum-mechanical consistency of the construction – a simplicial
gerbe described previously is then anticipated to give rise to cohomological superselection rules
for the admissible orbits in the decomposition, which are the only ones that we choose to keep.
For M• topologically nontrivial, this is bound to yield powerful constraints on the ensuing
target geometry, coming from the standard Dirac-quantisation argument. Compactness of the
target geometry should then result in a rationalisation of the (super)background.

4 The maximally supersymmetric simplicial Lie superbackgrounds

A prime example of a super-σ-model to which the above principles may be applied construc-
tively, and in which their consequences may be explored, is the WZW(-type) σ-model, with
the bulk target given by a (Kostant–)Lie supergroup G. The latter is endowed with a canon-
ical bi-invariant Cartan 3-cocycle χq

C = q trg(θL ∧ [θL
∧,θL]), g ≡ sLieG which geometrises,

in physically interesting cases (e.g., for G even compact and connected, and on the super-
Minkowski group) and for a suitable choice of the loop charge q ∈ R, as a supersymmetric
gerbe GC. The target is to be seen as an orbit of an action G0λ of a subgroup of the group
G× G of left and right translations on G. The corresponding maximally supersymmetric de-
fects implement the right regular action ℘ of G on itself, cp. [3,4,6], and so here the stratified
target M• embeds in the nerve N(G⋊℘G) of the right action groupoid G⋊℘G. The morphism
composition of the latter groupoid represents supergroup multiplication mG : G×G −→ G,
which admits a gerbe-theoretic realisation in the form of a (generalised) supersymmetric mul-
tiplicative structure, instrumental in the construction of the bi-brane for the said multiplica-
tive defect. The structure is a simplicial gerbe over Segal’s model of the classifying space BG
of G (containing N(G ⋊℘ G) as a simplicial sub-manifold), and as such comprises a distin-
guished 1-isomorphism M : pr∗1GC ⊗ pr∗2GC

∼= m∗GGC ⊗ IϱPW
over G×2, written in terms of a

Polyakov–Wiegmann 2-form ϱPW, and a coherent (quasi-)associator 2-isomorphism α over

1We put our discussion in the so-called S-point picture for the sake of simplicity.
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G×3, cp. [9, 19] for details. As the defect of interest maps to G×2 and has structure maps
(ι1, ι2) = (pr1,℘ ≡ mG), we may invoke the existence of M in the Wong–Affleck argument
of Sec. 2 to conclude that GC must trivialise over the second cartesian factor ιD : D ,→ G in
the relevant bi-brane geometry eιD : G × D ,→ G×2. This, however, implies that the bi-brane
arises as a product Bmaxym ≡ (G × D, pr1,℘,eι∗DϱPW − pr∗2ωD,Φ) of another kind of fusion:
Φ= (eι∗DM⊗idI−pr∗2ωD

)◦(idpr∗1GC
⊗pr∗2T

−1
D ⊗idI−pr∗2ωD

) between eι∗DM and the boundary bi-brane

B∂ ≡ (D, ιD,∗,ωD,TD) introduced before. By a similar argument [9], the existence of α turns
the problem of constructing ϕϵν+1

into a search – over (the second factor in) a disjoint union of
Gνλ-orbits within G×eDν ≡ G×(D×ν∩m−1

1_ν(D)) with m1_ν ≡mG◦(mG×idG)◦· · ·◦(mG×idG×ν−2)

– for boundary fusion 2-isomorphisms ϕ(∂ )ν+1 : ⊗νi=1 pr∗i TD
∼= (m∗1_νTD ⊗ id) ◦M1_ν−1,ν↾eDν , de-

fined in terms of the 1-isomorphism M1_ν−1,ν =M12···ν−1,ν◦· · ·◦(M12,3⊗id)◦(M1,2⊗id) in which
M12···k−1,k = ((m1_k−1× idG)◦(pr1, pr2, . . . , prk))

∗M. (Incidentally, this gives a physical mean-
ing to the seemingly meaningless concept of ‘fusion of branes’ discussed in the literature [20].)

In the quantisation of the σ-model determined by the gerbe, states are represented by
disc Dirac–Feynman amplitudes [21, Sec. 4.1], and so it stands to reason that the boundary bi-
brane B∂ provides a geometric realisation of the spectrum of the quantum theory. Accordingly,
we may anticipate that fusion 2-isomorphisms carry information on its Verlinde fusion ring.
We conclude this note with a review of evidence which corroborates these expectations and a
recapitulation of conjectures based firmly thereon in the setting of the bosonic WZW σ-model.
For further details, as well as novel bicategorial constructions for the Green–Schwarz super-
σ-model with the super-Minkowskian target, we refer the Reader to the extensive study [9].

The bosonic WZW defect & another link to the CS theory. The bulk WZW σ-model for the
compact 1-connected Lie group G is defined by the Cartan–Killing metric g= −6q trg(θL⊗θL)
and the Cartan 3-form χ

q
C with 24πq ≡ k ∈ N×, co-normalised in a manner which ensures

non-anomalous conformality of the (quantised) field theory. Integrality of the level k implies
the existence of a unique (isoclass of) gerbe geometrising χq

C – the k-th tensor power of the
Gawȩdzki–Hitchin–Meinrenken basic gerbe GC over G. The rigid symmetries of the bulk theory
make up Gσ = G×G and lift to N•(G⋊℘G) as Gnλ : Gσ×G×n+1 ∋ ((x , y), g, hi) 7−→ (x ·g · y−1,
Ady(hi)) ∈ G×n+1. Cohomological arguments localise B∂ over the disjoint union D = ⊔λ∈Pk

+
Cλ

of the conjugacy classes Cλ = AdG(e2πiλ/k) labelled by weights λ from the fundamental affine
Weyl alcove Pk

+ at level k, with ω∂ ↾Cλ fixed uniquely by the bi-chiral loop-group extension of
G1λ, cp. [2,9]. The existence of (M,α) is unobstructed, and so B∂ induces the non-boundary
maximally symmetric bi-brane as discussed above. Thus, the connected components G×Cλ of
the defect-line target are in a 1-1 correspondence with chiral sectors of the bulk Hilbert space,
furnishing integrable highest-weight representations Vλ,k of the Kač–Moody algebra bgk.

The localisation of Bmaxym conforms with the ‘triple-S’ argument of Sec. 3, and the last
remark strengthens the expectation that the associated inter-bi-brane carries geometric infor-
mation on the Verlinde fusion ring of the WZW σ-model. Recall that the ring structure is
encoded by the multiplicity spaces in the decomposition, into the Vλ3,k, of the Hilbert space
of the boundary WZW σ-model on a strip with boundaries carrying the data of B∂ , or, equiv-
alently, by the spaces C (Vλ1,k ⊗ Vλ2,k,Vλ3,k) of rank-3 conformal blocks of the (chiral) bulk
WZW theory, cp. [22]. Each such space is the Hilbert space of the 3d Chern–Simons (CS) theory
on the time cylinder R×CP1 over CP1, coupled to vertical Wilson lines R×{σi}, i ∈ {1, 2,3}
with holonomies along the respective non-contractible loops, encircling simply the punctures
σi , valued in the Cλi

, cp. [21]. We may now look for imprints of these structures in the bound-
ary component T ∂++− of the elementary inter-bi-brane geometry T++− = G × T ∂++− (e.g.),
which the ‘triple-S’ argument predicts to be (a subset in) the disjoint union of AdG-orbits in
Tλ3
λ1,λ2
≡ (Cλ1

×Cλ2
)∩m−1

G (Cλ3
) for any λ1,λ2 and λ3. And, remarkably, we find them! Indeed,
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the necessary condition for the existence of ϕ(∂ )3 on Tλ3
λ1,λ2

is the vanishing of ∆++−ω (which

restricts to T ∂++−), and the latter 2-form turns out to be. . . the partially symplectically reduced
presymplectic form on the state space of the CS theory described above. Its partial reduction,
due to Alekseev and Malkin [23], with respect to the ‘pointed’ gauge group associated with a
homological decomposition of CP(3) ≡ CP\{σ1,σ2,σ3} relative to a point σ∗ ∈ CP(3), leaves
us with the tangent of the residual gauge group [σ∗,G]≡ G as the characteristic distribution
of ∆++−ω, which is just the symmetry group G of the AdG-orbits in T ∂++−, whose disjoint
union composes the classical state space of the CS theory in the parametrisation of [23]. In the
light of the interpretation of the conformal blocks as intertwiners Hom

bgk
(Vλ1,k ⊗Vλ2,k,Vλ3,k)

between current-symmetry sectors of the chiral bulk theory,2 this result is also in keeping with
the identification of the transgressed fusion 2-isomorphisms transmissive to rigid bulk symme-
tries (which the WZW ones are, cp. [18]) as intertwiners of the symmetry representations on
the (twisted) state spaces fusing at the defect junction, cp. [5,7].

The structure of the simplicial WZW target is ultimately determined by the requirement of
existence of the 2-isomorphisms ϕ(∂ )ν , expected to distinguish a subfamily within the disjoint
union of AdG-orbits in the boundary factors T ∂ϵν of the Tϵν . Taking into account the above
highly nontrivial result (which generalises to arbitrary ν), we are led to the following conjec-
tures:

1. The fusion 2-isomorphisms ϕ(∂ )ν exist only over manifolds ×ν−1
i=1 Cλi

∩m−1
1_ν−1(Cλν) with

non-vanishing Verlinde numbers dimC (⊗ν−1
i=1 Vλi ,k,Vλν,k) (for conformal blocks of arbi-

trary rank).

2. Given such a manifold, the number of those AdG-orbits in its decomposition which sup-
port ϕ(∂ )ν is given by the corresponding Verlinde number.

One may also anticipate that the fusion 2-isomorphisms of valence ν > 3 are induced from
the elementary ones with ν = 3 due to simpliciality of the WZW background, and that the
inter-bi-brane fusing matrices defined, as described in detail in [9], by the associator move
of [4] relating inequivalent such induction schemes for ϕ(∂ )4 , are intimately related to the
standard fusing matrices of the bulk WZW σ-model. The first conjecture was corroborated for
the special case of G = SU(2) in [6], and the last expectation hinges on the highly nontrivial
cohomological evidence from the simple-current sector gathered in [4] as well as on simple
considerations of the topologicality of the maximally symmetric defect. Various geometric,
algebraic and field-theoretic arguments in favour of the second conjecture were given in [9].
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Abstract

We construct a new class of finite dimensional indecomposable representations of sim-
ple superalgebras which may explain, in a natural way, the existence of the heavier ele-
mentary particles. In type I Lie superalgebras sl(m/n) and osp(2/2n) , one of the Dynkin
weights labeling the finite dimensional irreducible representations is continuous. Taking
the derivative, we show how to construct indecomposable representations recursively
embedding N copies of the original irreducible representation, coupled by generalized
Cabibbo angles, as observed among the three generations of leptons and quarks of the
standard model. The construction is then generalized in the appendix to quasi-reductive
Lie superalgebras.
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1 Introduction

In Kac’s complete classification of the simple Lie superalgebras [1, 2], two fami-
lies contain an even generator y commuting with the even subalgebra, namely the
A(m − 1, n − 1) = sl(m/n), m ̸= n and the C(n + 1) = osp(2/2n) superalgebras. They ad-
mit a single Dynkin diagram with a single odd positive simple root β [3].
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The even subalgebra, in the corresponding Chevalley basis, has the structure:

[hi , h j] = 0 , [hi , e j] = Ci je j , [hi , f j] = −Ci j f j ,
[y, hi] = [y, ei] = [y, fi] = 0 , i, j = 1,2, . . . , r ,

(1)

where r, hi , ei , fi and Ci j denote respectively the rank, the Cartan commuting generators, the
raising and the lowering generators associated to the simple roots, and the Cartan matrix of
the semisimple even Lie subalgebra sl(m)⊕sl(n), respectively sp(2n), with rank r = m+n−2,
respectively r = n. The remaining raising (respectively lowering) generators of the even
semisimple subalgebra are generated by the iterated commutators of the e (respectively f )
generators limited by the Serre rule ad(ei)(e j)

−Ci j+1 = 0. Finally, the additional even genera-
tor y , that physicists often call the hypercharge, centralizes the even subalgebra. Even in finite
dimensional representations, y is not quantized, and as shown below, this is the cornerstone
of our new construction of nested indecomposable N -replications of an arbitrary Kac module
which we propose to call matryoshka representations.

In its odd sector, the superalgebra has P odd raising generators ui corresponding to the
P positive odd roots βi and P odd lowering generators vi corresponding to the −βi , with
P = mn for sl(m/n), or P = 2n for osp(2/2n). In both cases, the ui sit in the irreducible
fundamental representation of the even subalgebra. We call u1 the lowest weight vector of the
ui representation; u1 corresponds to the simple positive odd root β = β1. Reciprocally, we call
v1 the highest weight vector of the vi . For our following analysis, the important relations are

[y, ui] = ui , [y, vi] = −vi ,
{ui , u j}= {vi , v j}= 0 ,
{ui , v j}= da

i j µa + k y δi j ,
(2)

where da
i j and k are constants (k ̸= 0) and theµa span the even generators of type (h, e, f ). That

is: the hypercharge y grades the superalgebra, with eigenvalues (0,±1). The ui anticommute
with each other. So do the vi . Finally and most important, the anticommutator of the odd
raising operator ui with the odd lowering operator vi corresponding to the opposite odd root
depends linearly on the hypercharge y . In particular, {u1, v1} = hβ = da

11ha + k y , where k is
non zero and hβ is the Cartan generator associated to the odd simple root β . See for example
the works of Kac [1,4] or the dictionary on superalgebras by Frappat, Sciarrino and Sorba [5]
for details.

2 Construction of the Kac modules

Following Kac [4], choose a highest weight vector Λ defined as an eigenstate of the Cartan
generators (hi , y), and annihilated by all the raising generators (ei , u j). The eigenvalues ai
of the Cartan operators hi are called the even Dynkin labels. The eigenvalue b of the Cartan
operator hβ corresponding to the odd simple root is called the odd Dynkin label:

hiΛ= aiΛ , {u1, v1} Λ= hβΛ= bΛ . (3)

Construct the corresponding Verma module using the free action on Λ of the lowering
generators ( f , v)modulo the commutation relations of the superalgebra. Since the v anticom-
mute, the polynomials in ( f , v) acting on Λ are at most of degree P in v, and hence the Verma
module is graded by the hypercharge y and contains exactly P layers.

Consider the antisymmetrized product w− of all the odd lowering generators
(vi , i = 1, 2, ..., P). The state Λ = w−Λ is a highest weight with respect to the even subal-
gebra eiΛ = 0. Indeed ei annihilates Λ and each term in the Leibniz development of [ei , w−]
contains a repetition of one of the v generators, and hence vanishes.
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Let ρ be the half supersum of the even and odd positive roots

ρ = ρ0 −ρ1 =
1
2(
∑

α+ −
∑

β+) . (4)

Let w+ be the antisymmetrized product of all the u generators. As shown by Kac [4], we have

w+Λ= w+w−Λ= ±
∏

i < Λ+ρ|βi > Λ , (5)

where the product iterates over the P positive odd roots βi , the sign depends on the relative
ordering of w+ and w− and the bilinear form < | > is a symmetrized version of the Cartan
metric. If this product is non-zero, the Verma module is called typical. Λ belongs to the orbit
of the Λ and vice-versa, hence they both belong to the same irreducible submodule. If the
scalar product < Λ+ρ|βi > vanishes for one or more odd positive root βi , the Verma module
is no longer irreducible but only indecomposable since Λ is not in the orbit of Λ. It is then
called atypical of type i and there exists a state ωi with Cartan eigenvalues Λi − βi which
is a sub highest weight annihilated by all the even and odd raising operators (e, u). In the
present study, we do not quotient out by this submodule but preserve the indecomposable
Verma module construction because we want to preserve the continuity in b. Notice that in
the A and C superalgebras that we are studying the odd roots are on the light-cone of the
Cartan root space: < βi|βi >= 0. Therefore, if Λ is atypical i, the secondary highest weight
Λ− βi is also atypical i.

As in the Lie algebra case, this Verma module is infinite dimensional, because of the accept-
able iterated action of the even lowering generators f . But as we just discussed, the iterated
action of the anticommuting odd lowering operators v saturates at layer P.

Let us now recall for completeness the usual procedure to extract a finite dimensional
irreducible module from a Lie algebra Verma module. All the states with negative even Dynkin
labels which are annihilated by the even raising generators can be quotiented. For example,
given a Chevalley basis (h, e, f ) for the Lie algebra sl(2) and a Verma module with highest
weight Λ, we have

[h, e] = e , [h, f ] = − f , [e, f ] = 2h ,
hΛ= aΛ , eΛ= 0 ,

(6)

hence
hf nΛ= (a− 2n) f nΛ , e f nΛ= n(a− n+ 1) f n−1Λ . (7)

If a is a positive integer, the Verma module can be quotiented by the orbit of the state f a+1Λ,
and the equivalence classes form an irreducible module of finite dimension a+ 1.

Generalizing to a superalgebra, all the even Dynkin labels ai associated to the Cartan op-
erators hi , i = 1,2, ..., r are restricted to non negative integers. We pass to the quotient in
each even submodule and define the Kac module as the resulting finite dimensional quotient
space. The crucial observation is that the identification of the even sub highest weights ω
requests to solve a set of equations involving the even Dynkin labels ai , but independent of
the odd Dynkin weight b, which remains non-quantized. For example, in sl(2/1), the state
ω = (a f v − (a+ 1)v f )Λ is an even highest weight [6]. But please remember that we do not
quotient out the atypical submodules.

Note that this procedure does not extend to the type II Lie-Kac superalgebras B(m, n),
D(m, n), F(4) and G(3), because these algebras contain even generators with hypercharge
y = ±2. For example the generator associated to the lowest weight of the adjoint representa-
tion. Indeed, the supplementary root of the (affine) extended Dynkin diagram is even. Thus,
the Kac module is finite dimensional if and only if its hidden extended Dynkin label is also
a non negative integer. This integrality constraint involves b. So the representations of the
type II superalgebras are finite dimensional only for quantized values of b, see Kac [4] for the
original proofs and [7,8] for examples.
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The remaining even highest weights Λp
(...) are spread over the P layers with hypercharge

decreasing from y down to y − P. On the zeroth layer, we have Λ0 = Λ, on the first layer
we have the P weights Λ1

i = Λ − βi , on the second layer we have the P(P − 1)/2 weights
Λ2

i j = Λ − βi − β j , i ̸= j, down to the P th layer ΛP
12...P = Λ, each time excluding the even

highest weight vectors with negative even Dynkin labels, since they have been quotiented out.
For an explicit construction of the matrices of the indecomposable representations of sl(2/1),
we refer the reader to our study [6] and references therein.

To conclude, if the Kac module with highest weight Λ is typical, it is irreducible. If it is
atypical, it is indecomposable. In both cases, its even highest weights are the Λp

(...) and the

whole module is given by the even orbits of the Λp
(...) with non negative even Dynkin labels

and hypercharge y − p.

3 On the derivative of the odd raising generators

Consider a finite D dimensional Kac module with highest weight Λ, typical or atypical, as de-
scribed in the previous section. Call ai the even Dynkin labels and b the odd Dynkin label and
y the eigenvalue of the hypercharge Y acting on the highest weight state. Notice that y is a
linear combination of b and the even Dynkin weights ai . As shown above, in our Chevalley ba-
sis, the matrices representing the (e, f , v) generators in the Verma module are by construction
independent of b, and the matrix representing the hypercharge generator Y can be written as
Y = y I + αihi , where I is the identity, hi the even Cartan generators of the semi simple even
subalgebra (i.e. excluding Y ) and the αi are constants independent of y . This remains true
in the Kac module because the quotient operations needed to pass to the finite dimensional
submodule does not involve b. Finally, the matrices representing the odd raising generators u
are linear in b, i.e. in y , because, when we push an odd raising generator u acting from the
left through an element of the Kac module, i.e. through a polynomial in ( f , v) acting on Λ, we
must contract u with one of the v generators before u touches Λ.

Now consider the derivatives u′i of the odd raising ui matrices

u′i(a) = ∂yui(a, y) . (8)

Using (2), we derive the anticommutation relations

{u′i , v j}= ∂y{ui , v j}= ∂y(da
i jµa + k yδi j) = kδi j , (9)

where the µ matrices span the even generators (h, e, f ), and where µ(a) and v(a) are in-
dependent of y . Another way of seeing the same results is to compute the {ui(a, y), v j(a)}
anticommutator, divide by y and take the limit when y goes to infinity. Since the matrix ele-
ments of the even generators are all bounded when y diverges, except the hypercharge Y with
spectrum y, y − 1, ..., y − P, we arrive at the same conclusion: the {u′, v} anticommutator is
proportional to the identity on the whole Kac module. Many explicit examples of the matrices
u(a, y), u′(a), v(a) can be found in our extensive study of sl(2/1) [6].

This result holds for the Verma modules, for the typical-irreducible Kac modules and for
the atypical-indecomposable Kac modules of type I superalgebras, but does not hold for the
type II superalgebras or for the irreducible atypical modules of the type I superalgebras be-
cause we need continuity in b. Indeed, we proved in [9] by a cohomology argument that the
fundamental atypical triplet of sl(2/1) cannot be doubled.

The procedure does not hold for the simple superalgebras psl(n/n). It works for sl(n/n),
but this superalgebra is not simple because if m = n the (m/n) identity operator Y is su-
pertraceless and generates an invariant 1-dimensional subalgebra that can be quotiented out.
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The resulting simple superalgebra psl(n/n) corresponds to the quantized case y = 0 and we
cannot take the derivative.

4 Construction of an indecomposable N-replication of a Kac mod-
ule

Given a finite D dimensional Kac module, typical or atypical-indecomposable, represented by
D × D matrices (µ, y, u, v), constructed as above and where µ collectively denotes the even
matrices of type (h, e, f ), consider the doubled matrices of dimension 2D× 2D:

M =

�

µ 0
0 µ

�

, Y =

�

y I
0 y

�

, U =

�

u u′

0 u

�

, V =

�

v 0
0 v

�

, (10)

where we used the D × D matrices u′ constructed in the previous section. By inspection, the
matrices (M , Y, U , V ) have the same super-commutation relations as the matrices (µ, y, u, v)
and therefore form an indecomposable representation of the same superalgebra of doubled
dimension 2D. This representation cannot be diagonalized since the matrix Y representing
the hypercharge cannot be diagonalized because of its block Jordan structure.

The block u′ can be rescaled via a change of variables

Q =

�

λ 0
0 1

�

, Q−1 =

�

1/λ 0
0 1

�

,

QUQ−1 =

�

u λu′

0 u

�

, QYQ−1 =

�

y λI
0 y

�

.

(11)

Furthermore, we can construct a module of dimension N D, for any positive integer N by
iterating the previous construction. By changing variables we can then introduce a complex
parameter λ at each level. For example, for N = 3, we can construct

M =





µ 0 0
0 µ 0
0 0 µ



 , Y =





y I 0
0 y I
0 0 y



 , Q̃Y Q̃−1 =





y λ1 I 0
0 y λ2 I
0 0 y



 ,

U =





u u′ 0
0 u u′

0 0 u



 , V =





v 0 0
0 v 0
0 0 v



 , Q̃UQ̃−1 =





u λ1u′ 0
0 u λ2u′

0 0 u



 .

(12)

Matryoshka theorem: Given any finite dimensional, typical or atypical, Kac module of
a type I simple superalgebra, A(m/n), m ̸= n or C(n), using the derivative u′ of the odd
raising generators with respect to the hypercharge y which centralizes the even subalgebra,
we can construct an indecomposable representation recursively embedding N replications of
the original module.

We propose the name matryoshka because this nested structure strongly resemble the fa-
mous Russian dolls.

5 Conclusion

Representation theory of Lie algebras and superalgebras involves three increasingly difficult
steps: classification, characters and construction. In Lie algebra theory, we can rely on three
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major results: all finite dimensional representations of the semisimple Lie algebras are com-
pletely reducible, their irreducible components are classified by the Dynkin labels of their
highest weight state, their characters are given by the Weyl formula. Nevertheless, the actual
construction of the matrices, although known in principle, remains challenging. We only know
the matrices in closed analytic form in the case of sl(2).

Finite dimensional simple Lie superalgebras have been classified by Kac [1]. In the present
study, we only consider the simple basic classical superalgebras of type 1, sl(m/n), m ̸= n and
osp(2, 2n) which are characterized by the existence of an even generator, the hypercharge y ,
commuting with the even subalgebra. As for Lie algebras, their irreducible modules can be
classified by the Dynkin labels of their highest weight and Kac [4] has discovered in 1977 an
elegant generalization of the Weyl formula.

But there are two additional difficulties. First, as found by Kac, the hypercharge y of the
finite dimensional modules is not quantized, but for certain discrete values, the Kac module
ceases to be irreducible but becomes indecomposable. One can quotient out one or several in-
variant submodules and the Weyl-Kac formula of the irreducible quotient module is not known
in general [10,11]. Furthermore, there is a rich zoology of finite dimensional indecomposable
modules which were progressively discovered by Kac [4], Scheunert [12], Marcu [13, 14],
Su [15], and others, culminating in the classification of Germoni [16, 17]. See [6] for an
explicit description of the indecomposable sl(2/1) modules.

A particular class, first described by Marcu [14], is of great interest in physics because it has
implications for the standard model of leptons and quarks. These particles are well described
by sl(2/1) irreducible modules graded by chirality [18–23]. However, experimentally, they
appear as a hierarchy of three quasi identical families, for example the muon and the tau
behave as heavy electrons. This hierarchical structure has no clear explanation in Lie algebra
theory. Furthermore, the three families leak into each other in a subtle way first described
by Cabibbo (C) for the strange quarks and generalized to all three families by Kobayashi and
Maskawa (KM). In a certain technical sense, the axis of the electroweak interactions is not
orthogonal to the axes of the strong interactions, but tilted by small angles, called the CKM
angles. As a result the weak interactions are not truly universal because the heavier quarks
leak into the lighter quarks. Again, this experimental phenomenon has no explanation in Lie
algebra theory precisely because all representations are completely reducible.

Marcu found in 1980 [14] that the fundamental sl(2/1) quartet can be duplicated and
triplicated in an indecomposable way. Coquereaux, Haussling, Scheck and coworkers [24–26]
have proposed in the 90’s to interpret these representations as a description of the CKM mech-
anism. This raises several questions: is the construction of Marcu limited to three generations,
as observed experimentally in the case of the quarks and leptons, or does there exist indecom-
posable modules involving more layers? Is this property specific of sl(2/1), or is it applicable
to other simple Lie-Kac superalgebras?

We have previously partially answered these questions. In [16, 17] the existence of multi
generations indecomposable modules is indicated. In [9], we proved, using cohomology, that
any Kac module of a type I superalgebra can be duplicated. But these were just proofs of
existence.

In the present study, using the derivative of the odd generators relative to the hypercharge,
we have shown that any Kac module of a type I Lie-Kac superalgebra sl(m/n), m ̸= n and
osp(2/2n) can be replicated any desired number of times in an indecomposable way. We
have also shown that atypical representations cannot be replicated. We can therefore, in this
framework predict the existence of three species of sterile right neutrinos from the observation
of the non-zero PMNS (leptonic CKM) mixing angles.

In the appendix presented below (A), we further show that these results are valid for any
Kac module K(L) over a quasi-reductive Lie superalgebra g of type I. As the reader will no-
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tice, the style of this appendix contributed by M.G. is more general and more abstract. We
hope that this split/joint presentation will appeal to the wide audience of the G34 conference,
equally composed of mathematicians and physicists. The main result is that the “matryoshka
N-replication” of the Kac module K(L) has the structure of a module over a Heisenberg super-
algebra.

These results are interesting for physics, surprising relative to Lie algebra theory, and very
specific as we actually construct the matrices of these “matryoshka” Russian dolls indecom-
posable modules, in terms of the matrices of the original Kac module, rather than limit our
analysis to their existence, classification, or the calculation of their characters.
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A Appendix: Generalization to quasi-reductive Lie superalgebras

Contributed by Maria Gorelik.

A finite-dimensional Lie superalgebra g = g0 ⊕ g1 is quasi-reductive if g0 is a reductive Lie
algebra and g1 is a semisimple g0-module. Quasi-reductive Lie superalgebras were introduced
in [27, 28]. Simple quasi-reductive Lie superalgebras are classical Lie superalgebras in Kac’s
classification (see [2]). For other examples and partial classification of quasi-reductive Lie
superalgebras, see [27], [28], and [29].

As above, the base field isC and g is a quasi-reductive Lie superalgebra with an even Cartan
subalgebra h. This means that h is a Cartan subalgebra of the reductive Lie algebra g0 and that
gh = h. The only simple quasi-reductive Lie superalgebras which do not satisfy this assumption
are Q-type superalgebras. We denote by h′ the center of the reductive Lie algebra g0; one has

h= h′ × h′′ , where h′′ := [g0,g0]∩ h .

We identify (h′)∗ with the subspace (h′′)⊥ = {ν ∈ h∗| ν(h) = 0 for any h ∈ h′′}. One has

g0 = [g0,g0]× h
′ .

For an h-module N we denote by Nν the generalized weight space corresponding to ν ∈ h∗:

Nν = {v ∈ N | ∀h ∈ h , (h− ν(h))sv = 0 , for s >> 0} .

All modules in this section are assumed to be locally finite over h with generalized finite-
dimensional weight spaces: this means that N = ⊕νNν and dim Nν <∞ for all ν ∈ h∗. We
set

ch N :=
∑

ν

dim Nνe
ν .
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A quasi-reductive Lie superalgebra is of type I if g= g−1⊕g0⊕g1 is a Z-graded superalgebra.
In this case g0 = g0 is a reductive Lie algebra, g±1 are odd commutative subalgebras of g and h

acts diagonally on g±1. Examples of quasi-reductive Lie superalgebra of type I include gl(m|n),
osp(2|2n), pn and others.

A.1 Self-extensions of highest weight modules

Let M be a module with the highest weight λ (i.e. M is a quotient of M(λ)), and let vλ ∈ M
be the highest weight vector, i.e. the image of the canonical generator of M(λ). Introduce the
natural map

ΥM : Ext1
g(M , M)→ h∗ ,

as follows. Let 0 → M →φ1 N →φ2 M → 0 be an exact sequence. Let v := φ1(vλ) and fix
v′ ∈ Nλ such that φ2(v′) = vλ. Observe that v, v′ is a basis of Nλ and so there exists µ ∈ h∗

such that for any h ∈ h one has h(v′) = λ(h)v′ + µ(h)v (i.e., the representation h→ End(Nλ)

is h 7→
�

λ(h) µ(h)
0 λ(h)

�

). The map ΥM assigns µ to the exact sequence. It is easy to see that

ΥM : Ext1(M , M)→ h∗ is injective.
Notice that if 0→ M → N1→ M → 0 and 0→ M → N2→ M → 0 are two exact sequences

then
N1
∼= N2 ⇐⇒ ΥM (N1) = cΥM (N2) , for some c ∈ C \ {0} . (A.1)

If N is an extension of M by M (i.e., N/M ∼= M) we denote by ΥM (N) the corresponding
one-dimensional subspace of h∗, i.e. ΥM (N) = Cµ, where µ is the image of the exact sequence

0→ M → N → M → 0.

A.1.1

Let M be a finite-dimensional highest weight module. Since g0 is reductive, the algebra h′′

acts diagonally on any finite-dimensional g-module. Therefore the image of ΥM annihilates
h′′, so lies in (h′)∗. In particular, for the image of ΥM is zero and Ext1(M , M) = 0 if h′ = 0.
In other words, the finite-dimensional highest weight modules do not admit non-splitting self-
extensions if g0 is semisimple (for instance, if g is a basic classical Lie superalgebra of type
II).

A.2 Kac modules

Let g= g−1 ⊕ g0 ⊕ g1 be a quasi-reductive superalgebra of type I.
The following useful construction appears in several papers including [30]. For a given

g0-module M , we may extend M trivially to a g0 + g1-module and introduce the Kac module

K(M) := Indg
g0+g1

M .

This defines an exact functor K : g0 −Mod → g−Mod which is called Kac functor. It is easy
to see that K(M) is indecomposable if and only if M is indecomposable.

As g0-module we have K(M)∼= M ⊗Λg−1. Since Λg−1 is a finite-dimensional module with
a diagonal action of h, M is finite-dimensional (resp., diagonal h-module) if and only if K(M)
is finite-dimensional (resp., diagonal h-module) . Moreover, M is a locally finite h-module with
generalized finite-dimensional weight spaces if and only if K(M) is such a module.
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A.2.1 Self extensions of Kac modules

Take ν ∈ (h′)∗ and let Jn(ν) be the (n|0)-dimensional indecomposable h-module spanned by

v1, . . . , vn with the action hvi = ν(h)vi+1), hvn = 0. (h acts on V2(ν)

�

0 0
ν(h) 0

�

). Observe that

hJn(ν) = 0 for all h ∈ h′′. We view Jn(ν) as g0-module with the zero action of [g0,g0].
For any g0-module L the product Jn(ν)⊗L is an indecomposable g0-module which admits a

filtration of length n with the factors isomorphic to L. Thus K(L⊗Jn(ν)) is an indecomposable
g-module which admits a filtration of length n with the factors isomorphic to the Kac module
K(L); we denote this module by K(L; n;ν). In particular, K(L; 2;ν) is a self-extension of the
Kac module K(L).

A.2.2

Let L be a finite-dimensional highest weight g0-module. Then K(L) is a finite-dimensional
highest weight g-module By A.1.1, the image of ΥK(L) lies in (h′)∗. Using the above construction
we obtain that the the image of ΥM is equal to (h′)∗.

A.2.3

Lemma. If L is a g0-module, where h acts locally finitely with finite-dimensional generalized
weight spaces, then K(L; n;ν)∼= K(L; n;µ) if and only if ν ∈ C∗µ.

Proof. If ν ∈ C∗µ, then Jn(ν)∼= Jn(µ) and thus K(L; n;ν)∼= K(L; n;µ).
Conversely, assume that K(L; n;ν)∼= K(L; n;µ). As g0-modules

K(L; n;ν)∼= L ⊗ Jn(ν)⊗Λg−1
∼= K(L)⊗ Jn(ν) .

Thus for any λ ∈ h∗ we have K(L; n;ν)λ ∼= K(L)λ ⊗ Jn(ν). Take λ such that K(L)λ ̸= 0. Then
K(L; n;ν)∼= K(L; n;µ) implies

K(L)λ ⊗ Jn(ν)∼= K(L)λ ⊗ Jn(µ) , as h-modules. (A.2)

We will use the following fact: if V1, V2 are two modules over a one-dimensional Lie algebra
Cx with the minimal polynomials of x on Vi equal to (x − ci)ki , then the minimal polynomial
of x on V1 ⊗ V2 equals to (x − (c1 + c2))k1+k2 .

Assume that ν ̸∈ C∗µ. Then there exists h ∈ h such that ν(h) = 0 ̸= µ(h). Recall that
h− λ(h) acts nilpotently on K(L)λ, so the minimal polynomial of h on K(L)λ takes the form
(h−λ(h))k. By above, the minimal polynomial of h on K(L)λ⊗Jn(ν) (resp., on K(L)λ⊗Jn(µ))
is (h−λ(h))k (resp., (h−λ(h))k+n). Hence (A.2) does not hold: a contradiction.

A.3 Action of the Heisenberg superalgebra

Let g be a quasi-reductive superalgebra of type I. Retain notation of A.2.1. Let ι′ : g0 → h′

be the projection along the decomposition g0 = [g0,g0] × h′. We endow the superspace
H = g−1 ⊕ h′ ⊕ g1 by the structure of Lie superalgebra with the bracket [−,−]n given by

[g1,g1]n := [g−1,g−1]n := 0 , [a−, a+]n := ι′([a−, a+]) , [h, a±]n := 0 ,

for all a± ∈ g±1 and h ∈ h′. Observe that H is a quasi-reductive superalgebra of type I (in fact,
H is the direct product an odd Heisenberg superalgebra and a commutative superalgebra). For
an h′-module M we denote by KH(M) the Kac module for H constructed as in A.2.1.

Let L be a g0-module. The construction (10) defines an action of H on a self-extension of
a Kac module K(L); we describe this action below.
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A.3.1

Fix µ ∈ (h′)∗. Consider a one-parameter family of n-dimensional g0-modules Vn(tν) con-
structed in A.2.1 (for t ∈ R). Then K(L; n; tν) is a one-parameter family of self-extensions
of K(L): this self-extension is splitting if t = 0; by (A.1), for t ̸= 0 all these modules are
isomorphic. As a vector space K(L; n; tν)) is canonically isomorphic to

V := L ⊗ Jn(ν)⊗Λg−1 .

We let ρt : g→ End(V ) be the representation corresponding to K(L; n; tν).
It is easy to see that ρt(u) = ρ0(u) for u ∈ [g0,g0] + g−1 and that for u ∈ h′ + g1 one has

ρt(u) = ρ0(u) + tρ′t(u) for some ρ′t(u) ∈ End(V ).

A.3.2

Lemma. Define a linear map φ : H → gl(V ) by

φ(a−) := ρ0(a−) , φ(a+) := ρ′t(a+) , φ(h) := ρ′t(h) ,

for a± ∈ g± and h ∈ h′. Thenφ is the H-representation isomorphic to the Kac module KH(L′, n,ν)
where L ∼= L′ as a superspace and the action of H0 = h′ on L′ is trivial.

Proof. Let us check that φ is a homomorphism of Lie superalgebras. For a−, b− ∈ g− one has
[a−, b−]n = [a−, b−] = 0 and

[φ(a−),φ(b−)] = ρ0([a−, b−]) = 0= φ([a−, b−]n) .

By above, ∂
2ρt (a)
∂ 2 t = 0 for any a ∈ g. Therefore for any a, b ∈ g one has

0=
∂ 2ρt([a, b])
∂ 2 t

= [ρ′t(a),ρ
′
t(b)] .

Taking a, b ∈ g1 + h′ we get 0= [φ(a),φ(b)] = φ([a, b]n).
One has

[ρt(a),ρ
′
t(b)] + [ρ

′
t(a),ρt(b)] = ρ

′
t([a, b]) .

Using this formula for a = a− and b = a+ we obtain

[φ(a−),φ(a+)] = [ρt(a−),ρ
′
t(a+)] = ρ

′
t([a−, a+]) = ρ

′
t(ι
′[a−, a+]) = φ([a−, a+]n) .

Finally, taking h ∈ h′ and a− ∈ g− we get

[φ(h),φ(a−)] = [ρ
′
t(h),ρt(a−)] = ρ

′
t([h, a−]) = 0 ,

so [φ(h),φ(a−)] = φ([h, a−]n). Hence φ is a homomorphism, so φ defines a representation
of H. Denote the corresponding H-module by N . Let us check that the linear isomorphism
L
∼
−→ L′ induces the H-module isomorphism N

∼
−→ KH(L′, n,ν).

Since K(L, n, tν) is a free g−1-module generated by the subspace L⊗Vn(tν), N is a free g−1-
module generated by the subspace L′⊗Vn(tν). For any v ∈ L‘⊗Vn(tν) one has ρt(a+)(v) = 0,
so φ(a+)(v) = 0. Take h ∈ h′. Let v1, . . . , vn be the standard basis of Jn(ν) (see A.2.1). For
w ∈ L we have

ρt(h)(w⊗ vi) = ρ0(h)(w)⊗ vi + tν(h)w⊗ vi+1 ,

so φ(h)(w⊗ vi) = ν(h)w⊗ vi+1. Hence N = KH(L′, n,ν) as required.
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A.4 Another construction of the action of the Heisenberg superalgebra

A natural question is to find a more “natural” construction for Heisenberg superalgebra and
its action. This can be done as follows.

A.4.1

Let t be any Lie superalgebra. We introduce the increasing filtration by F0(t) = 0, F1(t) := t1
and F2(t) := t.

The associated graded Lie superalgebra H̃ := grF (t) is naturally isomorphic to t as a vector
superspace; denoting this linear isomorphism by ι : t→ H̃ we obtain the following formulae
for the bracket on H̃:

[H̃0, H̃] = 0 , [a, b] := ι([ι−1(a), ι−1(b)]) , if a, b ∈ H̃1 .

If dim t < ∞, then H̃ is quasi-reductive. If t is Z-graded and finite-dimensional, then H̃
is quasi-reductive of type I (H̃ is the direct product an odd Heisenberg superalgebra and a
commutative superalgebra).

If N is a t-module generated by a subspace N ′ we can define a compatible increasing
filtration on N by settingF0(N) = N ′ andF i(N) = F i(U(t))N ′. The associated graded module
grF (N) has a structure of H̃-module.

A.4.2 Application to A.3

Retain notation of A.3. Let t := g be quasi-reductive of type I. Identify H̃0 with g0 = g0. Since
H̃0 lies in the center of H̃, any subspace of g0 is an ideal of H̃. It is easy to see that H̃/[g0,g0]
is isomorphic to H constructed in A.3.

Set N := K(L, n,ν). Fix h ∈ h′ such that ν(h) = 1. Recall that the h acts on Jn(ν)
by a Jordan cell: Jn(ν) is spanned by v1, hv2, h2v1, . . . , hn−1v. L ⊗ Jn(ν) is spanned by
L ⊗ v1, h(L ⊗ v1), . . . , hn−1(L ⊗ v1), so N ′ := L ⊗ v1 generates N over g. Define the increas-
ing filtration on N as above. The associated graded module grF (N) is a H̃-module. We have
[g0,g0](F i(N)) = F i(N) for each i, so [g0,g0] annihilates grF (N). Hence grF (N) is an H-
module. It is not hard to see that this module is isomorphic to the H-module constructed
in Lemma A.3.2.

Conclusion: the matryoshka N-replication of the Kac module K(L) has the structure of a
module over a Heisenberg superalgebra.
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Abstract

This paper presents the parastatistics of braided Majorana fermions obtained in the
framework of a graded Hopf algebra endowed with a braided tensor product. The
braiding property is encoded in a t -dependent 4 × 4 braiding matrix Bt related to the
Alexander-Conway polynomial. The nonvanishing complex parameter t defines the
braided parastatistics. At t = 1 ordinary fermions are recovered. The values of t at
roots of unity are organized into levels which specify the maximal number of braided
Majorana fermions in a multiparticle sector. Generic values of t and the t = −1 root of
unity mimick the behaviour of ordinary bosons.
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1 Introduction

Braided Majorana fermions have been intensively investigated since the [1] Kitaev’s proposal
that they can be used to encode the logical operations of a topological quantum computer
which offers protection from decoherence (see also [2–4]). In this talk I present consequences
and open questions about the parastatistics ofZ2-graded braided Majorana qubits derived from
the results of [5]; this paper applied to Z2-graded qubits the [6] framework of a graded Hopf
algebra endowed with a braided tensor product. A nonvanishing complex braiding parameter
t controls the spectra of multiparticle Majorana fermions. Inequivalent physics is derived for
the set of t roots of unity which are organized into different levels (L2, L3, . . . , L∞). The
levels interpolate between ordinary fermions (L2 for t = 1) and the spectrum of bosons (“L∞”
recovered at t = −1). The intermediate levels Lk for k = 3, 4,5, . . . implement a special type
of parafermionic statistics (see [7–9]) which allows at most k − 1 braided Majorana excited
states in any given multiparticle sector.

The paper is structured as follows. In Section 2 the braiding of Z2-graded qubits is il-
lustrated. In Section 3 the truncations of the spectra at roots of unity are discussed. The
consequences for the parastatistics are presented in Section 4.
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2 Braiding Z2-graded qubits

We present the main ingredients of the construction. A single Majorana fermion can be de-
scribed as a Z2-graded qubit which defines a bosonic vacuum state |0〉 and a fermionic excited
state |1〉:

|0〉=
�

1
0

�

, |1〉=
�

0
1

�

. (1)

The operators acting on the Z2-graded qubit close the gl(1|1) superalgebra. In a convenient
presentation they can be defined as

α=

�

1 0
0 0

�

, β =

�

0 1
0 0

�

, γ=

�

0 0
1 0

�

, δ =

�

0 0
0 1

�

. (2)

Their (anti)commutators are

[α,β] = β , [α,γ] = −γ , [α,δ] = 0 , [δ,β] = −β , [δ,γ] = γ,

{β ,β}= {γ,γ}= 0 , {β ,γ}= α+δ . (3)

The diagonal operators α,β are even, while β ,γ are odd, with γ the fermionic creation oper-
ator.

The excited state is a Majorana since it is a fermion which coincides with its own antipar-
ticle. This is a consequence of the fact that the (2) matrices span the Clifford algebra Cl(2, 1)
which, see [10,11], is of real type (implying that the charge conjugation operator is the iden-
tity).

The construction of multiparticle Z2-graded qubits is obtained via the coproduct ∆ of the
graded Hopf algebra U(gl(1|1)), the Universal Enveloping Algebra of gl(1|1).

The braiding of the graded qubits is realized by introducing a braided tensor product ⊗br
such that, for the operators a, b (I is the identity) one can write

(I⊗br a) · (b⊗br I) = Ψ(a, b) , (4)

where the right hand side operator Ψ(a, b) satisfies braided compatibility conditions.
For the purpose of braiding Z2-graded qubits it is only necessary to specify the braiding

property of the creation operator γ:

(I⊗br γ) · (γ⊗br I) = Ψ(γ,γ) . (5)

A consistent choice for the right hand side is to set

Ψ(γ,γ) = Bt · (γ⊗ γ) , (6)

where Bt is a 4× 4 constant matrix which depends on the complex parameter t ̸= 0. The dot
in the right hand side denotes the standard matrix multiplication.

The braiding compatibility condition is guaranteed by assuming Bt to be given by

Bt =







1 0 0 0
0 1− t t 0
0 1 0 0
0 0 0 −t






, (7)

since Bt satisfies

(Bt ⊗ I2) · (I2 ⊗ Bt) · (Bt ⊗ I2) = (I2 ⊗ Bt) · (Bt ⊗ I2) · (I2 ⊗ Bt) . (8)

The matrix Bt is the R-matrix of the Alexander-Conway polynomial in the linear crystal rep on
exterior algebra [12] and is related, see [13], to the Burau representation of the braid group.
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3 Truncations at roots of unity

The requirement that

Bn
t = I4 , (9)

for some n = 2, 3, ... finds solution for the n − 1 roots of the polynomial bn(t). This set of
polynomials is defined as

bn+1(t) =
n
∑

j=0

(−t) j ,

so that

b1(t) = 1 ,

b2(t) = 1− t ,

b3(t) = 1− t + t2 ,

b4(t) = 1− t + t2 − t3 ,

b5(t) = 1− t + t2 − t3 + t4 ,

. . .= . . .

The set of bk(t) polynomials enters the construction of multiparticle states. The n-particle
vacuum |0〉n is given by the tensor product of n single-particle vacua:

|0〉n = |0〉 ⊗ |0〉 ⊗ . . .⊗ |0〉 (n times) . (10)

The fermionic excited states are created by applying powers of tensor products involving the
single-particle creation operator γ. For n = 2, 3 one has, e.g., that the first excited state is
created by

γ(2) = I2 ⊗br γ+ γ⊗br I2 ,

γ(3) = I2 ⊗br I2 ⊗br γ+ I2 ⊗br γ⊗br I2 + γ⊗br I2 ⊗br I2 . (11)

By taking into account the braided tensor product one obtains, for the second and third excited
states,

γ2
(2) = (1− t) · (γ⊗br γ) ,

γ2
(3) = (1− t) · (I2 ⊗br γ⊗br γ+ γ⊗br I2 ⊗br γ+ γ⊗br γ⊗br I2) ,

γ3
(3) = (1− t)(1− t + t2) · (γ⊗br γ⊗br γ) .

This construction works in general. The bk(t) = 0 roots of the polynomials produce truncations
at the higher order excited states and the corresponding spectrum of the theory.

4 The levels and the associated parastatistics

The single-particle Hamiltonian H can be identified with the operator δ in (2). It follows that
the single-particle excited state has energy level E = 1.This is also true (due to the property of
the Hopf algebra coproduct) for the first excited state in the multiparticle sector. Each creation
operator produces a quantum of energy.
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In the n-particle sector the energy spectrum of the theory depends on whether t produces
a truncated or untruncated spectrum. The notion of truncation level acquires importance.

A “level-k” root of unity, for k = 2,3, 4, . . ., is a a solution tk of the bk(tk) = 0 equation
such that, for any k′ < k, bk′(tk) ̸= 0.

The physical significance of a level-k root of unity is that the corresponding braided mul-
tiparticle Hilbert space can accommodate at most k− 1 Majorana spinors.

The special point t = 1, being the solution of the b2(t) ≡ 1− t = 0 equation, is a level-2
root of unity. It gives the ordinary total antisymmetrization of the fermionic wavefunctions.
The t = 1 level-2 root of unity encodes the Pauli exclusion principle of ordinary fermions.

With an abuse of language, the t = −1 root of unity, which does not solve any bk(t) = 0
equation, can be called a root of unity of∞ level.

The physics does not depend on the specific value of t, but only on the root of unity level. A
generic t which does not coincide with a root of unity produces the same untruncated spectrum
of the t = −1 “L∞” level.

The following energy spectra are derived.

Case a, truncated Lk level: the n-particle energy eigenvalues E are

E = 0,1, . . . , n , for n< k ,

E = 0,1, . . . , k− 1 , for n≥ k ;

a plateau is reached for the maximal energy level k−1; this is the maximal number of braided
Majorana fermions that can be accommodated in a multiparticle Hilbert space;

Case b, untruncated (t = −1) L∞ level: the n-particle energy eigenvalues E are

E = 0, 1, . . . , n , for any n ;

there is no plateau in this case. The energy eigenvalues grow linearly with N .

We can associate the roots of unity levels to fractions.
Let t = eiθ = ei f π with f ∈ [0,2[. The following fractions correspond to the roots of unity

levels:

L∞ = 1 ,

L2 = 0 ,

L3 =
1
3

,
5
3

,

L4 =
1
2

,
3
2

,

L5 =
1
5

,
3
5

,
7
5

,
9
5

,

L6 =
2
3

,
4
3

,

L7 =
1
7

,
3
7

,
5
7

,
9
7

,
11
7

,
13
7

,

L8 =
1
4

,
3
4

,
5
4

,
7
4

,

. . .= . . .
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As an example, the 5 roots of b6(t) = 1− t+ t2− t3+ t4− t5 are classified, for t = ex p(iθ ),
into:

level-2 root, θ = 0,
level-3 roots θ = π/3 and 5π/3,
level-6 roots θ = 2π/3 and 4π/3.

L2L2

L3L3

L3L3

L4L4

L4L4

L5L5

L5L5

L5L5

L5L5

L6L6

L6L6

XX

L7L7

L7L7

L7L7

L7L7

L7L7

L7L7

L8L8L8L8

L8L8 L8L8

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 1: Roots of unity up to level 8.

The above figure shows how the roots of unity are accommodated up to level 8.
The level k root accommodates at most k inequivalent energy levels in the multiparticle

states.

5 Conclusion

The [5] braided multiparticle quantization of Majorana fermions produces truncations of the
spectra at certain values of t roots of unity. This feature points towards a relation between the
braided tensor product framework here discussed and the representations of quantum groups
at roots of unity where similar truncations, see [14,15], are observed. The precise connection
of the two approaches is on the other hand not yet known and still an open question. The
representations of the quantum group Uq(gl(1|1) at roots of unity have been classified and
presented in [16] (see also [17]). A possibility to investigate the connection seems to be offered
by the scheme of [18] which shows how a quasitriangular Hopf algebra can be converted into
a braided group.

On a separate issue it should be mentioned that a forthcoming paper will present, with the
help of intertwining operators, the construction of the braided tensor product ⊗br in terms of
an ordinary tensor product⊗. This construction relates the observed parastatistics of Majorana
fermions to the “mixed brackets” (which interpolate ordinary commutators and anticommu-
tators) that have been introduced in [19] in defining the Volichenko algebras.
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Abstract

We analyze the Rarita–Schwinger massless theory in the Lagrangian and Hamiltonian
approaches. At the Lagrangian level, the standard gamma-trace gauge fixing constraint
leaves a spin–

1
2 and a spin–

3
2 propagating Poincaré group helicities. At the Hamiltonian

level, the result depends on whether the Dirac conjecture is assumed or not. In the
affirmative case, a secondary first class constraint is added to the total Hamiltonian
and a corresponding gauge fixing condition must be imposed, completely removing the
spin–

1
2 sector. In the opposite case, the spin–

1
2 field propagates and the Hamilton field

equations match the Euler-Lagrange equations.
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1 Introduction

In 1939, Markus Fierz and Wolfgang Pauli discussed the obstacles in the attempt to quantize
fields of arbitrary spin ≥ 1 interacting with photons [1]. Two years later, William Rarita and
Julian Schwinger simplified the Fierz-Pauli treatment, writing down a set of field equations
describing fermions of arbitrary spin ≥ 3/2 [2]. The Rarita-Schwinger system (RS) describes
a field of spin k + 1/2 as a tensor-spinor of rank k, ψαµ1···µk

, symmetric in its tensor indices
µ1 · · ·µk, satisfying a Dirac-like field equation with mass,

( /∂ +M)ψµ1···µk
= 0 , γµψµµ2···µk

= 0 . (1)

The subsidiary conditions ∂ µψµµ2···µk
= 0 (transverse) and ψµµµ2···µk

= 0 (traceless), ap-
pear as consequence of (1) for M ̸= 0. In the spin–3

2 case, of a vector-spinor ψαµ, Rarita and
Schwinger also noted that there is a class of Lagrangians parametrized by the mass (M) and
a dimensionless coefficient (A) that gives rise to the equations (1) (see e.g. [3–5]). Then they
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chose some A “which permits a relatively simple expression of the equations of motion in the
presence of electromagnetic fields”.

The description of spin–3
2 particles adopted in supergravity, however, traditionally referred

to as the Rarita–Schwinger Lagrangian [6,7] (see also [8] and references therein) corresponds
to a different choice of A which in the massless limit gives the Lagrangian1

L := −
i
2
ψ̄µγ

µνλ∂νψλ , (2)

whose corresponding field equations are (see [9, 10] for the chiral spinor version of these
equations)

γµνλ∂νψλ = 0 . (3)

We emphasize that (2) is not equivalent to massless limit of the original RS action since, as
shown below, the γ-trace condition arises as a gauge choice and not as consequence of the
field equations.

The action changes by a boundary term and (3) is invariant under the gauge transformation

δψµ = ∂µε . (4)

Eq. (3) can also be written as

/∂ψµ − ∂µ γ ·ψ= 0 , ∂ ·ψ− /∂ γ ·ψ= 0 , (5)

and, in the γµψµ = 0 gauge, as

/∂ψµ = 0 , ∂ µψµ = 0 , γµψµ
g f
= 0 . (6)

The third equation corresponds to the gauge choice that fixes the freedom (4), where the
symbol

g f
= reflects this. In the massive RS system, ∂ µψµ = 0 is a consistency condition of the

field equations, hence (6) can be obtained from the massless limit of the original RS equations,2

however (6) can not be obtained by direct variation of the massless action.
The RS field ψµ belongs to the reducible representation 3

2 ⊕
1
2 of the Lorentz group and it

can be split into its irreducible parts asψµ := ρµ+γµκ, where the spin-3/2 part ρµ is gamma-
traceless, γµρµ = 0, and κ represents the spin-1/2. Then the Euler-Lagrange equations (5)
read

(D− 1) /∂ κ− ∂ µρµ = 0 , /∂ ρµ − γµ /∂ κ− (D− 2)∂µκ= 0 . (7)

Using the gauge freedom (4) it is possible to make ρµ, not only gamma-traceless but also
divergence-free. Hence, the first equation reduces to the massless Dirac equation for the spin–
1
2 field κ, while the second becomes a Dirac equation for the massless spin–3

2 with source ∂µκ.
This shows that at least in the gauge ∂ µρµ = 0 both spin sectors seem to propagate.

Another way to see that the RS may propagate is the fact that in the vacuum of the spin–3
2

field ρµ = 0 the RS action produces the Dirac action,

L := i
(D− 1)(D− 2)

2
κ̄ /∂ κ , (8)

where D is the number of spacetime dimensions.

1Here γµ, {γµ,γν} = 2ηµν, are Dirac matrices, ηµν = diag (−1, 1, . . . ) and γµ···ν = γ[µ · · ·γν] are completely
antisymmetric products. We assume the Majorana reality condition ψ† =ψ, ψ̄=ψt C , were C t = −C .

2This is analogous to the transverse condition ∂ µAµ = 0 that is required by consistency of the Proca equations
but is only a gauge option in Maxwell’s theory.
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Though this result might seem straightforward, it should be unexpected if the spin–1
2 is

pure gauge. One would expect a trivial action principle, as it happens in standard gauge
theories. In this paper we look for an explanation to this problem.

By excellence, Hamiltonian analysis is the standard framework for elucidating what are
the degrees of freedom of gauge systems. We shall see that either result can be obtained
depending on whether or not the validness of the Dirac conjecture—which says that all first
class constraints are gauge generators—is assumed. This is a technical observation: if the
Dirac conjecture is not assumed, and a gauge fixing condition is impossed only for the primary
first class constraint, then the spin–1

2 field propagates. Otherwise, the sum of the secondary
first class constraint to the extended Hamiltonian introduce a new arbitrary function of time
(the corresponding Lagrange multiplier) which, in order to produce a deterministic system of
equations, requires an additional gauge fixing condition, which removes the spin–1

2 field, in
agreement with [8,11–14].

We shall see exactly in which step of the Dirac algorithm the two branches are generated:
the one in which the spin–1

2 sector remains and the other where it is removed.

2 Space and time splitting

In terms of Poincaré group the vector-spinor ψαµ can be decomposed in irreducible represen-

tation of spins (1 ⊕ 0) ⊗ 1
2 =

3
2 ⊕

1
2 ⊕

1
2 [8]. Hence the RS action should be regarded has a

spin–1
2 and spin–3

2 particle systems. The Poincaré spin split can be achieved explicitly in terms
of spin-block projectors [8,15,16], which involve nonlocal operators. These projectors reveals
the gauge invariant components of the RS action and it produces a decoupled system of spin–3

2
and spin–1

2 governed by Dirac kinetic terms, in agreement with the discussion following (7)
(for further details see [17]). The second spin–1

2 mode is the pure gauge mode, as it belongs
to the kernel of the RS kinetic operator off-shell. The analogous treatment of the Maxwell
theory would introduce the transverse (spin-one) and the longitudinal (spin-0) projectors, of
which only the transverse mode would propagate.

Non-locality along time directions, however, may be problematic: they might be incom-
patible with the integration of the field equations under initial conditions on a Cauchy surface.
Thus another method is necessary to analyze the problem. Spatial nonlocality, on the other
hand, is compatible with the Cauchy data because it leaves the initial surface intact and there-
fore gauge transformations or field redefinitions involving nonlocal spatial operators such as
/∇−1 := (γi ∂i)−1, should not lead to inconsistencies.

We first split the vector-spinor ψµ into ψ0 and ψi , which is in turn split into three more
pieces: the spatial divergence ∂ iψi , the γ–trace γiψi , and a spatial γ–traceless and diver-
genceless vector-spinor ξi (γiξi = 0 = ∂ iξi). Thus we have one spin–3

2 field ξi , and three
spin–1

2 representations of the spatial rotation group, ψ0, ∂ iψi and γiψi . We shall see that
the γ–traceless and divergenceless conditions (6) remove one spin–1

2 representations of the
rotation group each, whilst the third is a propagating spin–1

2 irreducible representation of the
Poincaré group.

Consider the decomposition of the identity of vector-spinors in three orthogonal projectors,
1= P⊥⊥ + PN + P L ,

(PN )i j :=
1

D− 2
NiN j , (P L)i j := Li L j , P⊥⊥ = 1− PN − P L , (9)

where Ni := γi−Li and Li := /∇−1
∂i . These are space-like spin-block projectors that decompose
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the spatial vector-spinor as

ψi = ξi + Niζ+ Liλ , where ξi = P⊥⊥ i
jψ j , ζ=

1
D− 2

N iψi , λ= L iψi , (10)

which can be verified with the help of the identities Ni N i = D− 2, Li L i = 1, Ni L i = 0.
The gamma traceless relation is equivalent to

ψ0 = −γ0γ
iψi = −γ0((D− 2)ζ+λ) , (11)

which, together with the decomposition (10), reduce (6) to

/∂ ξi = 0 , /∂ λ̃= 0 , ζ̇= 0 , /∇ζ= 0 , (12)

where λ̃= γ0λ. Thus the explicit solution of (6) containing the spin–1
2 and spin–3

2 sector is,

ψ0 = γ
0λ , ψi = ξi + ∂i /∇

−1
λ , (13)

given in terms of standard solutions of the Dirac equations (12), restricted by double-transverse
condition γiξi = ∂ iξi = 0 [13, 18]. It follows that fields ξi and λ propagate, whilst ζ is a
constant spinor –and must therefore vanish on-shell–, and ψ0 is not an independent field.
Hence, the massless RS equations in the gauge γµψµ = 0 eliminates two spin–1

2 modes, ψ0

and ζ, whilst one spin–1
2 and one spin–3

2 field propagate. Thus, there are no arbitrary functions
of time left in the system: the dynamical equations (12) completely determine the evolution
of the fields, provided initial data is given on a Cauchy surface.

The number of degrees of freedom in the system is defined by one half the number of
functions in the set {ξαi (t0, x⃗),λα(t0, x⃗)} necessary to specify the evolution. These functions
are: k×(D−1)−2k components of ξαi , α= 1, . . . , k, and k = 2[D/2] components in λα; in both
cases the Dirac equation restricts half of them. In total, we are left with k(D−2)/2 degrees of
freedom which are equivalent to two massless states of spin–1

2 and spin–3
2, respectively.

It is relevant now to discuss the picture in Dirac’s time honored Hamiltonian analysis [19].

3 Hamiltonian analysis

Splitting ψµ as in (10) one obtains, up to boundary terms,

L= −iψ̄0γ
0i j∂iψ j +

i
2
ψ̄iγ

0i jψ̇ j −
i
2
ψ̄iγ

i jk∂ jψk . (14)

The definition of momenta, πµ := ∂L/∂ ψ̇µ, yields the primary constraints

π0 ≈ 0 , (15)

χ i := πi − i
2C

i jψ j ≈ 0 , (16)

where C i j
αβ

:= −(Cγ0i j)αβ = C ji
βα

is invertible, C i j
αβ
(C−1)βκjm := δi

mδ
κ
α,

(C−1)αβi j =
�

−
1

(D− 2)
γiγ jγ0C−1 +δi jγ0C−1

�αβ
. (17)

The constraint (15) states that ψ0 is a Lagrange multiplier and (16) is a consequence of the
first order character of the system. The Hamiltonian, including a linear combination of the
primary constraints is

H =

∫

dD−1 x
�

iψ̄0γ
0i j∂iψ j +

i
2
ψ̄iγ

i jk∂ jψk +χ
i
αµ
α
i +π

0
αµ
α
0

�

, (18)
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where µi and µ0 are arbitrary spinorial Lagrange multipliers. Preservation in time of the
primary constraint π0 ≈ 0 yields a secondary constraint,

π̇0 = {π0, H}= −
δH
δψ0

= −iCγ0i j∂iψ j ≈ 0 ⇔ ϕ := −iC i j∂iψ j ≈ 0 , (19)

which is equivalent to the equation of motion obtained varying (14) with respect toψ0. Preser-
vation in time of the other primary constraints,

χ̇ i = −(Cγiγ0C−1)ϕ + iC i j∂ jψ
β
0 + iC∂ iγ jψ j − iC /∇ψi + iC i jµ j ≈ 0 , (20)

and of the secondary one,
ϕ̇ = iC i j∂iµ j ≈ 0 , (21)

yield conditions that determine the Lagrange multipliers µi in terms of the phase space fields,
and there are no further constraints. It is easily checked that χ i is second class, while π0 and
the linear combination of constraints

ϕ̃ := ϕ + i∂iχ
i ≈ 0 (22)

are first class. The second class constraint χ i will be eventually dropped, leaving π0 ≈ 0 and
ϕ ≈ 0 as the only remaining first class constraints.

It should be noticed that the secondary constraint ϕ is not purely first class. In particular
(21) fixes part of the Lagrange multipliers of the system, whilst ϕ̃mixes primary and secondary
constraints. This will be relevant for the discussion of the Dirac conjecture.

The system can be reduced to the surface of
the second class constraints (16) by strongly setting χ i = 0 and replacing Poisson by Dirac
brackets, { f , g}D := { f , g} − { f ,χ i

α}C
−1αβ

i j {χ
j
β

, g}, which in the variables ψ0, π0, ξ, ζ and
λ, reads

{ f , g}D = (−1) f
∫

dD−1z

�

−i
δ f
δξi

P⊥⊥i j γ0C−1 δg
δξ j
− i

D− 3
D− 2

δ f
δλ
γ0C−1δg

δλ

+i
1

D− 2

�

δ f
δλ
γ0C−1δg

δζ
+
δ f
δζ
γ0C−1δg

δλ

�

+

�

δ f
δψα0

δg
δπ0

α

+
δ f
δπ0

α

δg
δψα0

��

,

(23)

and the first class Hamiltonian (18) reduces to

H1 =

∫

dD−1 x
�

i(D− 2)ψ̄0γ
0 /∇ζ−

i(D− 2)(D− 3)
2

ζ̄ /∇ζ+
i
2
ξ̄i /∇ξi +π

0
αµ
α
0

�

, (24)

where the first class secondary constraint ϕ ≈ 0 is equivalent to /∇ζ≈ 0.
The question now is whether one should add this secondary first class constraint to the

Hamiltonian as an independent gauge generator. This is equivalent to asking whether the
Dirac conjecture (DC) holds in this case, namely, whether all secondary first class constraints
generate gauge transformations. If the conjecture is valid, the gauge transformations gen-
erated by ϕ would require gauge fixing; if that is not the case, ϕ does not generate gauge
transformations, it should not be included in the Hamiltonian and no gauge fixing would be
required.

One can examine the effect of adding ϕ to the Hamiltonian (24) with a Lagrange multi-
plier. The time evolution defined by ḟ = { f , H ′}, with respect to the extended Hamiltonian
H ′ := H1 +ταϕα, is

ξ̇i = −γ0 /∇ξi , λ̇= −(D− 3)γ0 /∇ζ+ /∇ψ0 + /∇τ , (25)

ψ̇0 = −µ0 , π0 = 0 , ζ̇= 0, /∇ζ= 0 . (26)
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The gauge symmetry generated by π0 is fixed by specifying ψ0, which can be chosen to
implement the standard γ-traceless condition in (6) as ψ0 + γ0γ

iψi ≈ 0. This, together with
π0 ≈ 0, form a pair of second class constraints that can be readily eliminated from the phase
space. This gauge choice is accessible since π0 generates arbitrary shifts in ψ0 and, in partic-
ular, the shift δψ0 = −(ψ0 + γ0γ

iψi), renders ψ′µ =ψµ +δψµ γ-traceless. Thus in the phase
space spanned by ξi ,ζ,λ, using (11) reduces the system (25) to

ξ̇i = −γ0 /∇ξi , λ̇= γ0 /∇λ+ /∇τ , ζ̇= 0= /∇ζ . (27)

Assuming the DC as valid, would imply that the evolution of λ is indeterminate, from
the presence of the arbitrary function of time τ, and therefore an external gauge condition
in convolution with the constraint ϕ ≈ 0 would be necessary. Choosing the gauge condition
λ ≈ 0, the stationary condition λ̇ ≈ 0 determines the Lagrange multipliers, τ = 0. This
removes the spin–1

2 sector and the only propagating field is ξi . In this case, the Hamilton
approach, with the Dirac conjecture assumed to be valid, do not match the Euler-Lagrange
equations (12).

The framework that matches the Lagrangian approach is the one where the DC is not
assumed. Then ϕ would not be regarded as a gauge generator, and it should not be added to
H1. This is equivalent to setting τ= 0 in (27), and we reproduce the Euler-Lagrange equations
(12) and (7) in the gauge ∂ µρµ = 0, whose solution is given by the spin–1

2 –spin–3
2 system

(13).
The two scenarios presented above are consistent. Although in the first case the resulting

Hamiltonian evolution is not equivalent to the Lagrangian dynamics, it yields a physical sub-
system. There are Lagrangian models whose Hamiltonian formulation leads to secondary first
class constraints that do not generate gauge transformations [20,21,23]. For those counterex-
amples to the DC it is still possible to postulate the validity of the conjecture without running
into inconsistencies. Moreover it has been argued that not adopting the Dirac conjecture might
lead to problems in the quantization, which supports the idea that it would be safer to assume
the validity of the DC in general [23].

On the other hand, it seems unnecessary to postulate the DC in our case; the resulting
system is still consistent and in agreement with the Lagrangian description, and the Dirac
bracket (23) does not lead to quantization problems of the sort found in the counterexample
of the DC in [23]: the Dirac field can be quantized. In addition, in Chapter 3 of [23] the
DC is shown to follow from Dirac’s constrained Hamiltonian analysis for dynamical systems
in which first and second class constraints do not mix in the process. As noted above (22),
this condition does not hold here since the secondary constraint {H,π0} = ϕ = ϕ̃ − i∂iχ

i is a
linear combination of first class and second class constraints. Furthermore, the constraint ϕ̃
(22) is a mixture of a secondary first class constraint and a second class one. Since it mixes
both types, it does not have the form required by the proof of the DC presented in [23]. For a
critical discussion on the DC see [24,25].

If the DC is not valid because some secondary first class constraints do not generate gauge
transformations, there is no need to provide a gauge condition for those constraints, and the
standard formula for the counting of degrees of freedom [22,23,27] generalizes as

2×
�

Number of

d.o.f.

�

=

�

Dimension of

phase space

�

−
�

2nd class

constraints

�

− 2×

�

1st class
gauge

generators

�

−

�

1st class
non-gauge
generators

�

.

Note that the last term on the right hand side could be odd, leading to a paradoxical (possibly
inconsistent) quantum scenario. However in systems of spinors, first class constraints have an
even number of components and therefore not necessarily inconsistent. For the RS system in
4 dimensions, this counting gives (16× 2− 12− 2× 4− 4)/2 = 4 degrees of freedom, which
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correspond to two spin–3
2 helicities plus two spin–1

2 helicities. In references [8, 11–14], on
the other hand, the DC is assumed to be valid, concluding that there are only 2 degrees of
freedom, those of a massless spin–3

2 field.

4 Conclusions

The apparent presence of a propagating spin–1
2 mode in the RS system contradicts the expec-

tation that the spin–1
2 field is a pure gauge mode. A dynamical spin–1

2 mode in RS sounds
similar to the claim that there is a propagating spin-0 field in the Maxwell theory. However, in
contrast to what happens in gauge theories like Maxwell, Yang-Mills or Chern-Simons when
evaluated on a pure gauge configuration like Aµ = Λ−1∂µΛ, the RS action neither vanishes
nor reduces to a boundary term when evaluated on ψµ = γµζ for a generic ζ. This means
that configurations ψµ = γµζ are not zero-modes of the action, unlike what happens in gauge
theories for pure gauge configurations. The reduction ψµ = γµζ is precisely what is done in
unconventional supersymmetry [28–32], while in supergravity the complementary option is
selected by imposing γµψµ = 0 [8].

As for quantization issues, the spin–3
2 sector of the massless RS field has been quantized

in various approaches [11, 12, 14, 33]. In all of them, both spin–1
2 sectors of the Poincaré

group decomposition are factored out. Following reference [33]—where it is shown that the
massless RS field decomposes in a spin–1

2 (pure gauge) sector with 0-norm, and spin–1
2 and

spin–3
2 sectors of positive norm—the massless RS can be quantized à la Gupta-Bleuler factoring

out only the zero norm state.
So far we have assumed a flat spacetime, although the generalization to a curved back-

ground is straightforward. In the light of these results, it would be interesting to consider
supergravity theories without enforcing the validity of the Dirac conjecture, which must con-
tain a spin–1

2 excitation along with the gravitino. The spin–1
2 sector will inherit the gravity and

gauge interactions of the vector spinor, which would generate new supergravity phenomenol-
ogy.
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Abstract

We find extensions of realisations of some low-dimensional Lie algebras, in particular,
for the Poincaré algebra for one space dimension. Using inequivalent extensions, we
performed comprehensive classification of relative differential invariants for these Lie
algebras. We show difference between classification of extensions of realisations, and
classification of nonlinear realisations of Lie algebras.
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1 Introduction

Work on classification of extended realisations of Lie algebras was motivated by the paper by
M. Fels and P. Olver [1] that presents importance and need to have a procedure to classify Lie
algebras that are used in various fields (see e.g. references therein). Mathematical relevance
of such problem is its importance for the classical invariance theory and theory of special
functions, and relevance in physics and practical applications, beyond quantum mechanics
and computer vision, is the need to provide symmetry classification of mathematical models
for different processes. Relative differential invariants, RDIs (not only absolute invariants,
ADIs) shall be needed for full group classification of PDEs invariant under some Lie algebras.
Classification of RDIs is an interesting problem of the abstract algebra by itself, even without
any relevance to differential equations and their symmetry. RDIs were already applied for
characterisation of some ordinary differential equations [2], and I believe that it is possible to
find a method for characterisation of partial differential equations using differential invariants
of equivalence groups. Extensions of realisations may be used not only for classification of
RDIs, but in any problems of symmetry classification of models when we increase the set of
variables but want to preserve symmetry of the initial model. Another application of RDIs is
study of singularities of curves and manifolds.

The methods for full description and classification of absolute differential invariants are
well-known. However, it appeared more difficult to find a way to classify RDIs. For more
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information on the story behind this work see [3]. Some mathematicians (e.g. Oliver Glenn
in [4]) claimed that they know how to classify the RDIs, but the reference [5] he cited does not
contain the solution. The paper that inspired me to solve this problem [1] also did not contain
a solution, and I presented my method of extended realisations of Lie algebras at the SPT-2007
conference [6]. Later I was informed by Pavel Winternitz that there exists an earlier alternative
solution of this problem of classification of RDIs in their papers published in 1991 and 1993 [7]
and [8] (these papers considered finding full sets of invariant differential equations, but their
approach also completely solves a problem of classification of RDIs). However, I believe that
the procedure proposed in [6] is much simpler. This procedure also allows to apply to RDIs all
extensive theory for ADIs, e.g. ability to construct operators of invariant differentiation and
fundamental bases of ADIs, enabling description of invariants of any order.

Here I present some new examples of classification of extended realisations that may be
extended to higher-dimensional algebras. I also compare classification of extended realisations
and classification of nonlinear realisations using an example of the Poincaré algebra for one
space dimension, and show that these problems are different and produce different solutions.

Let us start with a realisation of a Lie algebra with the basis operators L = 〈Qm〉,

Qm = ζms(x i)∂xs
, (1)

where x i are some variables that may be regarded as dependent or independent in construction
of some equations or differential invariants, and ζms are some functions of x i . In the examples
there dependent variables are designated specifically, we may use other letters. Hereinafter
we will imply summation over the repeated indices, if not specially indicated otherwise.

We take additional variables Rk, and study extended action operators Q̂m =Qm+λmjkR j∂Rk

that form the same Lie algebra with the same structural constants. These additional variables
provide classification of symmetries for mathematical models in spaces extended with these
variables, but preserving symmetries of original models. In specific application of classification
of RDIs, these additional variables will be excluded from functional bases of ADIs of extended
realisations to get bases of RDIs for the original realisations. For a specific realisation of any
Lie algebra L, we can classify all inequivalent extended action realisations for a finite number
of additional variables.

We consider construction of extensions for realisations of low-dimensional Lie algebras that
were listed and classified in [9, 10]. Here we will deal only with one- and two-dimensional
algebras, and the three-dimensional Poincaré algebra for one space variable with the aim to
present main ideas. The problem of classification of the extended realisations (not only lin-
ear) is interesting by itself, but for classification of relative invariants of Lie algebras we need
specifically only linear extensions with nonzero coefficients at R∂R.

Definition 1. A function Θ depending on x , u and on partial derivatives u of order up to l
(Θ may designate a set of functions (Θ1, ....,ΘN )) is called an RDI for the Lie algebra L = 〈Qm〉,
if it is an invariant of the l-th Lie prolongation of this algebra:

l
QmΘ(x , u, u

1
, . . . , u

l
) = λm(x , u, u

1
, . . . , u

l
)Θ ,

where λm are some functions; if λm = 0, Θ is an absolute differential invariant (ADI) of the
algebra L; if λm ̸= 0, it is a proper RDI.

Definition 2. A maximal set of functionally independent invariants of the order r ≤ l of a
Lie algebra L is a functional basis of differential invariants of the order l for the algebra L.

Note that we cannot treat a set of independent RDIs the same way as we would treat a set
of ADIs – a function of RDIs may be not invariant. E.g. linear combinations of RDIs generally
speaking will not be RDIs. In the case when the task is to construct general extension operators
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for operators (1), we look for the extensions in the form

Q̂m =Qm + am(x i , R)∂R . (2)

Definition 3. Extension of a realisation of the Lie algebra L with the basis operators of the
form (1) is constructed of the same operators with more variables added (2).

To find scalar RDIs, we need to add just one new variable, and to find only linear extensions.

Q̂m =Qm + am(x i)R∂R . (3)

I used the lists of non-equivalent realisations of two-dimensional Lie algebras in [9, 10].
Please see the additional references there. We must note that the idea of equivalence/non-
equivalence for the extended realisation accounts for classification of the RDIs - the difference
with classification just with respect to the local transformation will be seen on the example of
the translation operators. Our classification of the linear extensions has in mind the following
definition of equivalence of RDIs.

Definition 4. Two RDIs of the algebra L are called equivalent, if they can be transformed
one into another by some transformation from the equivalence group of the relative invariance
conditions.

l
QmR(x , u, u

1
, . . . , u

l
) = λm(x , u, u

1
, . . . , u

l
)R .

We can also consider equivalence of pairs (R,λ) of RDIs with their respective multiplicators.
It may be useful for practical purposes of description of invariant differential equations, as a
linear combination of RDIs with the same multiplicator will also be an RDI and may be used
to construct an invariant differential equation.

The procedure for description of RDIs proposed in [6]: 1) Construct Lie prolongations of
the operators Qm; 2) write operators of extended action; 3) classify realisations of the extended
action up to transformations from equivalence group of the invariance conditions; 4) find a
functional basis of ADIs for the inequivalent realisations; 5) construct RDIs and ADIs of the
algebra L from absolute invariants of operators of extended action by elimination of ancillary
variables. Note that ancillary variables R may enter the ADIs of the operators of the extended
realisation as multipliers of the form RK , K ̸= 0 are some integers - the ADIs having the form
FRK , where F are some functions of dependent and independent variables, and derivatives of
the dependent variables of the relevant order, will produce the RDIs of the form F .

Let us remind some properties of RDIs - a product of RDIs is also an RDI, an RDI in a
non-zero degree will also be an RDI.

2 Extensions of algebras of translation operators

We start from a seemingly very easy case, that is a one-dimensional Lie algebra. It should be
considered anyway for the purpose of comprehensive presentation. It is a Lie algebra whose
basis consists of one operator. Any one separate first-order differential operator obviously
forms a Lie algebra, and is locally equivalent to a translation operator.

Let us first construct a linear extension for the translation operator ∂x . We will look for
it in the form Q̂ = ∂x + R(x)F∂F . It is easy to check that an arbitrary R(x) will satisfy the
commutator criterion for this algebra.

As to the standard classification up to equivalence with respect to the local transforma-
tions, we may use the Lie theorem on straightening out of vector fields as it was done e.g.
in [11] (see [12]). However, though the operator Q̂ = ∂x + a(x)R∂R is certainly locally equiv-
alent to Q = ∂x , for our purpose of the RDI classification we need to consider operators with a
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non-vanishing coefficient at ∂R. It is easy to see that a non-extended Q = ∂x does not produce
any RDIs, but the extended operator gave us an RDI R = exp x . This RDI, as well as other
exponential RDIs of the translation operators, is not useful at all to describe invariant equa-
tions, but it should be listed if we aim at obtaining a comprehensive classification of RDIs. So,
the procedure of classification of RDIs requires classification of linear extended algebras with
nonzero coefficients at R∂R.

Proper classification procedures are described e.g. in [13] and in references therein, as
well as in the papers on classification of realisations of low-dimensional Lie algebras of the
first-order differential operators [9, 10]. Such classification in the case of operators consid-
ered here shall find algebras or single operators whose actions are not equivalent under local
transformations of the following form: x̃ = κ(x , R), R̃ = φ(x , R), Q̃m = ãm( x̃)∂ x̃ + b̃m( x̃)R̃∂R̃.
Similar criteria would be also relevant for algebras involving more variables. However, for the
purposes of this paper we can easily check equivalence or non-equivalence using invariants of
the relevant algebras or operators.

3 Two-dimensional Lie algebras

Using the procedure, proposed in [6], we classify extended realisations of the following two-
dimensional Lie algebras

(a) ∂x , x∂x , (b) ∂x , y∂x , (c) ∂x , x∂x + ∂y , (4)

excluding from our consideration here the algebras that consist only of the translation opera-
tors. The commutator of operators (4 (a)) is ∂x . We consider the extension ∂x + a(x , y)R∂R,
x∂x + b(x , y)R∂R. From the commutation relations bx − xax = a, we get determining condi-
tions for the coefficients −xa = φ(y); a is arbitrary. We get b = xa(x , y) + φ(y), and the
general form of the extended operators ∂x+a(x , y)R∂R, x∂x+(xa(x , y)+φ(y))R∂R. Similarly
we construct extensions for algebras (b) and (c).

Table 1

Basis Operators General Extended Basis Opera-
tors

Inequivalent Extended Basis
Operators

1 ∂x , x∂x , ∂x + a(x , y)R∂R,
x∂x + (xa(x , y) +φ(y))R∂R,

∂x + R∂R,
x(∂x + R∂R) + εR∂R,

2 ∂x , y∂x , ∂x+a(x , y)R∂R,
y∂x + (ya(x , y) +φ(y))R∂R,

∂x + R∂R,
y∂x + (y + ε)R∂R,

3 ∂x , x∂x + ∂y , ∂x + Φx(x , y)R∂R,
x∂x + (Φy − xΦx)R∂R,

∂x + R∂R, x∂x + R∂R.

a(x , y), φ(y), Φ(x , y) are arbitrary sufficiently smooth functions; ε is equal to 0 or 1.
Operators listed in Table 1 would allow calculation of zero-order RDIs. Finding higher-

order RDIs would require finding extensions of the prolongations of operators of the initial
realisation to the relevant order. We would like to point out that here we need extensions of
the relevant prolongations of the operators being considered - not prolongations of extensions.

Here we will look for the functional bases of the RDIs up to the second order of derivatives.
We find invariants for two independent variables x and y , and one dependent variable u. Let
us point out that finding differential invariants depends essentially from choice and assignment
of dependent and independent variables.
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Table 2

Extended Second Prolon-
gations

Functional Bases of ADIs Functional Bases of RDIs

1 ∂x + R∂R, x∂x −ux∂ux

−ux x∂ux x
−ux y∂ux y

+R∂R;

y , u, uy , uy y , uxR,
ux xR, ux yR;

y , u, uy , uy y , ux , ux x ,
ux y ,

2 ∂x + R∂R,
y∂x − ux∂uy

− ux x∂ux y

−ux y∂uy y
+ R∂R,

y , u, ux , ux x , exp
uy
ux

R,
uxux y − uyux x , u2

x y−
2ux xuy y ,

y , u, ux , ux x , expuy ,
uxux y −uyux x , u2

x y−
2ux xuy y ,

3 ∂x +R∂R, x∂x +∂y
−ux∂ux

−ux x∂ux x

−ux y∂ux y
+R∂R,

exp y
R , u, uy , uy y , uxR,

ux xR, ux yR,
exp y , u, uy , uy y , ux ,
ux x , ux y .

4 Poincaré algebra for one space dimension

Many extensions were studied for many famous algebras of the mathematical physics without
limitations of linearity and without any relation to finding RDIs (see e.g. [14] for the Poincaré
algebra P(1,2), and [11] for P(1, 1)). These nonlinear realisations were used to find their
differential invariants and whence new equations invariant under these algebras.

We will illustrate difference in the problem of classification of the general extensions for
Lie algebras and of the extensions with the purpose of the RDI classification on the example of
the Poincaré algebra with two independent variables t and x and one dependent variable u:

∂t , ∂x , J = t∂x + x∂t . (5)

A functional basis of the second-order ADIs can be written as follows [11]:

I1 = u , I2 = u2
t − u2

x , I3 = ut t − ux x , (6)

I4 = (ut − ux)
2(ut t + 2ut x + ux x) , I5 = (ut + ux)

2(ut t − 2ut x + ux x) .

Setting I4, I5 to zero, the authors actually obtained expressions that are RDIs

AR1 = ut − ux , AR2 = ut + ux , AR3 = ut t + 2ut x + ux x , AR4 = ut t − 2ut x + ux x , (7)

by means of listing invariant equations of the type ARi = 0, but did not mention the concept of
a relative differential invariant, and did not give any statements on full classification of such
invariants.

Let us look at the extension of the standard realisation of the Poincaré algebra (5) con-
structed with the aim of classification of RDIs.

∂t + a(t, x)R∂R , ∂x + b(t, x)R∂R , J = t∂x + x∂t + c(t, x)R∂R . (8)

From the commutation relations [Pt , Px] = 0, [Pt , J] = Px , [Px , J] = Pt we get conditions
on the functions a(t, x), b(t, x), c(t, x): ax = bt , ct − tax − xat = b, cx − t bx − x bt = a,
whence a(t, x) = Φt , b(t, x) = Φx , c(t, x) = tΦx + xΦt + C , where Φ = Φ(t, x) is an arbitrary
sufficiently smooth function of its arguments, and C = const.

Up to local equivalence and on condition of non-zero coefficients at R∂R, we obtain the
following realisation

∂t + R∂R , ∂x + R∂R , J = t(∂x + R∂R) + x(∂t + R∂R) + εR∂R , (9)

where ε is equal to 0 or 1.
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Operators (9) with ε= 0 give from its functional basis of ADIs R−1 exp t, R−1 exp x a set of
RDIs exp t, exp x .

We can find an extended prolongation of realisation (5) using the commutation relations
similarly, and obtain:

∂t + R∂R , ∂x + R∂R ,

J = t(∂x + R∂R) + x(∂t + R∂R)− ut∂ux
− ux∂ut

− ut t∂ux t
− 2ux t(∂ux x

+ ∂ut t
)− ux x∂ux t

+ εR∂R .
(10)

Operators (10) with ε= 1 give from its functional basis of first-order ADIs

(ut + ux)R
−1 , (ut − ux)R , (11)

first-order RDIs for the algebra (5) ut + ux , ut − ux .
The determining equation for the second-order ADIs of the form F = F(ut t , ux t , ux t) of (5),

will look as follows: 2ux t(Fux x
+ Fut t

) + (ux x + ut t)Fux t
+RFR = 0. The resulting second-order

ADIs are
ut t − ux x , (ut t + 2ux t + ux x)R

−2 , (ut t − 2ux t + ux x)R
2 . (12)

In the same way we obtain two inequivalent proper second-order RDIs: ut t + 2ux t + ux x ,
ut t − 2ux t + ux x .

An invariant ut t −ux x is an ADI of (5), so we do not include it into the list of proper RDIs.
Products of invariants in the relevant degrees from the lists (11), (12) to eliminate ancillary

variables R will give absolute invariants from the list (6). So to describe all non-equivalent
RDIs up to the second order of the realisation being considered it is sufficient to take only
zero-and first-order RDIs in addition to the list of ADIs.

The general extensions of the realisation (5) were studied in [11] , and a new extended
realisation was found:

∂t , ∂x , J = t∂x + x∂t + u∂u , (13)

that is not locally equivalent to (5), as well as ADIs of (13) up to the second order.

A1 = ut + ux , A2 = (ut − ux)u
−2 , A3 = (ut t − ux x)u

−1 ,

A4 = (ut t + 2ut x + ux x)u , A5 = (ut t − 2ut x + ux x)u
−3 .

To obtain a comprehensive classification of RDIs for this extended realisation, we need to
extend it further and to consider the realisation

Pt = ∂t + a(t, x , u)R∂R , Px = ∂x + b(t, x , u)R∂R , J = t∂x + x∂t + u∂u + c(t, x , u)R∂R .

From the commutation relations [Pt , Px] = 0, [Pt , J] = Px , [Px , J] = Pt we get conditions
on the functions a(t, x , u), b(t, x , u), c(t, x , u):

ax = bt , ct − tax − xat − uau = b , cx − t bx − x bt − ubu = a ,

whence
a(t, x , u) = Φt , b(t, x , u) = Φx , c(t, x , u) = tΦx + xΦt + uΦu + C ,

where Φ= Φ(t, x , u) is an arbitrary sufficiently smooth function, and C = const.
Up to local equivalence and on condition of non-zero coefficients at R∂R, we obtain

∂t + R∂R , ∂x + R∂R , J = t(∂x + R∂R) + x(∂t + R∂R) + u∂u + εR∂R , (14)

where ε is equal to 0 or 1.
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Operators (14) with ε = 0 give from its functional basis of ADIs R−1 exp t, R−1 exp x a set
of RDIs exp t, exp x .

We can find the extended prolongation of realisation (5) using the commutation relations
similarly, and obtain:

∂t + R∂R , ∂x + R∂R ,

J = t(∂x + R∂R) + x(∂t + R∂R) + u∂u + ux∂ux
+ ut∂ut

+ ux x∂ux x
+ 2ux t∂ux t

+ ut t∂ut

− ut∂ux
− ux∂ut

− ut t∂ux t
− 2ux t(∂ux x

+ ∂ut t
)− ux x∂ux t

+ εR∂R . (15)

We can take relative differential invariants as follows:

IR1 = u , IR2 = ut + ux , IR3 = ut − ux , IR4 = ut t − ux x ,

IR5 = ut t + 2ut x + ux x , IR6 = ut t − 2ut x + ux x .

5 Conclusion

We classified extended realisations for two-dimensional Lie algebras and for the Poincaré al-
gebras for one space dimension, and found functional bases of absolute differential invariants
for there new inequivalent realisations. These results allowed to classify RDIs for these reali-
sations. It would be interesting to study RDIs for more algebras, and to look for new nonlinear
realisations of such algebras.
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