Emergent symmetries in nuclei:

Probing physics beyond the standard model

 $\frac{\text{K.D. Launey}}{\text{O.M. Molchanov}^1}$, G.H. Sargsyan¹, A. Mercenne², M. Burrows¹, O.M. Molchanov¹, T. Dytrych^{1,3}, J.P. Draayer¹

Abstract

Dominant shapes naturally emerge in atomic nuclei from first principles (Fig. 1), thereby establishing the shape-preserving symplectic Sp(3,R) symmetry [2,3] as remarkably ubiquitous and approximate symmetry in nuclei [1]. In this talk, I will discuss the critical role of this symmetry in enabling machine-learning descriptions of heavy nuclei [4], *ab initio* modeling of α clustering and collectivity, as well as tests of beyond-the-standard-model physics [5]. I will report recent results, in the *ab initio* symmetry-adapted no-core shell model, that place unprecedented constraints on recoil corrections in the $^8\text{Li} \rightarrow ^8\text{Be} \beta$ decay and help high-precision experiment establish the most stringent limit on tensor current contribution to the weak interaction to date, while explaining the Gamow-Teller β -decay discrepancy in the mass-8 systems [5]. [Supported by the U.S. NSF (PHY-1913728) and the Czech Science Foundation (22-144978) & benefitted from HPC resources provided by LSU, NERSC, and Frontera.]

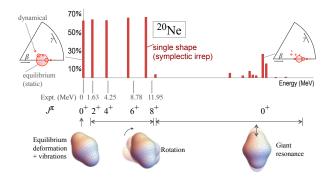


Figure 1. Emergence of almost perfect symplectic Sp(3,R) symmetry in nuclei from first principles, enabling *ab initio* descriptions of collectivity and clustering [1].

References

- [1] T. Dytrych et al., Phys. Rev. Lett. 124 (2020) 042501.
- [2] G. Rosensteel, D.J. Rowe, Phys. Rev. Lett. 38 (1977) 10.
- [3] J.P. Draayer, K. Weeks, G. Rosensteel, Nucl. Phys. A413 (1984) 215.
- [4] O. M. Molchanov et al., Phys. Rev. C 105, (2022) 034306.
- [5] G.H. Sargsyan et al., Phys. Rev. Lett. 128 (2022) 202503; M.T. Burkey et al. Phys. Rev. Lett. 128 (2022) 202502.

¹Department of Physics and Astronomy, Louisiana State University, USA

²Center for Theoretical Physics, Yale University, USA

³Nuclear Physics Institute of the Czech Academy of Sciences, Czech Republic