

The T2K Experiment: Status, Results and Prospects

Mathieu Guigue for the T2K Collaboration XIX International Workshop on Neutrino Telescopes — February 22nd 2021

SCIENCES SORBONNE UNIVERSITÉ A short introduction on neutrino oscillations LPNHE PARIS

T2K Collaboration

~500 members over 12 countries and 69 institutes

Oscillation analysis strategy $\delta_{\rm CP}, \ \sin^2\theta_{13}, \ \Delta m_{32}^2 \dots$

Neutrino spectrum prediction at far detector

Decay volume ~ 100 m long

7

Steady increase in beam power: 515 kW this year Run 1-10: 1.97 \times 10²¹ POT in ν mode and 1.63 \times 10²¹ POT in $\bar{\nu}$ mode

Data taking status

SORBONNE Off-axis Near Detector at 280m (ND280) LPNHE

2.5° off-axis composite detector inside a 0.2 T Magnet:

- Two Fine Grained scintillating detectors FGD1 (C) and FGD2 (C,O)
- Three Time Projection Chambers (TPCs) between FGDs
- One Upstream π^0 detector
- ECal surrounding inner detectors

FGDs used as neutrino targets Magnetization \rightarrow charge and momentum \Rightarrow Constraints on cross-sections, flux uncertainty model and wrong sign backgrounds

11

Neutrino interactions

Three interactions channels: CCQE (and 2p2h) CC Resonant (RES) CC Deep Inelastic Scattering (DIS)

> \rightarrow Define samples enriched in each of the processes using reconstructed pion multiplicity

 \rightarrow Constrain cross-section models for each interaction

ND280 samples

 $CC1\pi$

X/#//X

~CCRes

~CCQE + 2p2h

$CCN\pi$

+1 sample ν events in anti- ν beam mode (constrain wrong-sign background) × target detector (FGD1 or FGD2)

 \times beam mode (ν or anti- ν)

Modeling of neutrino cross-sections

- Tuning of baseline nuclear model (Spectral Function)
- 2p2h modeling: new uncertainty on energy dependence
- Improvements of nucleon-nucleus binding energy (momentum shift)
- Improved parametrization of CCDIS and CCN π models

Data from run 2-9 1.15×10^{21} POT in ν mode and 0.83×10^{21} POT in $\bar{\nu}$ mode

T2K Experiment — NuTel21 February 22nd 2021

14

Modeling of neutrino cross-sections Model after fit reproduces well the data (p-value of 0.74)

Modeling of neutrino cross-sections Model after fit reproduces well the data (p-value of 0.74) Introduction of anti-correlations between flux and cross-section parameters due to fit

Flux and Xsec Prefit Correlation Matrix

T2K Preliminary

T2K Preliminary

Modeling of neutrino cross-sections Model after fit reproduces well the data (p-value of 0.74) Introduction of anti-correlations between flux and cross-section parameters due to fit

 \rightarrow Spectra prediction at far detector

\rightarrow Flux and cross-section uncertainties reduction from ~13% to ~4%

SCIENCES SORBONNE Off-axis Far Detector: Super Kamiokande LPNHE

Outer Detector (OD): 1,885 8" PMTs

50 kton of purified water \rightarrow 22.5 kton fiducial 1000 m under Mount Ikeno

 $e-\mu$ identification et kinematics using Cherenkov ring pattern **No charge identification** (contrary to ND280)

Sharp $\rightarrow \mu$

Super-Kamiokande samples

Selection based on ring counting and shape

One sample with 1 *e*-like ring + 1 Michel electron ring

Sample	FHC 1Rμ	RHC 1Rµ	FHC 1Re	RHC 1Re	FHC 1Re1de
Total uncertainty (after fit) [%]	3.0	4.0	4.7	5.9	14.3
Total uncertainty (before fit) [%]	11.1	11.3	13.0	12.1	18.7

- Two samples with 1 μ -like ring (ν mode and anti- ν mode) $\rightarrow \nu_{\mu}$ -CC0 π
- Two samples with 1 e-like ring (ν mode and anti- ν mode) $\rightarrow \nu_{\rho}$ -CC0 π $\rightarrow \nu_{\rho}$ -CC1 π

Preference for upper octant

Disappearance analysis

Appearance results

Preference for more νe -like events and less anti- νe -like events JL favored

Reactor constraints impact on δ_{CP} vs θ_{13}

Constraints on θ_{13} compatible with PDG2019 at better than 1σ Using PDG2019 constraint on θ_{13} , better constraint on δ_{CP}

T2K

T2K's Bright Future

Combined analyses

(and potentially different systematic uncertainties) Two on-going combined analyses efforts: - T2K beam and Super-Kamiokande atmospheric data

- T2K and NO ν A beam data
 - \rightarrow different baseline and systematic uncertainties

- Experiments with different neutrino energies have different oscillation probabilities

 - \rightarrow very long baseline and higher energy neutrino more sensitive to mass ordering

J-PARC main ring upgrades on-going

- 2x more pulse per second (One pulse every 1.3 seconds)
- Increase power from 515 kW to up to 1.3 MW
- \rightarrow Boost statistics during T2K-II
- \rightarrow Prepare for Hyper-Kamiokande

J-PARC beam upgrade

T2K Experiment — NuTel21 February 22nd 2021

27

Summary

Backups

$\Delta m_{32}^2 \partial_2^2 df \frac{10^{-3} \text{ eV}^2}{2} \text{ axis second decomposition of the secon$

3

NA61/SHINE

Vertex-TPC V-TPC

ND280 samples (continued)

T2K Experiment — NuTel21 February 22nd 2021

PARIS

Cross-section correlation matrix

NC Other Far NC Other Near NC 1 y CC Coh O CC Coh C CC DIS multi-π Norm ∇ CC DIS multi-π Norm v CC Mise. CC AGKY multi-π CC Bodek-Yang multi-π CC Norm 🗸 CC Norm V I non RES Bkg. I non-RES Bkg. Low p CCOE Q² Mod. 7 CCOE Q² Mod. 6 CCOE Q² Mod. 5 CCOE Q² Mod. 5 CCOE Q² Mod. 4 CCOE Q² Mod. 3 CCOE Q² Mod. 2 CCOE Q² Mod. 1 CCOE Q² Mod. 0 2p2h Shape O 2n2h Shape C 2p2h Norm C to O 2p2h Norm ∇ 2p2h Norm v M_{QE} FSI Charge Ex. Low E FSI π Absorption FSI Hadron Prod. FSI QE Scatter High E

T2K Preliminary

PARIS

