Slitless spectroscopy and AuxTel

LSS-France 26/05/2021

Outline

- Slitless spectroscopy for newcomers
- Spectractor: new features
- CTIO instrumental transmission
- CTIO atmospheric transmission
- And AuxTel ?

Slitless spectroscopy for newcomers

Simple slitless spectrograph

- Disperser inserted into the telescope beam, used with convergent or parallel wavefront
- Diffraction orders recorded on a CCD of size (N_{CCD} , N_{CCD}), at D_{CCD} behind the disperser
- Order 0 centroid position $\mathbf{r_0}$ can set the zero of the wavelength solution
- Optical system is a priori astigmatic: PSF evolves with λ but still obey to the grating formula

Spectrogram: a dispersed image

Observation of a monochromatic (green) star without a disperser:

Observation of a monochromatic (green) star with a disperser:

Observation of a polychromatic star with a disperser and ADR:

Spectrogram forward model

• Observation of astrophysical source with spatio-spectral flux density $C_p(\vec{r}, \lambda) = [T_{\text{inst}, p}(\lambda) T_{\text{atm}}(\lambda | \theta_a) S_*(\lambda)] \times \delta(\vec{r} - \vec{r_0})$

with p the diffraction order, θ_a the atmospheric parameters

• Image is a stack of diffraction orders, which are a stack of monochromatic PSF kernels $\phi_p(\vec{r}|\lambda)$ dispersed by the grating:

$$I(\vec{r}) = \sum_{p} \int d\lambda \iint d^{2}\vec{r}' \ C_{p}(\vec{r}',\lambda) \phi_{p}(\vec{r}-\vec{r}'|\lambda)$$

• For a point source, the convolution product becomes:

$$I(\vec{r}) = \sum_{p} \int d\lambda \ S_{p}(\lambda) \phi_{p} \left(\vec{r} - \vec{\Delta}_{p}(\lambda) | \lambda\right)$$

Dispersion relation

Spectrum

 $\vec{\Delta}_p(\lambda) = (x_{c,p}(\lambda), y_{c,p}(\lambda)) \quad S_p(\lambda) = T_{\text{inst},p}(\lambda) T_{\text{atm}}(\lambda | \theta_a) S_*(\lambda)$

From theory to reality

The CCD is a BW sensor:

The background can be structured, with field stars:

CCD effects: saturation, noise...

Spectrogram forward model

- Forward modelling of spectrograms opens the path to get atmospheric transmissions and other useful quantities
- Spectractor implements a way to extract and fit spectrograms and spectra, tested on CTIO simulations and data

Data sets and simulations

Mainly CTIO images from June 2017 campaign (18 nights) with scene collaboration CALPSEC stars and different dispersers

Spectractor: new features

Order 2 decontamination and regularized deconvolution

Full forward model

5 DESC Dark Energy Science Collaboration

PSF deconvolution: 1D fit

- To start the PSF deconvolution, we first estimate the crossspectrum A^{1D} with 1D transverse PSF $\phi^{(1D)}$ fit (Moffat) $\vec{I}_1^{(1D)}(\vec{r}|\vec{A}^{(1D)},\vec{r}_c,\vec{\theta}) = \sum_{i=0}^{N_x} A_i^{(1D)} \phi^{(1D)}(\vec{r}|\vec{r}_{c,i},\vec{\theta}_i)$
 - Get a first guess of the amplitude A and on the PSF parameters {r_c, θ} with a polynomial evolution
 - But strong and structured residuals

PSF deconvolution: spectrogram model

 Discretized version of the spectrogram forward model with 2D PSF kernels

$$\vec{I}_{1}(\vec{r}|\vec{A},\vec{r}_{c},\vec{\theta}) = \sum_{i=0}^{N_{x}} A_{i} \phi(\vec{r}|\vec{r}_{c,i},\vec{\theta}_{i}) \implies \vec{I}_{1}(\vec{X}|\vec{A},\vec{r}_{c},\vec{\theta}) = \mathbf{M}(\vec{X}|\vec{r}_{c},\vec{\theta}) \vec{A}$$
$$\mathbf{M}(\vec{X}|\vec{r}_{c},\vec{\theta}) = \begin{pmatrix} \phi(x_{1}|\vec{r}_{c,1},\vec{\theta}_{1}) & \phi(x_{1}|\vec{r}_{c,2},\vec{\theta}_{2}) & \cdots & \phi(x_{1}|\vec{r}_{c,N_{x}},\vec{\theta}_{N_{x}}) \\ \phi(x_{2}|\vec{r}_{c,1},\vec{\theta}_{1}) & \phi(x_{2}|\vec{r}_{c,2},\vec{\theta}_{2}) & \cdots & \phi(x_{2}|\vec{r}_{c,N_{x}},\vec{\theta}_{N_{x}}) \\ \vdots & \vdots & \cdots & \vdots \\ \phi(x_{N_{x}N_{y}}|\vec{r}_{c,1},\vec{\theta}_{1}) & \phi(x_{N_{x}N_{y}}|\vec{r}_{c,2},\vec{\theta}_{2}) & \cdots & \phi(x_{N_{x}N_{y}}|\vec{r}_{c,N_{x}},\vec{\theta}_{N_{x}}) \end{pmatrix}$$

- Minimization of $\chi^2(\vec{A}|\vec{\theta}) = \left(\vec{D} \mathbf{M}(\vec{X}|\vec{X}_c,\vec{\theta})\vec{A}\right)^T \mathbf{W}\left(\vec{D} \mathbf{M}(\vec{X}|\vec{X}_c,\vec{\theta})\vec{A}\right)$
 - Newton-Raphson gradient descent for $\{r_c, \theta\}$
 - Analytical solution for linear parameters A

$$\hat{\vec{A}} = (\mathbf{M}^T \mathbf{W} \mathbf{M})^{-1} \mathbf{M}^T \mathbf{W} \vec{D}$$
 $\mathbf{C} = (\mathbf{M}^T \mathbf{W} \mathbf{M})^{-1}$

PSF deconvolution: regularization

 Analytic solution: fast but very oscillatory if PSF kernel is "large" or noise is "important" => need to regularize the A solution assuming is should be "smooth"

$$\mathcal{E}(\vec{A}|\vec{\theta}) = \left(\vec{D} - \mathbf{M}\vec{A}\right)^T \mathbf{W}\left(\vec{D} - \mathbf{M}\vec{A}\right) + r(\vec{A} - \vec{A}_0)^T \mathbf{Q}(\vec{A} - \vec{A}_0)$$

= $\chi^2(\vec{A}|\vec{\theta}) + r\chi^2_{\text{pen}}(\vec{A}|\vec{A}_0), \quad \vec{A}_0 = \vec{A}^{(1D)}$

• Tikhonov regularization using A^{1D} as a prior

$$\hat{\vec{A}} = (\mathbf{M}^T \mathbf{W} \mathbf{M} + r \mathbf{Q})^{-1} (\mathbf{M}^T \mathbf{W} \vec{D} + r \mathbf{Q} \vec{A}_0) \qquad \mathbf{C} = (\mathbf{M}^T \mathbf{W} \mathbf{M} + r \mathbf{Q})^{-1}$$

 Many Q matrix tested, but best choice is to recover truth spectrum on simulations is

$$\mathbf{U} = \begin{pmatrix} 1/\sigma_{A_{1D}^{(1)}} & 0 & \cdots & 0 \\ 0 & 1/\sigma_{A_{1D}^{(2)}} & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 1/\sigma_{A_{1D}^{(N_x)}} \end{pmatrix} \qquad \mathbf{L} = \begin{pmatrix} -1 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 1 & -2 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & -2 & 1 & \cdots & 0 & 0 \\ \vdots & \ddots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & -2 & 1 \\ 0 & 0 & 0 & 0 & \cdots & 1 & -1 \end{pmatrix} \\ \mathbf{Q}(r) = \mathbf{L}^T \mathbf{U}^T \mathbf{U} \mathbf{L}, \qquad \vec{A}_0 = \hat{\vec{A}}_{1D}$$

Test on simulations with order 2

- Prior is biased because of order 2 contamination
- 2D FFM superimpose perfectly with the true spectrum (amplitude and PSF), without bias (mean of residuals =0)

Applications

• There are two main outputs:

1. A deconvoluted spectrum $S_p(\lambda) = T_{inst,p}(\lambda) T_{atm}(\lambda | \theta_a) S_*(\lambda)$ If two factors, one can get the third

=> find $T_{atm}(\lambda|\theta_a)$

If more spectra are available, if one factor is known one can get the two others

=> with a photometric night find $T_{atm}(\lambda|\theta_a)$ and $T_{inst,p}(\lambda)$

2. **A spectrogram** I(r)

Apply the forward model to find $T_{atm}(\lambda|\theta_a)$ if $T_{inst,p}(\lambda)$ is known

Forward model of spectrograms

• Fit the spectrogram forward model with the previous instrumental transmissions to get real-time atmospheric parameters

Fit on simulation with truth: PWV = 5 mm Ozone = 300 db VAOD = 0.030

Dark Energy

Test on simulations with order 2

- Truth:
 - VAOD=0.03
 - Ozone=300db
 - PWV=5mm
- Thor300 has high SNR compared with amplitude hologram HoloAmAg
- Correlations between atmospheric coefficients

CTIO instrumental transmission

Find the CTIO transmission

- Night of May, 30th 2017 : very stable conditions of seeing and atmosphere parameters
 - Follow HD111980 during 5 hours from airmass 1 to 2
 - Three dispersers in the filter wheel:
 - Ronchi 400 lines/mm
 - Blazed grating Thorlabs 300 lines/mm
 - Amplitude hologram 350 lines/mm

• Different sources with different advantages

Arthur: go from 420 to 1000nm and have $r_{2/1}$

Laurent: go from 420 to 900nm with better amplifier gain calibration but no $r_{2/1}$

Vincent: use Arthur measurement with extrapolation 350 to 1100nm

Thorlabs: generic web data sheet from 300 to 1100nm

• Build a chimera !

S DESC Dark Energy Science Collaboration

Chimera: 350-450nm: Thorlabs 450-920: Laurent 920-1000: Arthur 1000-100: Thorlabs

• But is it realistic ?

• Blazed transmission grating theoretical transmission

The diffraction order of interest, in general, is the first diffraction order. Setting m = 1 in Equation (2.4), the diffraction efficiency of the first order is given by

$$\eta_1 = \left[\frac{\sin(\pi(\beta T - 1))}{\pi(\beta T - 1)}\right]^2 \quad \text{where } \beta = (n - 1)d/\lambda T \tag{2.5}$$

SCHOTT

• Index and transmittance of B270 glass (3mm thickness)

Select background image

SCHOTT DESAG

Specification Physical and chemical properties											PCE - TKT B 270 Superwite				
						t	hicknes	s in mr	n						
λinnm	1	2	3	4	5	6	7	8	9	10	15	20	25	3	
300	35.1	13.5	5.2	2.0	0.8	0.3	0.1	0.0	0.0	0.0				_	
310	60.0	39.6	26.1	17.2	11.4	7.5	4.9	3.3	2.2	1.4					
320	76.0	63.4	52.9	44.1	36.8	30.7	25.6	21.4	17.8	14.9	10.9	5.4	2.6	1	
330	84.2	77.8	71.8	66.3	61.3	56.6	52,3	48.3	44.6	41.2	34.6	25.0	18.1	13	
340	88.0	84.9	81.9	79.0	76.3	73.6	71.0	68.5	66.1	63.8	59.6	51.8	44.9	3	
350	89.8	88.4	87.1	85.7	84.4	83.1	81.8	80.6	79.3	78.1	75.1	70.4	65.9	6	
300	90.6	89.9	89.2	88.5	87.9	87.2	86.5	85.9	85.2	84.0	83.0	80.4	92.0	73	
380	90.9	90.4	90.0	89.5	89.1	88.6	88.1	87.7	87.2	86.8	85.4	83.6	81.7	7	
390	91.2	91.0	90.7	90.5	90.3	90.1	89.9	89.7	89.5	89.2	88.6	87.7	86.8	8	
400	91.3	91.2	91.0	90.9	90.7	90.6	90.5	90.3	90.2	90.0	89.5	88.9	88.2	8	
410	91.3	91.2	91.1	91.0	90.8	90.7	90.6	90.4	90.3	90.2	89.7	89.1	88.5	8	
420	91.4	91.2	91.1	91.0	90.8	90.7	90.6	90.4	90.3	90.2	89.6	88.9	88.3	8	
430	91.4	91.2	91.1	91.0	90.8	90.7	90.6	90.4	90.3	90.2	89.4	88.8	88.1	8	
440	91.4	91.3	91.1	91.0	90.8	90.7	90.6	90.4	90.3	90.1	89.5	88.8	88.1	8	
450	91.4	91.3	91.2	91.1	90.9	90.8	90.7	90.5	90.4	90.3	89.7	89.1	88.5	8	
460	91.5	91.4	91.3	91.2	91.1	91.0	90.9	90.8	90.7	90.6	90.0	89.5	89.0	8	
470	91.5	91.4	91.4	91.3	91.2	91.1	91.0	90.9	90.8	90.8	90.3	89.9	89.4	8	
480	91.6	91.5	91.4	91.3	91.3	91.2	91.1	91.1	91.0	90.9	90.5	90.1	89.8	8	
490	91.6	91.5	91.5	91.4	91.4	91.3	91.2	91.2	91.1	91.1	90.8	90.5	90.2	8	
500	91.6	91.6	91.5	91.5	91.4	91.4	91.4	91.3	91.3	91.2	90.9	90.6	90.4	9	
510	91.6	91.6	91.5	91.5	91.4	91.4	91.4	91.3	91.3	91.2	90.9	90.7	90.4	9	
520	91./	91.6	91.0	91.5	91.5	91.4 01.F	91.4 01.F	91.3	91.3	91.2	91.1	90.9	90.7	9	
530	91.7	91.0	91.0	91.0	91.5	91.5	91.5	91.4	91.4	91.4	91.2	91.0	90.8	9	
550	91.7	91.7	91.6	91.6	91.5	91.5	91.5	91.4	91.4	91.3	91.2	91.0	90.9	0	
560	91.7	91.7	91.6	91.6	91.5	91.5	91.5	91.4	91.4	91.3	91.2	91.0	90.8	9	
570	91.7	91.7	91.6	91.6	91.5	91.5	91.5	91.4	91.4	91.3	91.2	91.0	90.8	9	
580	91.7	91.7	91.6	91.6	91.5	91.5	91.5	91.4	91.4	91.3	91.1	90.9	90.6	9	
590	91.7	91.7	91.6	91.6	91.5	91.5	91.5	91.4	91.4	91.3	91.0	90.8	90.5	9	
600	91.7	91.7	91.6	91.6	91.5	91.5	91.5	91.4	91.4	91.3	90.9	90.7	90.4	9	
610	91.7	91.7	91.6	91.5	91.5	91.4	91.3	91.3	91.2	91.1	90.9	90.6	90.3	9	
620	91.7	91.7	91.6	91.5	91.5	91.4	91.3	91.3	91.2	91.1	90.8	90.4	90.0	8	
630	91.8	91.7	91.6	91.5	91.5	91.4	91.3	91.3	91.2	91.1	90.7	90.3	90.0	8	
640	91.7	91.7	91.6	91.5	91.4	91.3	91.2	91.1	91.0	90.9	90.6	90.2	89.8	8	
650	91.7	91.7	91.6	91.5	91.4	91.3	91.2	91.1	91.0	90.9	90.6	90.2	89.8	8	
670	91.8	91.7	91.6	91.5	91.5	91.4	91.3	91.3	91.2	91.1	90.7	90.3	89.9	8	
680	91.6	91.7	91.0	91.6	91.5	91.4	91.3	91.2	91.2	91.1	90.7	90.3	90.0	0	
690	91.8	91.7	91.6	91.6	91.5	91.4	91.3	91.2	91.2	91.1	90.8	90.4	90.1	8	
700	91.8	91.7	91.6	91.6	91.5	91.4	91.3	91.2	91.2	91.1	90.8	90.4	90.1	8	
710	91.8	91.7	91.6	91.6	91.5	91.4	91.3	91.2	91.2	91.1	90.8	90.4	90.1	8	
720	91.8	91.7	91.6	91.6	91.5	91.4	91.3	91.2	91.2	91.1	90.8	90.4	90.1	8	
730	91.8	91.8	91.7	91.6	91.6	91.5	91.4	91.4	91.3	91.2	90.8	90.4	90.1	8	
740	91.8	91.8	91.7	91.6	91.6	91.5	91.4	91.4	91.3	91.2	90.8	90.4	90.1	8	
750	91.8	91.8	91.7	91.6	91.6	91.5	91.4	91.4	91.3	91.2	90.8	90.4	90.1	8	
760	91.8	91.8	91.7	91.6	91.6	91.5	91.4	91.4	91.3	91.2	90.8	90.4	90.1	8	
770	91.8	91.8	91.7	91.6	91.6	91.5	91.4	91.4	91.3	91.2	90.8	90.4	90.0	8	
780	91.8	91.7	91.7	91.6	91.5	91.4	91.3	91.2	91.1	91.1	90.7	90.3	89.9	8	
790	91.9	91.8	91.7	91.6	91.6	91.5	91.4	91.4	91.3	91.2	90.7	90.2	89.8	8	
800	91.8	91.8	91.7	91.6	91.5	914	91.3	91.2	91 1	91.0	- A NP	90.2	89.7	89	

😋 🛛 Coordinates (graph): 😋

EngaugeDigitzer for "per mil" science ;) but that's all I have...

Dark Energy

SCHOTT DESAG

SCHOT

• Fit model on data $\eta_m = A \times t(\lambda) \left[\frac{\sin(\pi T(\beta - m/T))}{\pi T(\beta - m/T))} \right]^2$, T = 1/N, $\beta = \frac{(n(\lambda) - 1)\sin(\phi_{blazed})}{\lambda}$

Optimal parameters: phi=17.207deg, A=0.709

Thorlabs data sheet: Φ_{blazed} = 17.5 deg

■ But bad prediction of order 2/1 ratio ☺

- But bad prediction of order 2/1 ratio 🙁
- Instead use Sylvie's estimate on CTIO data (using blue filter)
- Extrapolated with a fit in $A_2 * \exp(-(\lambda \lambda_0)/\tau)$

• Why "it works" ? Because reduced χ^2 decreases when fitting data

- This CTIO transmission and the HoloAmAg transmission strongly depend on the built chimera of the Thor300 disperser.
- The assumption that the night is photometric is strong, but the residuals don't show evident time-dependent structures except in the infrared.
- This is an example of the Spectractor capabilities on an CTIO night if we feed it as precisely as we can.

CTIO atmospheric transmission

Methodology

- Thor300 is the disperser from which:
 - we have the best knowledge of its transmission
 - but has a complex PSF (we hope that the extraction leaves no chromatic residuals thanks to PSF shape parameters modelled by 4th order polynomials)
 - ⇒ use it to get CTIO and HoloAmAg transmissions (no need of good spectral resolution)
- HoloAmAg is the disperser from which:
 - we have indirect knowledge of its transmission (from CTIO nights)
 - but good narrow PSF (see last hologram's presentation)
 - \Rightarrow use it to get real time atmospheric transmission

Atmospheric parameters

spectrum fit

spectrum fit

spectrogram fit

spectrogram fit

ŧ.

+

÷

Atmospheric parameters

• Good to see this... to go further now we need AuxTel data !

News from AuxTel

AuxTel runs

- February 2021 : one good week of technical work with some science nights, and holograms
- March 2021 : only a few nights due to bad weather
- Next run : June 7th !

AuxTel

- A lot of progresses since first run :
- Quick-look utilities at summit to analyse spectra and focus in real time (RubinTV !)
- \circ $\,$ Progress with the pointing program
- Scripted observations, and soon automated reduction
- First reduction of all AuxTel data using a DM-Stacked Spectractor at NCSA (with rebinning and quick ISR)

AuxTel

- Still on the technical to-do list :
- Better control of the focus and pointing/tracking systems
- \circ $\;$ Hardware intervention to improve the rotation of the spectrograph
- Inspect good images and check the failures of Spectractor to improve the code parameters (or the code itself)

- Science to-do list with good images/spectra :
- Build an instrument model : PSF and instrumental transmission
- Measure atmospheres !
- Elaborate a strategy to calibrate VRO photometry

AuxTel image and spectrum example

AuxTel image and spectrum example

A2=1.000, D=173.44mm, shift x=-1.000pix, shift y=-0.952pix, angle=-0.26pix, B=1.000

40

20

0

40

20 -

0

40

20

0

0

Motion during the exposure \otimes

- \Rightarrow Bad PSF model
- \Rightarrow Strong residuals
- \Rightarrow Even with a good looking spectrum !
- \Rightarrow Not goof for science

Summary

Summary

- Spectractor has the capability to un-pile the colors of a spectrogram
- For the CTIO data analysis:
 - I had to pick up points on scanned documents or build a chimera
 - But the code returns smooth curves of atmospheric parameters
 - \Rightarrow I think this is the most I can get from CTIO data
 - \Rightarrow Finish my paper
- The weaker prior information we have (T_{inst}, ...), the larger potential bias on atmospheric parameters we get => build CBP !
- Ready for AuxTel !

BACKUP

Simulations

Parfait !

Spectrum index

Paramètres atmos ok

Amplitude A [ADU/s]

Termes gris ok •

PSF deconvolution: how to choose r_{opt}

• Use of the resolution matrix **R**:

 $\mathbf{R} = \mathbf{I} - r\mathbf{C}\mathbf{Q}$ $\mathrm{Tr}\,\mathbf{I} = \mathrm{Tr}\,\mathbf{R} + \mathrm{Tr}\,(r\mathbf{C}\mathbf{Q})$

 $N_x = [Parameters resolved by data] + [Parameters resolved by prior]$

• Build a "kind-of reduced $\chi 2''$:

$$G(r) = \frac{\chi^2(\vec{A}|\vec{\theta})}{(N_x N_y - \operatorname{Tr} \mathbf{R})^2} - \operatorname{N2}_{dot}$$

• Mathematically, this method is known as Generalized Cross-Validation (GCV). The minimum of G(r) corresponds to the minimum of $\|\mathbf{M}\hat{\vec{A}} - \mathbf{M}\vec{A}_{truth}\|^2$ Best fit Data wo noise

[Golub, Gene H., et al. "Generalized Cross-Validation as a Method for Choosing a Good Ridge Parameter." Technometrics, vol. 21, no. 2, 1979, pp. 215–223]

PSF deconvolution: results

• $r_{opt} \sim 0.04$

Why the Laplacian operator works?

- Because of Cauchy-Schwartz inequality, controlling the norm 2 of the second derivatives is controlling the norm 1 of the first derivative (in the function space)
- Equivalent to the norm-1 total variation regularization:
 - With an analytical solution
 - $\circ~$ But only for functions at least C², so for a physical spectrum it is ok
- Note written by my roommate...

How to correctly remove order 2?

- Solution: forward-model it !
- New ingredients:
 - $\circ~$ knowledge of order 2/1 disperser transmission ratio $r_{2/1}$
 - $\circ~$ ADR prediction to model the respective traces $r_c{}^{(1)}$ and $r_c{}^{(2)}$ of order 1 and order 2 spectrograms on the CCD
- Algorithm: deconvolution with core matrix M being

$$\mathbf{M} = \mathbf{M}(\phi^{(1)}, \vec{r}_c^{(1)}) + r_{2/1}\mathbf{M}(\phi^{(2)}, \vec{r}_c^{(2)})$$

- Hypothesis:
 - $\phi^{(2)}$ is the copy of $\phi^{(1)}$ at same distance from order 0 (PSF shape evolves only with geometrical distance to order 0, no wavelength dependence)
 - $\circ~r_c{}^{(1)}$ and $r_c{}^{(2)}$ are predicted with ADR model (given pressure, airmass, temperature, humidity) and grating dispersion properties
 - Spectrum prior: the spectrum at previous Spectractor step

Find the atmospheric transmission

Find the atmospheric transmission

Dark Energy Science Colla

Forward model of spectrograms

• Fit the spectrogram forward model with the previous instrumental transmissions to get real-time atmospheric parameters

Dark Energy

