StarDICE upgrade: Status report

Marc Betoule (LPNHE) LSST-France Video-conference mai 2021

CPPM : O. Angelini, S. Beurthey, S. Deguero, F. Feinstein

LPNHE : P. Antilogus, Ph. Bailly, E. Barrelet, M. Betoule, S. Bongard, J. Coridian, M. Dellhot, P. Ghislain, A. Guyonnet, F. Hazenberg, C. Juramy, H. Lebbolo, L. Le Guillou, E. Pierre, J. Neveu, N. Regnault, Ph. Repain, M. Roynel, K. Schahmaneche, E. Sepulveda, A. Vallereau **LUPM** : J. Cohen-Tanugi, Eric Nuss, B. Plez

IJCLab : S. Dagoret-Campagne, M. Moniez, O. Perdereau

OHP : Pierre-Eric Blanc, Auguste Le Van Suu

Supernovae systematics: better data needs rock solid calibration

- The y axis is a measurement of apparent luminosity in a redshifted passband. Accuracy depends on:
 - Survey uniformity: improves with statistics (including external surveys)
 - Passband knowledge: improves with monitoring hardware
 - Accurate calibration references across the entire wavelength range

- No significant level of auto-calibration (Cosmology nearly fully degenerated with calibration when SN model training is considered)
- Significant amount of the LSST statistical power is harnessed when $\sigma(zp) < 0.001$ mag

The only practical references to date are pure hydrogen WD

- Numerical model of the radiative transfer in the hydrogen atmosphere
- Model parameters infered from measurement of H profile in highresolution spectrosopy
- Largest implementation to date : The cosmic flux standards program (Narayan et al. 2019)

The proposal of the StarDICE experiment is to build an instrumental check of this model

The alternative standard

POWR: the Primary Optical Watt Radiometer (Brown et al. 2006, Houston et al. 2006) high-accuracy electrical substitution cryogenic radiometer

A pathfinder (2016-2019)

NHE

PARIE

Source seen by the telescope

Telescope seen by the source

Observatoire de Haute-Provence

PARTICULES DE MARSEILLI

CPPM

Example data

11 nights with LEDs sequences 9 nights with both

Compare measured and synthetic fluxes (F. Hazenberg 2019)

 $\Phi_{calspec}$

 $\Phi_{calspec}$

Design improvements after the pathfinder experiment

- Spectroscopy of the LED beam requires a dedicated instrument
- Absolute mapping of the LED irradiance cannot be made (fast enough) directly with the NIST photodiodes : Cooled CMOS camera calibrated on a transfer bench
- Deconvolution of the instrument passband from broadband LED data is not easy: A priori and a posteriori measurement with the CBP.
- Junction temperature of low flux LEDs is not well tracked by case temperature : forward voltage measurement
- Progress in spectrophotometry associated with the development of auxtel led
- Fast variations of the gray extinction is the main noise contribution to the nightly regression of the atmospheric transmission: IR monitoring of the cloud coverage

_	Source	Vi-Bi	Vi-R	Vi-I
<u>-</u>	Statistique	0.76	0.66	0.73
	Erreur sur $\overline{\lambda}_l$	7.80	2.89	6.32
	Standardisation LEDs	0.44	0.31	0.45
	Position dans le faisceau	0.41	0.41	0.37
i	Variation grise	3.75	0.21	1.06
	Atm. horizontale	2.24	1.00	1.00
1 _	Atm. verticale	1.54	0.03	1.61
_	Total	9.12	3.18	6.75
	Total - $\sigma(ar{\lambda}_l)$	4.73	1.32	2.36
_	Δc	5.38	3.56	1.98

Hazenberg (2019)

The StarDICE metrology chain

Calibration transfer from NIST to Cooled CMOS

- Arrays of millions of photodiodes
- CMOS pixels with dark current of the order of 0.001 e⁻/s compared to the ~650ke⁻/s of the NIST photodiode → Time integration
- Make mapping of the irradiance of the LEDs million times faster than with the NIST photodiode provided that they can be calibrated
- A fast iteration on a photodiode-CCD transfer bench in 2019 demonstrated the feasability of the transfer
- Accuracy was limited by avoidable chromatic effects in the optics

2000

1000

-2000

-1000

0

x (cross-slit) in μ m

Fast iteration result: High res quantum efficiency curve of the pathfinder camera

Calibration transfer bench: The final implementation

- Fully automated calibration transfer bench being build at LPNHE (dev. led by C. Juramy)
- 2 beams:
 - Monochromatic beam for QE measurement (in green)
 - Polychromatic beam for flatfields and Electronic studies (ir red)
- Fully achromatic optics (OAP relays)

First Light of the new bench

- Not perfect (coma) but already fully contained within the detector
- And achromatic !

 (this is white light through the monochromator 0th order)
- We are days away from the first scan

New spectrophotometric bench

- Dev led by L. Le Guillou
- The goal is to precisely measure the spectra of our LEDs
- And how they evolve with temperature
- The difficulty is that the light level is extremely low (below the sensitivity level of lab spectrograph)

The key is a dedicated instrument

- Modify a monochromator to fit in one of the cooled CMOS camera
- Result is a highly sensitive spectrograph covering a (tunable) 50nm wavelength range with 0.01nm resolution

Sample data from the LED spectrograph

Wavelength Calibration Data

	<u></u>		

First LED spectra

- Integration 3x200s
- To be compared with a 2000s scan of the same LED at higher flux with the old method

New artificial star developped to solve the instabilities we had in the pathfinder

- New enclosure (CPPM)
- New drive electronic with embedded temperature proxy (E. Sepulveda)

Prototype complete (taking data)

- Prototypical electronics with selected components (16x ADC and DAC)
- Photometric stability test bench with cooled CMOS Camera

First result with the complete prototype electronics

- V_led standardize the LED flux at 0.04% over 10000s
- Production card drawn

New photometric instrument ready for CBP measurement

- Primary aperture 40cm
- Newton Secondary 11cm (lesson learn from pathfinder: avoid vignetting)
- Air-Cooled (-70°C) CCD camera
- 1024x1024 13 microns pixels
- Back illuminated deepdepleted CCD
- 6 broadband ugrizy filters + GRISM + Pinhole + hole
- As close as LSST as possible

Telescope collimation

Centering of the image of the secondary mirror Centering of the image of the primary mirror Centering of the image of the pinhole

Image of the CBP

The new telescope in front of the first CBP

• Dev. led by J. Neveu and S. Bongard

Scan gathering 3 kinds of data

from the telescope camera

Fichier B	Édition	Affichage	Fen	être		Zoom	Scale	Couleur	Régio	n \	WCS An	alyse A	Aide		
Fichier Obiet															
Minimum	,	x 10	58	v		931		172							
Maximum	,	x 64	5	y		367		2116							
Value												• X •			
												•			
Physique	×	(_ у								•			
Image	×	<		У					I.						
Fenêtre 1	×	0.38	7954			0	•								
fichier	édition	afficha	age	fenê	tre	bin	zoom	scale	coule	ur	région	wcs	ana	lyse	aide
zoom ir	n z	zoom out	z	oom	fit	zoor	m 1/4	zoom	1/2	z	oom 1	zoor	n 2	ZO	om 4

174 178 186 201 232 293 415 660 1146 🔽

Line		Tabulated	Detected	Shift	FWHM	Amplitud	
		nm	nm	nm	nm		
	L520	520.0	518.5613	-1.4387212	2.9191847	22255.23	
	LL532	532.0	532.027	0.026974846	0.35969415	358.0127	
	L520^(2)	1040.0	1036.434	-3.5660124	0.70053583	10.77955	

from the CBP photodiode

First transmission measurement

Wavelength calibration accuracy ?

- A comparison of the wavelength calibration solution in three different scans
- Reproducibility better than .1nm
- Excellent news for StarDICE but also directly for LSST

Second iteration of the CBP

- New achromatic collimating optics
- Smaller integrating sphere (more flux)
- Excellent mount (enable mirror scan)
- Laser beam wavelength cleaning with filters
- Currently integrating \rightarrow end of June

Developping slitless spectroscopic capabilities

- Efficient GRISM with
 accurately known transmission
- 2nm theoretical resolution around optimum
- Opens interesting possibilities in StarDICE
 - Auxtel-like atmospheric solution
 - Self-calibrating LED-Observations
 - Slitless-spectrophotometry ?

PhD Thesis Thierry Souverin

IR Follow-up instrument (1/2)

- Lack of monitoring of the gray extinction is the main source of noise which prevents reaching the photometric calibration goals for SNe-la
- Additional atmospheric absorption in the 350-1200 nm range induced by thin highaltitude cirrus clouds
- Method : monitoring of the background sky in the LWIR band (8-13 μm)
 - Measure the relative variations of the sky brightness temperature with an IR camera
 - Establish a correlation model of the sky thermal flux and stellar flux measured by optical CCD camera

High altitude cloud passing over

IR instrument (2/2)

- Characterization of the camera :
 - Establish a calibration process (impact of flat fields as e.g.)
 - Check the camera sensitivity performance
- Start of the first tests at UM* observatory with a prototype IR camera (FLIR Lepton)
- Design an automated flat-field mechanism for calibration to reduce non-uniformity of the bolometer array below pixel temporal noise to obtain high thermal resolution
- Coming up :
 - Simultaneous observations with IR and CCD cameras to provide optical photometry and thermal data at UM and OHP in June
 - Waiting for the new IR camera with better performances (FLIR Tau2)

Conclusion: exiting times for StarDICE

- Lessons learned from the pathfinder
- All pieces are coming together
- On track for a first light of the upgraded instrument this summer
- No obvious show-stopper for the development of the artificial star
- Fruitful collaborations within the PCWG (CBP and others)
- Exiting new developments (Spectroscopy and IR)
- Great work from every body in conditions far from optimal

The old CBP measurement

- The Harvard CBP project calibrated monochromatic light on a portion of the StarDICE telescope aperture
- Ratio of the counts in the Stardice detector to emitted light gives the StarDICE transmission
- In our first iteration we obtained a measurement of the transmission between 400-1000nm at 6 position in the focal plane
- 3% chromatic variation across the focal plane easily spotted (to be confirmed by direct measurement of the sensor)
- Left for next step:
 - Change Laser to fix the degeneracy region around 700nm
 - Improve signal to noise (detector and CBP
 - Demonstrate pupil stitching

Solving the astrometry

We spend 4 days at OHP in July to write the new mount control command and gathered of first astrometric data set (120 images in 60 pointings) to train the pointing model.

- The 1.5m x 1.5m optical table now point toward stars with 2 arcmin accuracy
- Work done by a master student Alexeï Mollin