The challenges of Photometric redshifts with large imaging surveys

S. Arnouts Laboratoire d'Astrophysique de Marseille

Deep Learning

SED fitting

Treyer, Ait-Ouahmed (LAM), Pasquet (Tetis) Bertin (IAP), Lin, Fouchez (CPPM)

Picouet, Ilbert (LAM) Sawicki (Halifax) Desprez (Geneve)

Photometric redshifts

Photometric redshifts

Convolutional Neural Network (Lecun+ 98)

https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle

Pasquet+ 19

—> what photo-z accuracy can we get compared to other ML techniques ?

-> can we extract reliable PDF estimates ?

Pasquet+ 19

—> Better performance than the latest SDSS photo-zs

Pasquet+ 19

—> PDF evaluations :

Probability Integral Transform PIT

 $\operatorname{PIT}_{i} = \int_{-\infty}^{z_{i}} PDF_{i}(z)dz$

Polsterer+ 16

- PDFs estimates well calibrated (PDF neither too broad nor too narrow)
- -> good estimator of photo-z accuracy for single object

-> Keep photo-z bias < Δ z> under control over large area and Z range

Pasquet+ 19

—> Training sizes

Training with 50% of the dataset*	250,000	252,500	0.00007	0.00910	0.29	0.00672
Training with 20% of the dataset	99,001	385,970	-0.00001	0.00914	0.30	0.00677
Training with 2% of the dataset	10,100	434,228	-0.00017	0.01433	1.26	0.01009

-> training with only 2% sample as well as Beck+16 k-NN results

CNN photo-z are highly competitive and do not required large training set

Prepare LSST with CLAUDS - HSC Deep Survey

-> HSC-CLAUDS catalogues (Desprez, Picouet+, in prep) SExtractor + HSC-pipe photometry Le Phare + Phosphoros photometric redshifts

- First release : This summer

unbalanced low/high z poor training set & poor representativity at i > 25 !

LSST France 27 May 2021

I: Comparison with spectroscopic redshifts

Treyer, in prep

LSST France 27 May 2021

II: Comparison with external dataset : COSMOS2020 (Weaver+21)

Treyer, in prep

- > 30 bands « ultimate » photo-z (U -> IRAC)
- -> 2 photometric catalogues (SExtractor + Tractor)
- -> 2 photometric redshift codes (EASY, Le Phare)
- -> independent test with
 ~180,000 z = mean value of 4
 photo-z (o<0.1)</pre>

II: Comparison with external dataset : COSMOS2020 (Weaver+21)

Treyer, in prep

high discrepancy at faint magnitudes

-> CNN suffers from lack of z training

II: Comparison with external dataset : COSMOS2020 (Weaver+21)

Treyer, in prep

- Mixed CNN training in critical regimes

5

Comparison with COSMOS2020 (Weaver+21)

~750 OII Emission Line galaxies in NB912 at <z>=1.47 with i<26

 CNN photo-z is a powerful and promising alternative for large imaging surveys with limited photometric passbands
 at high-z : include NIR images (or fluxes) will help (WFIRST, Euclid)

- Need to control the representativity of the training set
 - -> to be improved at high-z / faint mag regimes : PFS, MOONS, KMOS, MSE...

- Explore un/supervised methods with un/poor labeled data
 - -> pretrain on large unlabeled data + fine-tuning with some labels (contrastive learning) help to reduce the required training set (Hayat+21)
 - —> domain shift with un/label data