

Review on photometric redshifts

template-fitting methods / O. Ilbert deep learning / S. Arnouts

Basic principle of template-fitting

First template-fitting from Puschell, Owen, Laing 1982

Data multi-color photometric catalogue

Many difficulties behind this step

- Combine images with different PSF
- Blending of the sources
- Flux extraction method to limit the noise
- Identify unreliable regions on the images
- Photometric calibration
- •
- Real impact on the quality of the photo-z

Physical model of SED

Model the galaxy emission

Neutral gas in the IGM

Dust in the Milky Way

Reproduce everything from the photon emission to the researcher

The instrument (CCD, filters)

Could decide to use few observed spectra or/and generate templates with stellar population synthesis models

Brammer+(2008) allow for linear combination between templates and associate an error function to the templates

The set of templates now start the messy part

Or large libraries with complex star formation histories ➤ millions of templates

the emission from a galaxy. Thus, in our approach, a large number of templates corresponding to different sets of parameters can potentially be consistent with the observed fluxes within the errors, which tends to increase the dispersion in the photometric redshifts derived for a galaxy at a given spectroscopic redshift. In return, the

Chevallard & Charlot 2016

The set of templates Inow start the messy part

Or large libraries with complex star formation histories ➤ millions of templates

the emission from a galaxy. Thus, in our approach, a large number of templates corresponding to different sets of parameters can potentially be consistent with the observed fluxes within the errors, which tends to increase the dispersion in the photometric redshifts derived for a galaxy at a given spectroscopic redshift. In return, the

As many set of templates as existing codes > No consensus on a common set of templates, or even on the method to establish such set of templates

Introducing the dust (admit even more ignorance...)

Dust attenuation depends on galaxy star formation history, geometry of the galaxy, metallicity ...

> We don't know the dust attenuation law in the studied galaxy

On a top of that, emission lines should be considered seriously

Not trivial given the diversity of line ratios

Basic principle of template-fitting

First template-fitting from Puschell, Owen, Laing 1982

Compensate our lack of data by

=+0.011

=0.143 =30.92%

=0.182 =45.20%

case 1

bias

 z_{photo}

Could introduce external information as the N(z), the luminosity function, the mass-SFR relation, etc (Benitez 2000)

accine some

e.g. PHOSPHOROS for Euclid

HDFS, Arnouts+02

 $\mathbf{Z}_{\mathtt{spec}}$

Zphot

Validation through photo-z / spec-z comparison But:

- biased spec-z samples
- PDF are rarely checked in detail

Numerous challenges to test the codes with real data

Hildebrandt+2010, PHAT, blind test with GOODS data

TABLE 1										
Codes included in the CANDELS SED test for calculating photometric redshifts.										
ID^{a}	PI	Code	Code ID	Template set	Em lines	Flux shift	$\Delta \mathrm{err}$	ΔSED	Inter	ref.
2	G. Barro	Rainbow	А	$PEGASE^{b}$	yes	yes	no	no	no	j
3	T. Dahlen	GOODZ	В	CWW^c , $Kinney^d$	yes	yes	yes	yes	yes	k
4	S. Finkelstein	EAZY	\mathbf{C}	$EAZY^e + BX418^f$	yes	no	no	no	yes	l
5	K. Finlator	SPOC	D	$\mathrm{BC03}^{g}$	yes	no	no	no	no	m
6	A. Fontana	$_{\rm zphot}$	\mathbf{E}	$PEGASEv2.0^{b}$	yes	yes	yes	no	no	n, o
7	R. Gruetzbauch	EAZY	\mathbf{C}	$EAZY^{e}$	yes	yes	yes	no	yes	l
8	S. Johnson	SATMC	\mathbf{F}	$\mathrm{BC03}^{g}$	no	no	no	no	yes	p
9	J. Pforr	HyperZ	G	$Maraston05^{h}$	no	no	yes	no	no	q
11	M. Salvato	LePhare	Η	$BC03^{g}+Polletta07^{i}$	yes	yes	yes	no	no	r
12	T. Wikind	WikZ	Ι	$\mathrm{BC03}^{g}$	no	no	yes	no	no	s
13	S. Wuyts	EAZY	С	$EAZY^{e}$	yes	yes	yes	no	yes	l

Dahlen+2013, internal tests using CANDELS data

Numerous challenges to test the codes with simulations

Schmidt, Malz et al. 2020 for LSST

$$PIT_i = CDF_i(zs_i) = \int_0^{zs_i} PDF_i(z)dz$$

Euclid, Deprez et al. 2020

frequency Le Phare CPz ĖAzY Phosphoros 2.5 2.5 2.5 2.0 -2.0 2.0 1.5 1.5 1.5 Relative 1.0 1.0 1.0 0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.00 0.00 0.75 3.0 3.0 frequency METAPHOR ANNz GPz GBRT 2.5 2.5 2.5 2.5 2.0 2.0 -2.0 2.0 1.5 1.5 1.5 Relative 1.0 1.0 -1.0 0.5 0.5 0 5 0.0 0.0 0.0 0.0 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 CDF(z) CDF(z)CDF(z) CDF(z)

Recent papers start to investigate the quality of the PDF

<u>COSMOS2020 catalogue</u>

Weaver, Kauffmann et al. 2021, submitted

CANDIDE HPC CLUSTER

WEAVER

MILVANG-JENSEN BRAMMER

TOFT

CAPAK

... & MANY MORE!

COSMOS2020 catalogue

Weaver, Kauffmann et al. 2021, submitted

There are 4x COSMOS2020 catalogues!

Classic : aperture photometry The Farmer : profile-fitting photometry

 THE TRACTOR

 {Lang et al., 2016ab}

COSMOS2020 catalogue

Weaver, Kauffmann et al. 2021, submitted

1% precision at i<22.5 4-5% precision at 25<i<26

COSMOS2020 z>7 candidates

Kauffmann et al. 2021, in prep

31 candidates

Conclusions on template-fitting

Template-fitting is a robust method

It will remain essential in case of sparse spectroscopic coverage (e.g. JWST)

The PDF could be use to measure the mean redshift with deep imaging

Salvato+2018, review on photo-z

JWST / Kauffmann+20

Adding value of template fitting > physical parameters

- If the templates have a physical meaning, the physical parameters could be measured simultaneously
- ex: Chevallard & Charlot 2016, Tanaka 2015

Compensate our lack of data by adding some prior

Bayesian approach could be chosen to derive the PDF and then the photo-z

$$p(z \mid C, m_0) = \sum_T p(z, T \mid C, m_0) \propto \sum_T p(z, T \mid m_0) p(C \mid z, T)$$

the contrary, Bayesian probability averages over all the likelihoods after weighting them by their prior probabilities, $p(z, T | m_0)$. In this way, the estimation is not affected by spurious likelihood peaks caused by noise (Fig. 2; see also

Benitez 2000

Test template-fitting with hydrodynamical simulations

Follow DM and baryonic particules in Horizon-AGN ➤ complex histories and diversity of galaxies

Run Le Phare with standard configuration ➤ excellent with LSST+Euclid

Ongoing work: generate image and source extraction for Horizon-AGN

