

1

Empirical spectrophotometric modelization of SN Ia

Guy Augarde Supervisor : Nicolas Regnault

Observation method

- To constrain cosmological parameters, we measure luminosity distance from flux observation.
- Observations in differents filters (wavelength range)
- The integral of blue spectrum emitted in SN restframe is observed :
	- \circ in band g for $z = 0.1$
	- \circ in bands z, i and Y for $z = 1.0$

Spectrophotometric model

To construct a Hubble Diagram, all must be express in the same restfram band : band B (by convention) at the maximum de luminosity : m_R^{obs}

To minimize the dispersion the hubble diagram residuals : extraction of SN Ia stretch, s, and color, c.

$$
m_B^{obs} = \mu + M_B + \alpha s - \beta c \pm 15\%^\text{*}
$$

Hubble diagram residuals

SALT 2 (Spectral Adaptive Light curve Template)

To constraint common parameters, need to train the model on well sample SN Ia data with known redshift : called training sample

Other models

- 2nd generation : photometric model (SIFTO, Conley & al 2008, SNLS)
	- trained on low-z SNe photometric data;
	- modelization of light curve with 2 standardization parameters;
	- spectrum modelization add with a template of low-z.
	- 3rd generation : spectro-photometric model (SALT2, Guy & al 2007, 2010; Betoule & al 2014,

SNLS) ○ trained on light curves and spectra, low & high z;

- but only 2 standardization parameters.
- 4th gen (SUGAR & SNEMO, Léget & al 2019; Saunders & al 2018, The Nearby Supernova

Factory)

- 3 standardisation parameter;
- trained only on low-z SNe data, missed UV for high-z description;
- Spectrophotometric time series only not hybrid.

- Create a hybrid salt2-like model
- Gather a modern & larger training sample
	- Usable for cosmology study
- Enhance systematic uncertainty propagation (especially calibration uncertainty)

The french SN community is working on the pre-LSST Hubble Diagram (with the addition of HSC & ZTF) : A new model is needed !

New generation of SALT2 model

- Strong points :
	- \circ low and high z;
	- UV data;
	- empirical spectro-photometric modelization;
- Limitations :
	- old training sample (last training 2014) ;
	- maybe more parameter to describe SN variability ;
- stiff (minimizer and model are indivisible) ;
- \circ usable on $O(1000)$ SNe ;
- manual training ;
- not maintained

- ➢ New SALT2 training framework:
	- New tools (Sparse matrix, Python3 ...);
	- \circ New techniques for simple training \ge (One minimisation, updatable model, error model, fast algorithm …).
- \triangleright Gather well measured SN Ia sample & addition in UV space;
	- ➢ New component to standardization (host galaxy dependency, redshift dependency...)

SALT3

- Light curve fitter for DES Survey,
- Publish public SALT2 training code,
- New SALT2 trained model,
- Modern training sample:
	- Larger
	- Better UV coverage

SALT3: An Improved Type Ia Supernova Model for Measuring Cosmic Distances

W. D. KENWORTHY,¹ D. O. JONES,^{2, *} M. DAI,^{1,3} R. KESSLER,⁴ D. SCOLNIC,⁵ D. BROUT,^{6, *} M. R. SIEBERT,² J. D. R. PIEREL,⁷ K. G. DETTMAN,³ G. DIMITRIADIS,² R. J. FOLEY,² S. W. JHA,³ Y.-C. PAN,⁸ A. R AND C. ROJAS-BRAVO²

 1 Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218. ²Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA ³ Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854. **USA** ⁴ University of Chicago, Kayli Institute for Cosmological Physics, Chicago, IL, USA.

⁵ Department of Physics, Duke University, Durham North Carolina 27708, USA ⁶ Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA ⁷ Department of Physics and Astronomy, University of South Carolina, 712 Main Street, Columbia, SC 29208, USA[†] ⁸Graduate Institute of Astronomy, National Central University, 300 Zhongda Road, Zhongli, Taoyuan 32001, Taiwan ⁹ Space Telescope Science Institute, Baltimore, MD 21218.

Training sample: Kenworthy & al 2021 : SALT3 LPNHE

- JLA :
	- low-z; SDSS; SNLS;
- $K21$:
	- + Foundation Supernova Survey;
		- Pan-STARRS Medium Deep Survey; DES
- 1083 SNe

Kenworthy & al 2021

Program

- Simplified flux model:
	- fit a toy model to construct our tools ;
	- fit a error model;
- Study on data : CSP;
- 2D SALT2-like model;
- Add new standardisation component.

Model & fit present difficulties

- Large fit \Rightarrow sparse matrices;
- **Empirical nonlinear model** :
	- 1st a priori : all Sne same LC shape
	-
	- 3rd a priori : smooth evolution with time
	- \circ amplitude, date of maximum and stretch for each SN => simultaneous fit
		- Degeneracies (splines and SNe parameters) => constraints
- Model residual variability (error model);
	- intrinsic SN variability
- \triangleright Creation of a toy model to built all the tools needed for the 2D model.

 \circ 2nd a priori: there is a max \rightarrow spline with regularization shared by all SN

1D toy model

3 parameters per SN

 J^{α}

1994D

Minimizer

Use of a Newton Raphson algorithm :

linear constraints Lagrange parameter

model fit

regularization

 $R = data - model$

Models converge in few iterations (~5).

non linear constraints quadratic penalty

Simulation : gaussian reconstruction

Simulation : gaussian reconstruction

Simulation : gaussian reconstruction

Program

- Simplified flux model:
	- fit a toy model under constraints;
	- fit a error model;
- Study on data : CSP;
- 2D salt2-like model;
- Add new standardisation component.

Error model

Goal : Capture residual diversity

$$
Variance(t, SN) = Err(t, SN)^2 + V(t, SN)
$$

= $Err(t, SN)^2 + (\gamma_{SN} * f(t, SN)$
Adding a parameter
by SN

 χ^2

Training time

- Number of parameters :
	- 1 amplitude per SN and per band
	-
	- 1 tmax per SN
○ 1 stretch per SN and per band
	- 50 parameter per band
	- 1 error parameter per SN and per band

For 1 000 SNe in 5 bands :

○ 16 250 parameters

For 10 000 SNe in 5 bands :

○ 160 250 parameters

Program

- Simplified flux model:
	- fit a toy model under constraints;
	- fit a error model;
- Study on data : CSP;
- 2D salt2-like model;
- Add new standardisation component.

22

HE

D PARIS

Carnegie Supernova Project

- **Las Campanas Observatory** in Atacama, Chile
- From 2004 to 2009
- high precision light curves in 10 bands
- optical spectrophotometry
- \sim 250 supernovae of $0 < z < 0.1$

Carnegie Supernova Project SNe

CSP band standardization

Program

- Simplified flux model:
	- fit a toy model under constraints;
	- fit a error model;
- Study on data : CSP;
- 2D salt2-like model;
- Add new standardisation component.

2D Hybrid Model

● Spectrum :

$$
S_{obs}(\lambda, t) = \frac{1}{1+z} X_0 \left[M_0 \left(\frac{t-t_{max}}{1+z}, \frac{\lambda}{1+z} \right) + X_1 M_1 \left(\frac{t-t_{max}}{1+z}, \frac{\lambda}{1+z} \right) \right] e^{cCL(\frac{\lambda}{1+z})} \left[\sum_{i=0}^{N_s} s_i^{sp} \cdot \lambda^{N_s-i} \right] \Bigg]^{0.2}_{0.1} \underbrace{\left[\sum_{i=0}^{N_s} s_i^{sp} \cdot \lambda^{N_s-i} \right]^{0.2}_{0.1} \underbrace{\left[\sum_{i=0}^{N_s} s_i^{sp} \cdot \lambda^{N_s-i} \right]^{0.2}_{0.1}}_{0.01} \underbrace{\left[\sum_{i=0}^{N_s} s_i^{sp} \cdot \lambda^{N_s-i} \right]^{0.2}_{0.1} \underbrace{\left[\sum_{i=0}^{N_s} s_i^{sp} \cdot \lambda^{N_s-i} \right]^{0.2}_{0.1}}_{0.01} \underbrace{\left[\sum_{i=0}^{N_s} s_i^{sp} \cdot \lambda^{N_s-i} \right]^{0.2}_{0.1} \underbrace{\left[\sum_{i=0}^{N_s} s_i^{sp} \cdot \lambda^{N_s-i} \right]^{0.2}_{0.1}}_{0.01} \underbrace{\left[\sum_{i=0}^{N_s} s_i^{sp} \cdot \lambda^{N_s-i} \right]^{0.2}_{0.1} \underbrace{\left[\sum_{i=0}^{N_s} s_i^{sp} \cdot \lambda^{N_s-i} \right]^{0.2}_{0.1}}_{0.1} \underbrace{\left[\sum_{i=0}^{N_s} s_i^{sp} \cdot \lambda^{N_s-i} \right]^{0.2}_{0.1} \underbrace{\left[\sum_{i=0}^{N_s} s_i^{sp} \cdot \lambda^{N_s-i} \right]^{0.2}_{0.1}}_{0.1} \underbrace{\left[\sum_{i=0}^{N_s} s_i^{sp} \cdot \lambda^{N_s-i} \right]^{0.2}_{0.1}}_{0.11} \underbrace{\left[\sum_{i=0}^{N_s} s_i^{sp} \cdot \lambda^{N_s-i} \right]^{0.2}_{0.1}}_{0.11} \underbrace{\left[\sum_{i=0}^{N_s} s_i^{sp} \cdot \lambda^{N_s-i} \right]^{0.2}_{0.1}}_{0.11} \underbrace{\left[\sum
$$

data 0.4 \sum_{L}^{8} 0.3 **Measurement Error** $n + n + n$ $_{-0.01}$ \perp 4000 5000 6000 7000 8000 Wavelength

4 Date :- 0.438, z: 0.0329

● Light Curve:

$$
\phi_{band}(t) = \frac{1}{1+z} \int S(\lambda, t) T_{band}(\frac{\lambda}{1+z}) \frac{\lambda}{hc} d\lambda
$$

 0.5

 $-$ model

Model description

 $\langle c \rangle = 0$

2D Model : Simulation

2D Model : Reconstruction

2D Model : Error Model

$$
\sigma(p,\lambda)^2 = Err(p,\lambda)^2 + \sigma_X(p,\lambda)^2
$$
\n
$$
\sigma_{ph}(p,\lambda_c) = \left[X_0 \exp(\mathrm{c} \, \mathrm{CL}(\lambda)) * s(\lambda)\right]^2 \sigma_{M_0}{}^2(p,\lambda)
$$
\n
$$
\sigma_{ph}(p,\lambda_c) = \left[X_0 \exp(\mathrm{c} \, \mathrm{CL}(\lambda_c)) \int T\left(\frac{\lambda}{1+z}\right) \lambda d\lambda\right]^2 \sigma_{M_0}{}^2(p,\lambda_c)
$$
\n
$$
\sigma_{ph}(p,\lambda_c) = \left[X_0 \exp(\mathrm{c} \, \mathrm{CL}(\lambda_c)) \int T\left(\frac{\lambda}{1+z}\right) \lambda d\lambda\right]^2 \sigma_{M_0}{}^2(p,\lambda_c)
$$

31

Conclusion

- Training code with notable methodologic enhancement :
	- Fit tmax along with other parameters
	- One single minimization
	- Propagation of systematic uncertainties
- Fast full-fledged SALT2-like model :
	- Extensive training systematic study
	- Training & Cosmology on the full sample
- Flexible framework to explore :
	- new SN models
	- new standardization techniques

Thank you very much !