

Empirical spectrophotometric modelization of SN Ia

Guy Augarde Supervisor : Nicolas Regnault

Observation method

- To constrain cosmological parameters, we measure luminosity distance from flux observation.
- Observations in differents filters (wavelength range)
- The integral of blue spectrum emitted in SN restframe is observed :
 - in band g for z = 0.1
 - in bands z, i and Y for z = 1.0

Spectrophotometric model

• To construct a Hubble Diagram, all must be express in the same restfram band : band B (by convention) at the maximum de luminosity : m_B^{obs}

• To minimize the dispersion the hubble diagram residuals : extraction of SN Ia stretch, s, and color, c.

$$m_B^{obs} = \mu + M_B + \alpha s - \beta c \pm 15\%$$

Hubble diagram residuals

Uncertainty sources	$\sigma_x(\Omega_m)$	% of $\sigma^2(\Omega_m)$
Calibration	0.0203	36.7
Milky Way extinction	0.0072	4.6
Light-curve model	0.0069	4.3
Bias corrections	0.0040	1.4
Host relation ^a	0.0038	1.3
Contamination	0.0008	0.1
Peculiar velocity	0.0007	0.0
Stat	0.0241	51.6

SALT 2 (Spectral Adaptive Light curve Template)

To constraint common parameters, need to train the model on well sample SN Ia data with known redshift : called <u>training sample</u>

- 2nd generation : photometric model (SIFTO, Conley & al 2008, SNLS)
 - trained on low-z SNe photometric data;
 - modelization of light curve with 2 standardization parameters;
 - spectrum modelization add with a template of low-z.
 - 3rd generation : spectro-photometric model (SALT2, Guy & al 2007, 2010; Betoule & al 2014,

SNLS)

- trained on light curves and spectra, low & high z;
- but only 2 standardization parameters.
- 4th gen (SUGAR & SNEMO, Léget & al 2019; Saunders & al 2018, The Nearby Supernova

Factory)

- 3 standardisation parameter;
- trained only on low-z SNe data, missed UV for high-z description;
- Spectrophotometric time series only not hybrid.

- Create a hybrid salt2-like model
- Gather a modern & larger training sample
 - Usable for cosmology study
- Enhance systematic uncertainty propagation (especially calibration uncertainty)

The french SN community is working on the pre-LSST Hubble Diagram (with the addition of HSC & ZTF) : A new model is needed !

New generation of SALT2 model

- Strong points :
 - low and high z;
 - UV data;
 - empirical spectro-photometric modelization;

- Limitations :
 - old training sample
 (last training 2014);
 - maybe more parameter to describe SN variability ;
- stiff (minimizer and model are indivisible);
- \circ usable on O(1000) SNe ;
- manual training ;
- not maintained

- New SALT2 training framework:
 - New tools (Sparse matrix, Python3 ...);
 - New techniques for simple training >> (One minimisation, updatable model, error model, fast algorithm ...).
- Gather well measured SN Ia sample & addition in UV space;
 - New component to standardization (host galaxy dependency, redshift dependency...)

SALT3

- Light curve fitter for DES Survey,
- Publish public SALT2 training code,
- New SALT2 trained model,
- Modern training sample:
 - Larger
 - Better UV coverage

SALT3: An Improved Type Ia Supernova Model for Measuring Cosmic Distances

W. D. KENWORTHY,¹ D. O. JONES,^{2,*} M. DAI,^{1,3} R. KESSLER,⁴ D. SCOLNIC,⁵ D. BROUT,^{6,*} M. R. SIEBERT,² J. D. R. PIEREL,⁷ K. G. DETTMAN,³ G. DIMITRIADIS,² R. J. FOLEY,² S. W. JHA,³ Y.-C. PAN,⁸ A. RIESS,^{1,9} S. RODNEY,⁷ AND C. ROJAS-BRAVO²

 ¹ Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218.
 ² Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA
 ³ Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854, USA
 ⁴ University of Chicago, Kavli Institute for Cosmological Physics, Chicago, IL, USA.

⁵Department of Physics, Duke University, Durham North Carolina 2708, USA
 ⁶Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
 ⁷Department of Physics and Astronomy, University of South Carolina, 712 Main Street, Columbia, SC 29208, USA
 ⁸Graduate Institute of Astronomy, National Central University, 300 Zhongda Road, Zhongli, Taoyuan 32001, Taiwan
 ⁹Space Telescope Science Institute, Baltimore, MD 21218.

Training sample : Kenworthy & al 2021 : SALT3 LPNHE

- JLA :
 - low-z; SDSS; SNLS;
- K21 :
 - + Foundation Supernova Survey;
 - Pan-STARRS Medium Deep Survey; DES
- 1083 SNe

Kenworthy & al 2021

Program

- Simplified flux model:
 - fit a toy model to construct our tools ;
 - fit a error model;
- Study on data : CSP;
- 2D SALT2-like model;
- Add new standardisation component.

Model & fit present difficulties

- Large fit => sparse matrices;
- Empirical nonlinear model :
 - 1st a priori : all Sne same LC shape
 - \circ 2nd a priori: there is a max
 - 3rd a priori : smooth evolution with time
 - amplitude, date of maximum and stretch for each SN => simultaneous fit

Degeneracies (splines and SNe parameters) => constraints

- Model residual variability (error model);
 - intrinsic SN variability

Creation of a toy model to built all the tools needed for the 2D model.

- spline with regularization shared by all SN

1D toy model

Minimizer

Use of a Newton Raphson algorithm :

linear constraints Lagrange parameter

model fit

non linear constraints quadratic penalty

R = data - model

Models converge in few iterations (~5).

regularization

Simulation : gaussian reconstruction

Simulation : gaussian reconstruction

Simulation : gaussian reconstruction

Program

- Simplified flux model:
 - fit a toy model under constraints;
 - fit a error model;
- Study on data : CSP;
- 2D salt2-like model;
- Add new standardisation component.

Error model

Goal : Capture residual diversity

$$\begin{aligned} Variance(t,SN) &= Err(t,SN)^2 + V(t,SN) \\ &= Err(t,SN)^2 + (\gamma_{SN}*f(t,SN) \end{aligned}$$

 Adding a parameter by SN

 λ^2

Training time

- Number of parameters :
 - 1 amplitude per SN and per band
 - 1 tmax per SN
 - \circ 1 stretch per SN and per band
 - o 50 parameter per band
 - 1 error parameter per SN and per band

For 1 000 SNe in 5 bands :

• 16 250 parameters

For 10 000 SNe in 5 bands :

• 160 250 parameters

Program

- Simplified flux model:
 - fit a toy model under constraints;
 - fit a error model;
- Study on data : CSP;
- 2D salt2-like model;
- Add new standardisation component.

22

Carnegie Supernova Project

- Las Campanas Observatory in Atacama, Chile
- From 2004 to 2009
- high precision light curves in 10 bands
- optical spectrophotometry
- ~ 250 supernovae of 0<z<0.1

Carnegie Supernova Project SNe

CSP band standardization

Program

- Simplified flux model:
 - fit a toy model under constraints;
 - fit a error model;
- Study on data : CSP;
- 2D salt2-like model;
- Add new standardisation component.

2D Hybrid Model

• Spectrum :

$$S_{obs}(\lambda,t) = \frac{1}{1+z} X_0 \left[M_0 \left(\frac{t-t_{max}}{1+z}, \frac{\lambda}{1+z} \right) + X_1 M_1 \left(\frac{t-t_{max}}{1+z}, \frac{\lambda}{1+z} \right) \right] e^{c CL(\frac{\lambda}{1+z})} \left[\sum_{i=0}^{N_s} s_i^{sp} \cdot \lambda^{N_s - i} \right]_{\substack{0.1 \\ 0.0}}^{a}$$

• Light Curve: $\phi_{band}(t) = \frac{1}{1+z} \int S(\lambda, t) T_{band}(\frac{\lambda}{1+z}) \frac{\lambda}{hc} d\lambda$

Model description

< c >= 0

2D Model : Simulation

28

2D Model : Reconstruction

2D Model : Error Model

31

Conclusion

- Training code with notable methodologic enhancement :
 - Fit tmax along with other parameters
 - One single minimization
 - Propagation of systematic uncertainties
- Fast full-fledged SALT2-like model :
 - Extensive training systematic study
 - Training & Cosmology on the full sample
- Flexible framework to explore :
 - $\circ \quad \text{new SN models} \\$
 - new standardization techniques

Thank you very much !