PhotoZ estimation with Gaussian Processes Laboratoire de Physique des 2 Infinis

Delight in DESC-DC2 Bayesian statistics, Maths and cosmological physics

May 27th 2021

Ref:

Data-driven, Interpretable Photometric Redshifts Trained on Heterogeneous and Unrepresentative Data Boris Leistedt¹,⁴ and David W. Hogg¹,²,³

The Astrophysical Journal, 838:5 (14pp), 2017 March 20

Sylvie Dagoret-Campagne

IJCLab/IN2P3/CNRS

https://doi.org/10.3847/1538-4357/aa6332

Bayesian Hierarchical Modeling of photometric redshift Using PZ Gaussian Process prediction in LSST DC2 context

Use Delight (https://github.com/ixkael/Delight or https://github.com/LSSTDESC/Delight)

- Gaussian Processes for Redshift estimation —> hybrid method between Template fitting and ML
 - Based on Flux-Redshift cosmological model also referred as Templates
 - Add flexibility to the model by adding parameters:
 - hyper parameters α , β , γ in different stage of the model (with/without priors) will require optimisation
 - Nuisance parameters that pdf will be marginalized
 - Smaller training set required but allowed not to be fully representative of truth

Delight Code works with two tasks :

- 1) Bayesian Template Fitting
 - ➡No training dataset
 - PZ Estimation only
- 2) Bayesian GP fixing with flux prediction in likelihood done by a Gaussian Process

Training and Validation dataset

PZ Learning / **PZ Estimation (prediction)**

Delight works on two data types:

- Internal mock dataset (internal control)
- External data (by example DC2 5 Years 300°^2)

Leistedt, Boris & Hogg, David (Results from Delight code on SDSS data)
 Data-driven, Interpretable Photometric Redshifts Trained on Heterogeneous and Unrepresentative Data
 Leistedt, Boris & Hogg, David & Wechsler, Risa & DeRose, Joe. (2019).
 Hierarchical modeling and statistical calibration for photometric redshifts.

For each target galaxy :

$$p(z/\hat{F}) = \int dt \, p(\hat{F}/z, t) p(z, t) \simeq \sum_{i} p(\hat{F}/z, t_{i}) p(z, t)$$

Likelihood based on Flux-Redshift model at z_i for template t_i

Template Fittir

Prior

Likelihood $p(\hat{F}/z, t_i)$

 $p(z_i, t_i)$

The redshift priors or templates

Use the analytica Flux-Redshift mod

Bayesian inference of redshift *z* from noisy fluxes : $\hat{F} = (\hat{F}_1, \dots, \hat{F}_b, \dots, \hat{F}_{N_b})$

Prior on galaxy template t_i and its 2D redshift distribution $p(z, t_i)$

 $(z/t_i)p(t_i)$

ng	Gaussian processes
n SED	The redshift priors on redshift taken to be gaussian at each training galaxy of redsh
<u>al</u> del	Use GP formula to predict• average flux $F^*(z)$ • covariance. $\Sigma^*_F(z)$
	$p(\underbrace{\hat{F}/z}_{target}, t_i) = p(\hat{F}/z, \underbrace{z_i, \hat{F}_i}_{training}) = \int dF p(\hat{F}/F) p(F_i)$
	$p(\boldsymbol{F}/z, z_i, \hat{F}_i) = \mathcal{N}(\boldsymbol{F} - \boldsymbol{F}(z)^*; \boldsymbol{\Sigma}_F^*(z))$

Base Flux-redshift model

Used to build Fluxes - Redshift model for each template, for Template fitting and GP fitting

Good redshift Templates for CWW SED

• Flux-Redshift model from Luminosity $L_{\nu}(\lambda_{em})$ and SED $f_{\nu}(\lambda_{obs}, z)$ 1 1

$$f_{\nu}(\lambda_{obs}, z) = \frac{1+z}{4\pi D_{L}^{2}(z)} L_{\nu}\left(\frac{\lambda_{obs}}{1+z}\right)$$

$$F_{b}(z) = \frac{(1+z)^{2}}{4\pi D_{L}^{2}(z)g_{AB}C_{b}} \int_{0}^{\infty} L_{\nu}(\lambda_{em}, z)V_{b}\left(\lambda_{em}\right)$$

Example of flux-redshift model in LSST band I for 8 $L_{\nu}(\lambda)$ template models

 $m(1+z)) d\lambda_{em}$

3.0

Reshift prior choice : Extension of redshift range from [0,1] to [0,3]

- <u>Template fitting use this prior for each SED template</u>
- Gaussian process fitting use training data redshift distribution as prior
- Redshift in mock data are generated according a uniform distribution in [0.,3]

Benitez 2000 priors

$$p(z) = b_{in} \frac{z}{\beta^2} \exp(-z^2/(2\beta^2))$$

Z pdf width increases with maximum magnitude

Benitez priors can be calibrated on Data

Preliminary PZ results for <u>unoptimized Delight</u>

mock data

Template Fitting

Gaussian Process

Perfect redshift estimation with mock data For both:

- Template fitting
- Gaussian process

DESC-DC2 flux-redshift data

Interpretation of those results in the following slides

Magnitude distribution

Mock Data:

- Magnitude range : $\Delta m = 18$ DC2 Data:
 - Magnitude range : $\Delta m = 9$
 - Malmquist-Eddington bias: Photometric flux errors induces bias toward low magnitudes
 - Base Flux-Redshift Model does not describe well DC2 data

From astromI book Statistics, data mining And ML in astronomy

Flux biases in DC2 Data

In DC2 training dataset

- Flux- Redshift DC2 data
- For each training sample (z_i, \hat{F}_i^B) , prediction of fluxes at any other z for each template t_i
- The models are roughly rescaled

(At input of Gaussian Process Learning)

ssp 25Myr z008

ssp 25Myr z008 2.5

Correction for Flux bias and luminosity evolution wrt z in Gaussian Process learning

Luminosity (nuisance) parameter $\ell(z)$ inside likelihood

$$p(\hat{F}/z, z_i, \hat{F}_i) = \int d\ell \,\mathcal{N}\left(\hat{F} - \ell(z)F^*(z); \Sigma_{\hat{F}} - \ell(z)F^*(z)\right) d\ell \,\mathcal{N}\left(\hat{F} - \ell(z)F^*(z); \Sigma_{\hat{F}} - \ell(z)F^*(z)\right) d\ell \,\mathcal{N}\left(\hat{F} - \ell(z)F^*(z); \Sigma_{\hat{F}} - \ell(z)F^*($$

- For each training sample at z, find the best rescaling factor ℓ of data wrt model
- Use the best template type t_i (minimum χ^2 for each training sample) —> « latent SED »

• Mock dataset :

 $+ \ell^2(z) \boldsymbol{\Sigma}_F^*(z) \right) p(\ell) \qquad p(\ell) = \mathcal{N}(\hat{\ell} - \ell, \sigma_\ell^2)$

Correction of flux bias and luminosity evolution in Template Fitting Luminosity (nuisance) parameter ℓ and magnitude vs redshift

- One curve $\ell(z)$
- One $F_h(z)$

per SED template

Luminosity scaling factor vs target galaxy redshift For each SED template model

Shown for DC2 Data (similar for mock data)

AB Magnitude galaxy vs target galaxy redshift in LSST red filter **Comparison of SED template models / DC2 Data**

Used to compute the likelihood $p(\hat{F}/z, t_i)$

Delight Template fit with DC2 : Flux-Redshift model comparison between rescaled model and data, band lsst r

Correction for bias in <u>Gaussian Process learning</u>

Shown for DC2 Data

Similar for mock data

Comparison of magnitudes/redshift between data and rescaled model

Gaussian Process redshift estimation $p(\underbrace{\hat{F}/z}, t_i) = p(\hat{F}/z, \underbrace{z_i, \hat{F}_i}) = \left| dF p(\hat{F}/F) p(F/z, z_i, \hat{F}_i) \right|$

Compute flux Likelihood on Target galaxy

Using GP prediction

target

GP posterior on target Galaxy

redshift prior $p(z/\hat{F}) = \sum p(\hat{F}/z, z_i, \hat{F}_i) \quad \overline{\mathcal{N}(z_i, \sigma_z)}$

Distribution of the highest evidence over target galaxies training 6555 7614 4599 3953 6427 7009 5787 5280 Standard template fitting
 New method
 Spec-2

training

 $p(\boldsymbol{F}/z, z_i, \hat{F}_i) = \mathcal{N}(\boldsymbol{F} - \boldsymbol{F}(z)^*; \boldsymbol{\Sigma}_{\boldsymbol{F}}^*(z))$

Reminder on what is Gaussian Process and definition of notations

After past introduction of GP by François Leget

Find the prediction of the function y = f(x) \rightarrow for a new value y_* at x_* (*n* targets) \rightarrow from previously *m* observed training samples (*X*, *y*) $X \simeq (m \times k)$ matrix $y \simeq (m \times 1)$ vector

$p(f_*|X_*, X, y) = \mathcal{N}(\overline{f_*}, cov(f_*))$

Standard formula of Gaussian Process for noisy data points (on y)

Average on $\overline{f_*} = E[f_* | X, y, X_*] = K(X_*, X)[K(X, X) + \sigma_n^2 I]^{-1} y$ predicted y_* vector $(n \times 1)$ Covariance on predicted y_*

> Prediction phase $(n \times n)$

Estimation of target redshift with Gaussian Process in Delight

Find a non parametric function y = f(x), where

- Y is the vector of LSST fluxes F(b, z) in the 6 LSST filters,
- X is a complicated vector of a band index b_i , redshift z and luminosity scaling factor ℓ for each training & target galaxy.

Training noisy fluxes:
$$\hat{F} = (\hat{F}_1, \dots \hat{F}_b, \dots \hat{F}_{N_b})$$
, size

Predicted noiseless fluxes : $F^* = (F_1^*, \dots, F_h^*, \dots, F_{N_i^*}^*)$, size $(B^* \times 1)$ and covariance matrix Σ_{F^*}

Prior on noiseless model fluxes: $p(F/X) = \mathcal{N}(\mu^F(X), k^F(X, X))$

But what are the chosen expression for μ^{F} and K^{F} ?

ze $(B \times 1)$ and covariance matrix $\Sigma_{\hat{F}}$

$$X_j = (b_j, z)$$

size ($B \times$

$$X_k^* = (b_k^*, z^*)$$

size (B* >

 μ^F average, k^F kernel

 ℓ is a nuisance parameter which is to be marginalized in Flux likelihood

 $\boldsymbol{F^*} = \mu^F(\boldsymbol{X^*}) + k^F(\boldsymbol{X^*}, \boldsymbol{X})[k^F(\boldsymbol{X}, \boldsymbol{X}) + \boldsymbol{\Sigma}_{\hat{F}}]^{-1} \times \left(\hat{\boldsymbol{F}} - \mu^F(\boldsymbol{X})\right)$

The only term available for template fitting

Additional term for GP

 $\Sigma_{F}^{*} = k^{F}(X^{*}, X^{*}) - k^{F}(X^{*}, X)[k^{F}(X, X) + \Sigma_{\hat{F}}]^{-1}k^{F}(X, X^{*})$

From which cosmological concepts μ^F and k^F are derived ?

Luminosity is a linear combination of Template + adding
Luminosity :
$$L_{\nu}(\lambda, \alpha, l) = \ell \sum_{t}^{N_{T}} \alpha_{t} T_{\nu}^{t}(\lambda) + \ell \underbrace{R_{\nu}(\lambda)}_{residuals}$$

Residuals: $R_{\nu} \sim \mathscr{GP}(0, k^{\lambda}(\lambda, \lambda'))$
 $k^{\lambda}(\lambda, \lambda')$ chosen to be a
 $L_{\nu}(\lambda, \alpha, l) \sim \mathscr{GP}\left(\ell \sum_{t}^{N_{T}} \alpha_{t} T_{\nu}^{t}(\lambda), \ell \ell' k^{\lambda}(\lambda, \lambda')\right)$
Flux : $F_{b}(z, \alpha, \ell) \sim \mathscr{GP}(\mu^{F}(b, z, \alpha), k^{F}(b, b', z, z', \ell, \ell))$
 $\mu^{F}(b, z, \ell, \alpha) = \frac{\ell(1+z)^{2}}{4\pi D_{L}^{2}(z)g_{AB}C_{b}} \sum_{t}^{N_{t}} \int_{0}^{\infty} T_{\nu}^{t}(\lambda_{em}, \ell)$
 $k^{F}(b, b', z, z', \ell, \ell') = \left(\frac{(1+z)(1+z')}{4\pi D_{L}(z)D_{L}(z')g_{AB}}\right)^{2} \frac{\ell \ell'}{C_{b}C_{b'}} \int_{0}^{\infty}$

 $V_{b}((1+z)\lambda)V_{b'}((1+z')\lambda')k^{\lambda}(\lambda,\lambda')d\lambda d\lambda'$

Conclusion on this work

- Compromise between ultra flexible ML without priors on physics requiring a very representative training set and rigid Template fitting with «hard » coded physics model in it,
- Extended physical hierarchical model with a moderate number of hyperparameters (understandable physically) requiring a limited training dataset not necessarily fully representative
- Delight standard configuration (for SDSS) has been extended for LSST
 - Redshift priors extended to redshift [0-3] (used for Template Fitting only)
- Delight works well (Template fit & GP) with mock data (no luminosity evolution and flux bias)
- Delight works not that well for DC2 fluxes by now

→ Was expected for Template Fitting,

Namely No optimization has been performed

Delight provides a new way for PZ estimation based on GP in the context of Bayesian statistics.

Results for GP are better than Template fitting but far from optimal however encouraging,

Conclusion / Next steps

- Extend <u>SED CWW set to Brown SED</u> and try to optimize again.
- Many path to explore ways to refine the GP model Add more emission lines, Find Other features
 - Many new idea for models see Leistedt, Boris & Hogg(2019) not implemented in Delight

Optimize GP hyper parameters over DC2 data using CWW SED latent SED

