

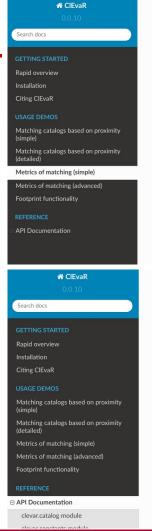
The WaZP cluster finder on DC2 & The ClEvaR package

Michel Aguena

Cluster Detection Validation

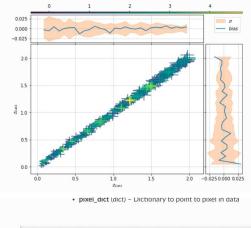
Cluster Evaluation Resources

<u>CIEvaR</u>


• Goal

Compare and validate cluster catalogs

- Functionality
 - Self consistency checks of catalog properties
 - Easy matching with other catalogs (cluster/halos)
 - Metrics of matched catalogs (selection function) & scaling relations (mass proxy, size, orientation, redshift)
- Objectives
 - Code development inside the DESC pipeline framework (documentation, versioning, unit tests)
 - Modular structure to allow for integration with other libraries
 - Robust executables based on configuration files for automatic runs of pipeline


Demonstration and Documentation

- Code on DESC github: <u>https://github.com/LSSTDESC/clevar</u>
- Notebooks: <u>https://github.com/LSSTDESC/clevar/tree</u> /master/examples
- Documentation in code
- ClEvaR Doc, API and Demos on DESC: <u>http://lsstdesc.org/clevar/</u>

fig, axes = scaling.redshift_density_metrics(c1, c2, 'cross', ax_rotation=45)

get_coverfrac(cl_ra, cl_dec, cl_z, aperture_radius, aperture_radius_unit, cosmo=None, wtfunc= <function Footprint.<lambda>>) [source]

Get cover fraction with a given window.

$$CF(R) = \frac{\sum_{i \in r_i < R} w(r_i) df(r_i)}{\sum_{i \in r_i < R} w(r_i)}$$

where the index i represents pixels of the footprint, R is the aperture radius to be considered and w is the window function.

Parameters: • cl_ra (float) - Cluster RA in deg

- cl_dec (float) Cluster DEC in deg
- cl_z (float) Cluster redshift
- aperture_radius (float) Radius of aperture
- aperture_radius_unit (str) Unit of aperture radius
- cosmo (clevar.Cosmology object) Cosmology object for when radius has angular units
- wtfunc (function) Window function
- Returns: Cover fraction

Return type: float

Modes for running

Using ClEvaR as a python package

Main readme

Clevar was developed with the functionality to be imported as a python library. The aplications of clevar can be found on notebooks under the examples directory. These include examples for:

- Basic matching of catalogs
- Detailed matching of catalogs
- Metrics of the matching and matched catalogs
- Metrics of the matching and matched catalogs (Advanced)
- Application of footprints

Using ClEvaR as an executable

ClEvaR can be used directly from the command line with yml configuration files. Some examples of config files can be found in the demo directory.

Main readme

Table of contents

- L. Loading Clevar environment
 Executing Clevar operations

 Matching catalogs
 Footprint application
 Metrics of matching

 Configuration file

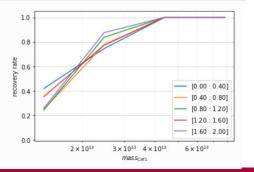
 cosmology
 catalog1 (and catalog2)
 proximity_match
 - iv. masks
 - v. match_metrics
 - a. recovery
 - b. distances
 - c. Mass
 - d. redshift

Modes for running

Using ClEvaR as a python package

1. Add catalogs to ClCatalogs objects from clevar.catalog import ClCatalog

c1 = ClCatalog('Cat1', id=input1['ID'], ra=input1['RA'], c2 = ClCatalog('Cat2', id=input2['ID'], ra=input2['RA'],


2. Prepare config for matching

3. Import and Run matching object

from clevar.match import ProximityMatch
mt = ProximityMatch()
mt.match_from_config(c1, c2, match_config, cosmo=cosmo)

Metrics of matching and scaling

relations from clevar.match_metrics import recovery

Modes for running

Using ClEvaR as an executable

Configuration (yaml) file

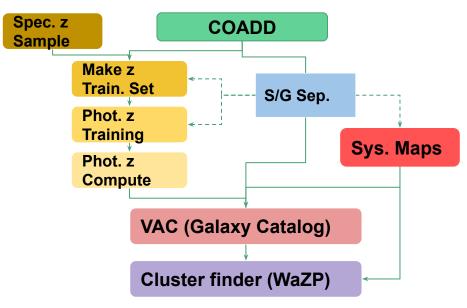
outpath: temp	
cosmology:	
backend: Astropy # Options are Astropy, CCL.	
parameters:	
H0: 70.0	
Omega_b0: 0.05	
Omega_dm0: 0.25	
Omega_k0: 0.0	
catalog1:	
file: cat1.fits	
name: catalog 1	
columns:	
dec: DEC	
2: Z	
mass: MASS	
radius: RADIUS_ARCMIN radius_unit: ARCMIN # Options: radians, degrees, arcmin, arcsec, pc, kpc, Mpc, M200b, M200c, M##	
labels: # Labels for plots. If not availble, column_{name} used. mass: Massi	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
proximity_match:	
type: cross # options are cross, cat1, cat2.	
step1: # Add more steps with the same keys below if required	
which_radius: max # Case of radius to be used, can be: cat1, cat2, min, max.	
<pre>preference: more_massive # options are more_massive, angular_proximity or redshift_proximity catalog1:</pre>	
delta_z: .2 # Defines the zmin, zmax for matching. Options are:	
<pre># 'cat': uses redshift properties of the catalog.</pre>	
# 'spline.filename': interpolates data in 'filename' (z, zmin, zmax) fmt.	
<pre># float: uses delta z*(1+z).</pre>	
# None: does not use z.	
match_radius: 1 arcmin # Radius for matching. If 'cat' uses the radius in the catalog, e	ls
catalog2:	
delta_z: .2 # Defines the zmin, zmax for matching. Options are:	
# 'cat': uses redshift properties of the catalog.	
# 'spline.filename': interpolates data in 'filename' (z, zmin, zmax) fmt.	
<pre># float: uses delta_z*(1+z).</pre>	
# None: does not use z.	
<pre>match_radius: 1 mpc # Radius for matching. If 'cat' uses the radius in the catalog, else</pre>	m

Executable commands:

clevar_match_proximity config.yml

clevar_match_metrics_recovery_rate config.yml
clevar_match_metrics_distances config.yml
clevar_match_metrics_mass config.yml
clevar_match_metrics_redshift config.yml

The WaZP cluster finder on DC2


Michel Aguena, Dominique Boutigny, Thibault Guillemin + Brazil CWG (LIneA)

DESC Project (EC approved)

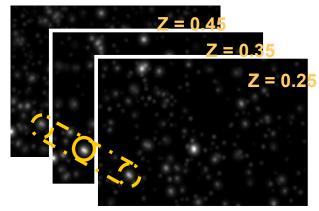
Producing Catalogs

Data workflow

LIneA Science Portal

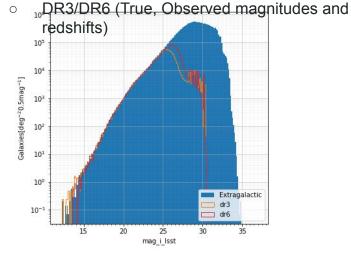
🕝 Dashboard My Workspace	Pipelines Tools I	Data Serv	er Documentation	Help	
·>	Data Installation	•			
	Data Preparation	•			
DES Science Portal: Worl	Science-Ready Catalo	ogs 🔸			
he Science Portal has two instances:	Science Analysis	•	LSS	٠	
 Workflows: hosts workflows for Analysis. 	Parameter Estimation	•	Cluster	×	WAZP
 Data Server: provide access to 1 	Utilities	•	SN	۲	Cluster Comparison
he system is designed to be self-evide	Special Samples	•	WL	•	
	Examples	•	Simulation	×	
			Galaxy Archeology	×	
			Galaxy Evolution	۱.	
			QSO	۱.	
			Strong Lensing	۱.	
			Combined Probes	•	

A 3 deg^2 tile

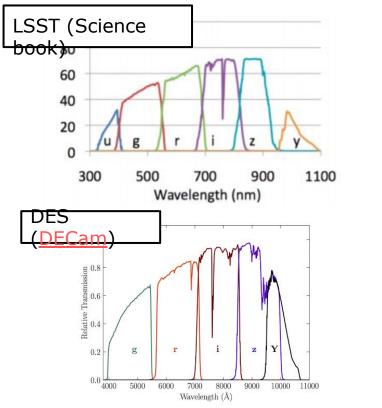


Wavelet Z-Photometric

Developed by C.


Ben Caluxies are selected in redshift slices based on PDZ's from photo-z algorithms

- Clusters are detected as overdensities in wavelet based density maps
- No assumption on the galaxy populations of clusters (e.g. red sequence)
- Produces cluster membership probabilities for galaxies



DC2 Catalogs cosmoDC2 v1.1.4

- True catalog:
 - extragalactic galaxy catalog (True, Observed magnitudes and redshifts)
- Observations (run 2.2i):

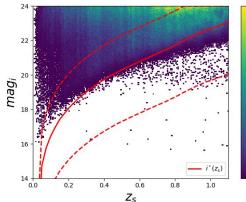
- Legacy Survey of Space and Time
- Internal calibration has to be updated for LSST magnitudes

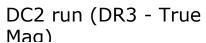
• Effect of magnitude calibration on detection

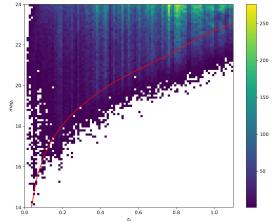
- 175

150

125

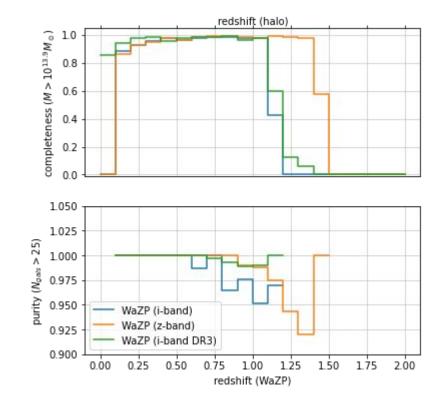

- 100 Counts


75

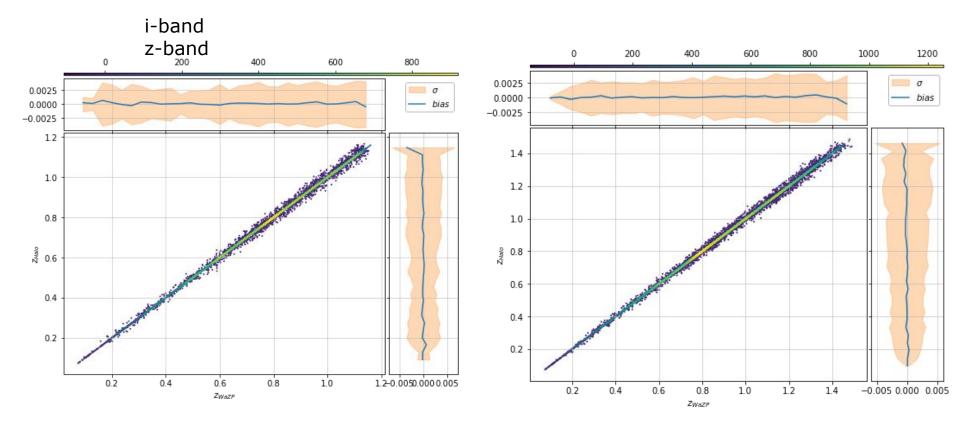

50

25

DC2 run (DR3 - PSF Mag)

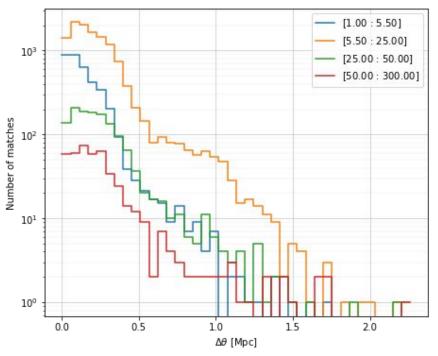


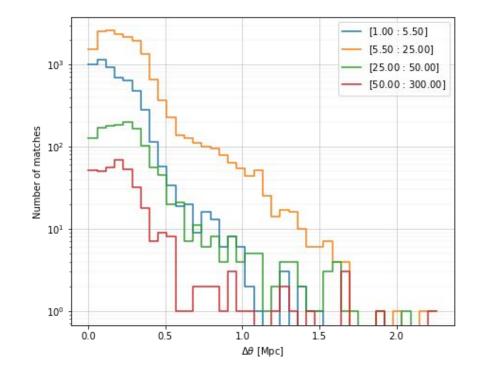
Current status



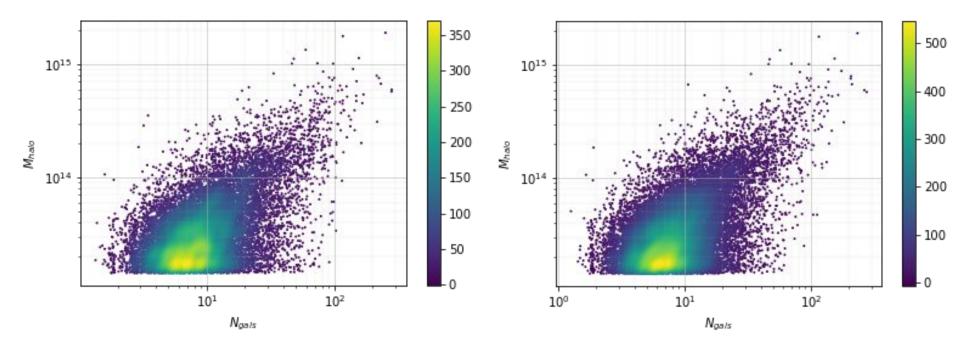
- Pipelines adapted for DC2
- Extragalactic (True)
 - i-band detection
 - z-band detection
- DR3 catalogs
 - i-band detection (preliminary)

Redshift relation

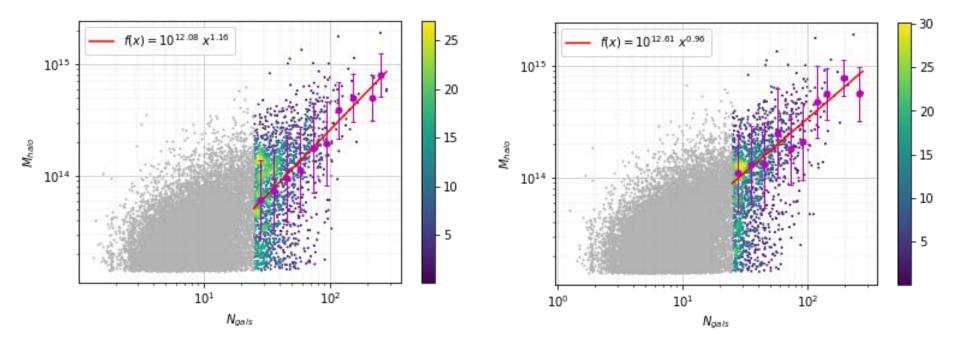



Redshift relation

i-band

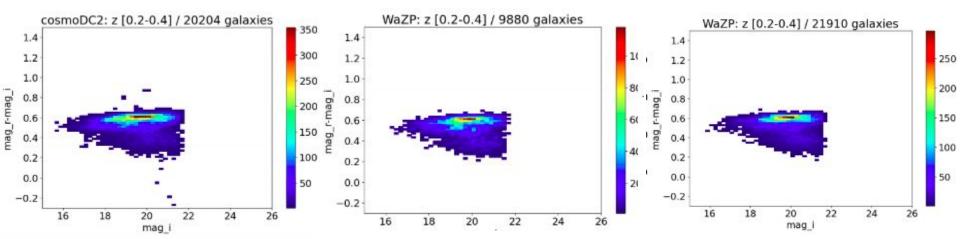


Mass-richness relation


i-band z-band

Mass-richness relation

i-band z-band



Colors of cluster members (Thibault Guillemin)

DM Halos

WaZP (DR3)

WaZP (Extragalactic)

Legacy Survey of Space and Time

- Future plans
 - Run on extragalactic with observed magnitudes and DESC photo-z
 - Run on DR3 with true magnitudes and DESC photo-z
 - Run on DR3 with observed magnitude and DESC photo-z
 - Run with photo-z computed by LIneA
 - Use full PDF for runs
 - Evaluate colors of cluster members red sequence evolution (Thibault Guillemin)