PRISMA: performance and recent upgradings

L.Corradi (LNL)

On behalf of the Prisma Collaboration

Agata Week
Zoom meeting, March 17, 2021

characteristics

PRISMA spectrometer - design characteristics

$$
\begin{gathered}
\text { Angular acceptances } \Delta \theta \sim \pm 6^{\circ} \Delta \phi \sim \pm 11^{\circ} \\
\text { Solid angle } \Delta \Omega \sim 80 \mathrm{msr} \\
\text { Distance target-FPD } \quad 6.5 \mathrm{~m} \\
\text { Energy acceptance } \pm 20 \% \\
\text { Momentum acceptance } \pm 10 \% \\
\text { Maximum } \mathrm{Bp}=1.2 \mathrm{Tm}\left(\mathrm{ME} / \mathrm{q}^{2}=70 \mathrm{MeV} \mathrm{amu}\right) \\
\text { Dispersion } \quad 4 \mathrm{~cm} / \% \Delta \mathrm{p} / \mathrm{p} \\
\text { Mass resolution } \quad 1 / 300 \mathrm{FWHM} \\
\text { Aberrations correction via software } \\
\text { MCP and MWPPAC } \times, y \text { position resolutions } 1 \mathrm{~mm} \\
\text { MCP and MWPPAC timing resolutions } \sim 350 \mathrm{ps} \\
\text { IC Energy resolution } \sim 1 \% \\
\text { Nuclear charge resolution } \Delta Z / Z \sim 1 / 60
\end{gathered}
$$

PRISMA spectrometer - a complex detector system

Recent upgradings

Development of a new MCP detector with a new delay line
Development of a new MWPPAC with a more efficient anode
First test of the Y position determination of the IC via drift time method

In beam tests of the new MCP

Latest experimental campaigns unveiled a region of the detector with reduced efficiency.
This was attributed to:

- low tension of some goldplated tungsten wires of which is composed the positionsensitive anode
- overlapping of near wires

A new position-sensitive anode has been assembled and mounted and two days of beam time were allotted during the last PAC meeting for the test of the new configuration.

In beam tests of the new MCP

$$
\text { 8-9 February, } 2021 \text { - 58Ni @ E=225 MeV }
$$

In the new configuration the efficiency of the entrance detector of PRISMA turned out to be about 90% and no low efficiency region was evidenced in the $\mathrm{X}-\mathrm{Y}$ scatter-plot
new delay line

MCP X-Y scatter plot

PRISMA spectrometer : MWPPAC detector at focal plane

Attenuation of the X anode signals produced by the delay lines

PRISMA : development of a more efficient MWPPAC

Distance from centre of wire

Y position determination of the IC via drift time method

TAC drift time spectrum taken in tests with ${ }^{58} \mathrm{Ni} @ 225 \mathrm{MeV}$
start: MWPPAC cathode stop: IC anode

Having a Y coordinate should help in improving the Z resolution of the IC

performance

Beams accelerated for experiments with PRISMA

PRISMA was optimized for the detection of MNT channels but one can also observe a large yield for fission fragments, showing more clearly the obtained good Z-resolution

Mass identification in the ${ }^{206} \mathrm{~Pb}+118 \mathrm{Sn}$ reaction

$$
\begin{gathered}
E\left({ }^{206} \mathrm{~Pb}\right)=1200 \mathrm{MeV} \\
\theta_{\mathrm{lab}}=35^{\circ}
\end{gathered}
$$

pure neutron transfer channels $(Z=50)$

Courtesy of S.Szilner and J.Diklic

Cross section sensitivity

recent achievements

Nucleon-nucleon correlations studied with PRISMA

$$
{ }^{96} \mathrm{Zr}+{ }^{40} \mathrm{Ca},{ }^{116} \mathrm{Sn}+{ }^{60} \mathrm{Ni},
$$ ${ }^{92} \mathrm{Mo}+{ }^{54} \mathrm{Fe},{ }^{206} \mathrm{~Pb}+{ }^{116} \mathrm{Sn}$ direct + inverse kinematic, PRISMA and PRISMA+CLARA/AGATA/La Br (7 experiments)

${ }^{96} Z r+{ }^{40} \mathrm{Ca}$: S. Szilner et al., Phys. Rev. C 76 (2007) 024604; L. Corradi et al., Phys. Rev. C 84 (2011) 034603
${ }^{116}$ Sn+ $+{ }^{60}$ Ni: D. Montanari et al., Phys. Rev. Lett. 113 (2014) 052501; D.

Montanari et al., Phys. Rev. C 93 (2016) 054623 ${ }^{92} \mathrm{Mo}+{ }^{54} \mathrm{Fe}$: T. Mijatovic
G.Potel, F.Barranco, E.Vigezzi and R.A.Broglia PRC103(2021)L021601

Correlation length
$\xi=\frac{\hbar v_{F}}{\pi \Delta} \approx 13 \mathrm{fm}$

The Tiniest Superfluid Circuit in Nature

A new analysis of heavy-ion collision experiments uncovers evidence that two colliding nuclei behave like a Josephson junction-a device in which Cooper pairs tunnel through a barrier between two superfluids.

By Piotr Magierski

(PRC editor's suggestion)

Ongoing "removal work"

PRISMA spectrometer used in high resolution kinematic coincidence with a second time-of-flight system (NOSE)

F.Galtarossa et al., Phys. Rev. C97(2018)054606

NOSE: an ancillary detector coupled to PRISMA

E. Fioretto - NN2018, Japan, Dec. 2018 and NIMA899(2018)73

The PRISMA spectrometer coupled with NOSE and the LaBr array

NOSE mounted on the PRISMA sliding seal scattering chamber (year 2016)

NOSE + LaBr array mounted on the PRISMA scattering chamber with a new cover (year 2018 - present)

NOSE already removed

To summarize

PRISMA has been so far operated in standard configuration for MNT studies
In many years of experience optimum performance has been achieved for the detection of ions with $30<\mathrm{A}<130$ at $3-6 \mathrm{MeV} / \mathrm{A}$, at angles $20^{\circ}<\theta_{\mathrm{lab}}$ and with max $1-3 \mathrm{kHz}$ trigger rate at the focal plane

With the newly developed MCP and MWPPAC we will be able to efficiently detect also light ions in the 6-14 Z range

For 130-140 < A mass separation becomes rapidly a problem. Overlapping A/q is a yet unsolved (or unsolvable?) issue

To get total cross sections for MNT it is generally sufficient the yield information together wih a proper normalization procedure. To get d $\sigma / \mathrm{d} \Omega$ one needs to correct via simulations

PRISMA sensitivity limit is in the few μ barn range

