

Laboratoire d'Informatique, Systèmes, Traitement de l'Information et de la Connaissance

Computer Science, Systems, Information and Knowledge Processing Laboratory

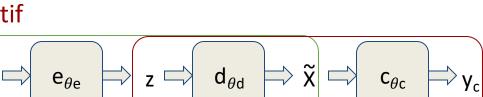
Rencontre LAPP - LISTIC 22 janvier 2021

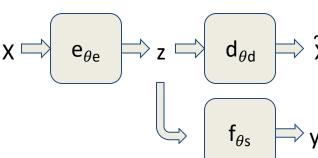
Laboratoire d'Informatique, Systèmes, Lis Traitement de l'Information et de la Connaissance

- 1 équipe : 36 enseignants chercheurs, 10-15 doctorants, 3 IATOS
- 2 thèmes :

22/01/2021

- □ AFuTé : Apprentissage, Fusion et Télédétection
 - Apprentissage automatique : neuronal, statistique, fouille de données...
 - Fusion de données incertaines : approches possibilistes, crédibilistes...
 - Télédétection : images satellites optiques et radar, géoradar, photogrammétrie...
- ReGaRD : Représentation, Gestion et tRaitement des Données pour l'humain
 - Réseaux et systèmes distribués : graphes, parallélisme, cybersécurité...
 - Gestion, placement et transport des grandes masses de données
 - Traitement et l'analyse pour l'aide à la personne, et l'aide à la décision

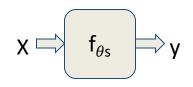

Activités sur l'apprentissage profond

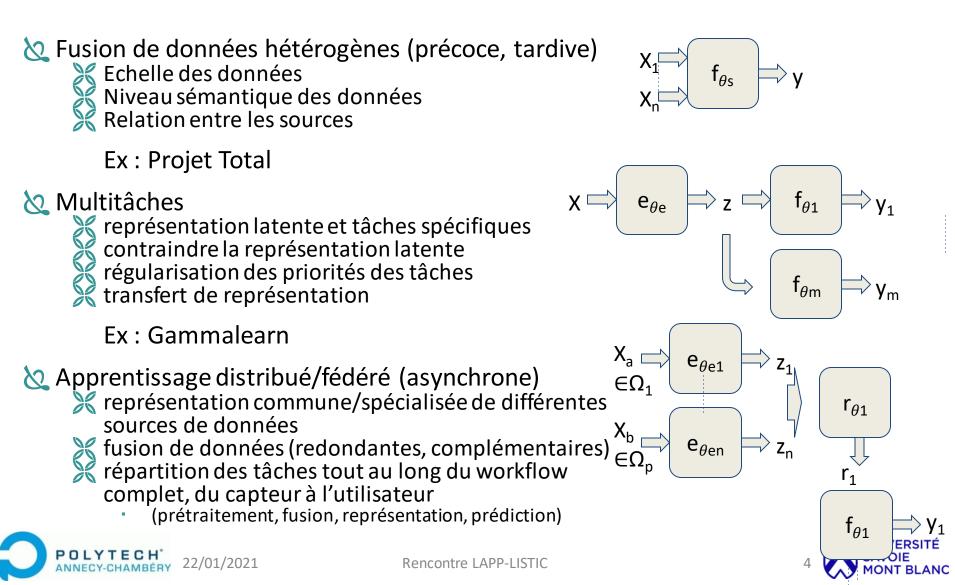

Apprentissage classique (appliqué) et problématiques :

🗞 Supervisé

- 🔀 détection et segmentation d'objets (Total)
- % transfert de représentations (SmarterPlan)
- % classification/regression (GammaLearn)
- 🔌 Non supervisé autoencodage/génératif
 - Représentation des données (LOCIE)
 détection d'anomalies (HelioCity) X =
 - inversion(REPED-SARIX)
- ጲ Semi supervisé
 - % adaptation de domaine
 (GammaLearn++)

22/01/2021

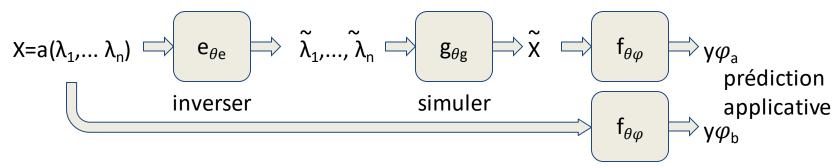




Rencontre LAPP-LISTIC

f_{θi} non linéaire θi très nombreux optimisation avec X∈ Ω grand, varié

Activités sur l'apprentissage profond, problématiques spécifiques 1

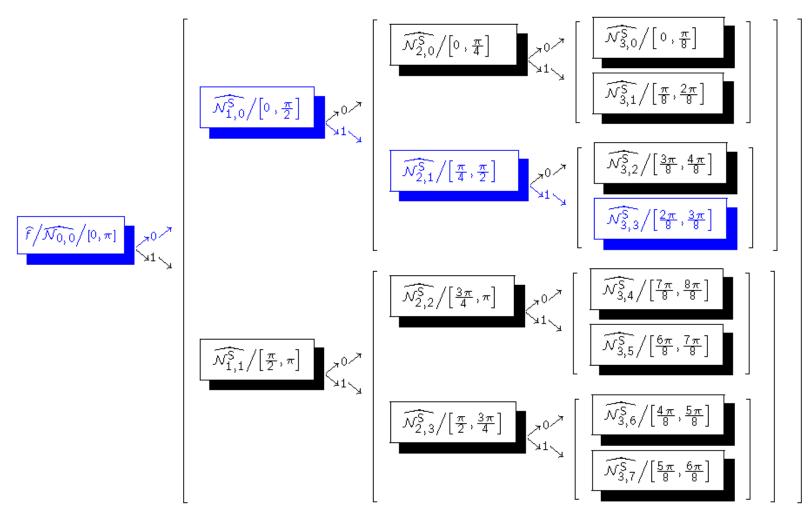


Activités sur l'apprentissage profond, problématiques spécifiques 2

🙋 Inversion de modèles physiques *introduction de contraintes i*

- grandeurs physiques
- encodage/représentation contraints

- 🗶 Explicabilité des modèles
 - prise en compte de la nature des données


 - représentations intermédiaires contraintes approches data mining, identifier les patterns d'activation typiques représentation hiérarchique des données (approche ondelettes)

Series of Shannon-Nyquist functionals

Deep multi-serial functionals

<u>1.</u> Wavelet Packets : <u>multiserial convolutions</u> / $1 \le m \le M_{j+1}$ / $0 \le n \le \prod_{\ell=1}^{j} M_{\ell} - 1$:

$$\mathfrak{C}_{j+1,M_{j+1}n+m}[k,\ell] = \sum_{p,q \in \mathbb{Z}} h_{j+1,m}[p,q] \mathfrak{C}_{j,n}[s_{j+1}k-p,t_{j+1}\ell-q]$$
(1)

<u>2.</u> CNN (Convolutional Neural Network): Depth j + 1 maps (expanded CNN) are:

$$\mathfrak{D}_{j+1,M_{j+1}n+m}[k,\ell] = \Upsilon_{j+1,M_{j+1}n+m}\left(\sum_{p,q\in\mathbb{Z}}h_{j+1,m}[p,q]\mathfrak{D}_{j,n}[s_{j+1}k-p,t_{j+1}\ell-q]\right)$$
(2)

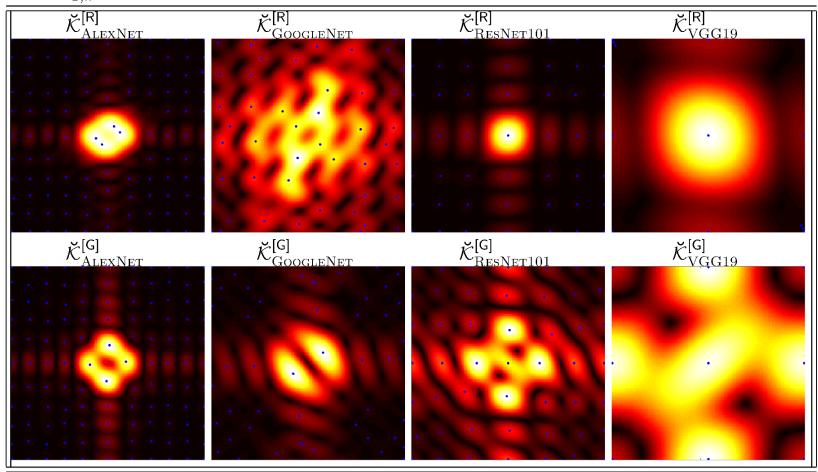
for
$$0 \leq m \leq M_{j+1} - 1$$
 and $0 \leq n \leq M_1 M_2 \cdots M_j - 1$.

3. CNN (deep concern) : Depth j + 1 fused multiserial neuro-convolutional maps are:

$$\mathfrak{D}_{j+1,m_{j+1}}[k,\ell] = \Upsilon_{j+1,m_{j+1}} \left(-\theta_{j+1,m_{j+1}} + \bigoplus_{m_j=0}^{M_j-1} \right)$$

$$\sum_{p,q\in\mathbb{Z}} h_{m_{j+1}}[p,q]\epsilon_{j,m_j}\mathfrak{D}_{j,m_j}[s_{j+1}k-p,t_{j+1}\ell-q]$$
(3)

where $m_{j+1} \in \{0, 1, 2, \dots, M_{j+1} - 1\}.$



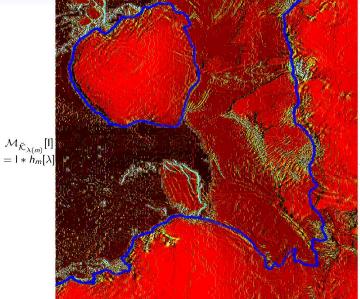
Deep Learning

ANNECY-CHAMBERY 22/01/2021

Example of characterizations for filters discovered by CNN

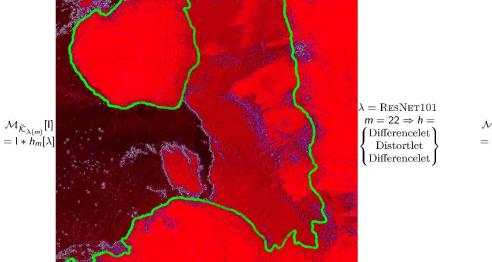
 $|\mathsf{H}_{1,n}^c|$ for⁴ some convolution kernels having largest numbers of regional maxima.

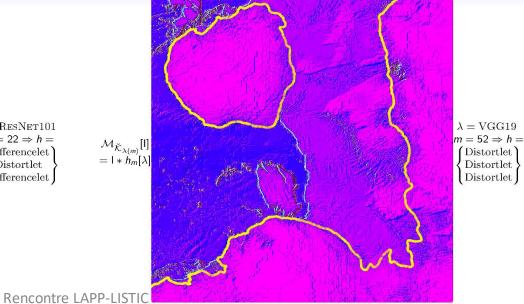

⁴ \breve{K} denotes the convoltion kernel series, $H_{1,n}^c$ is the Fourier transform of $h_{1,n}^c$, $c \in \{\text{Red, Green, Blue}\} = \{[R], [G], [B]\}$



Landsat 8 OLI

Antarctic ice-sheet




$$\begin{split} \lambda &= \text{VGG19} \\ m &= 59 \Rightarrow h = \\ \begin{cases} \text{Distortlet} \\ \text{Differencelet} \\ \text{Distortlet} \end{cases}$$

Rank#2 $h \in \check{\mathcal{K}}_{\lambda}$ where $\lambda \in \{\text{ALEXNET, GOOGLENET, RESNET101, VGG19}\}$

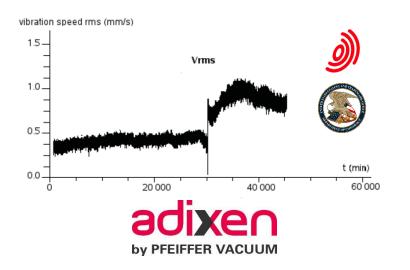
22/01/2021

Rank#3 $h \in \check{\mathcal{K}}_{\lambda}$ where $\lambda \in \{\text{ALEXNET}, \text{GOOGLENET}, \text{ResNET101}, \text{VGG19}\}$

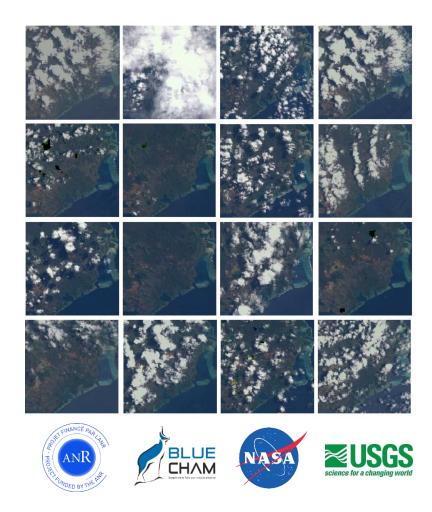
Data mining

POLYTEC

ANNECY-CHAMBÉRY


Extraction de connaissances dans les données LISTIC

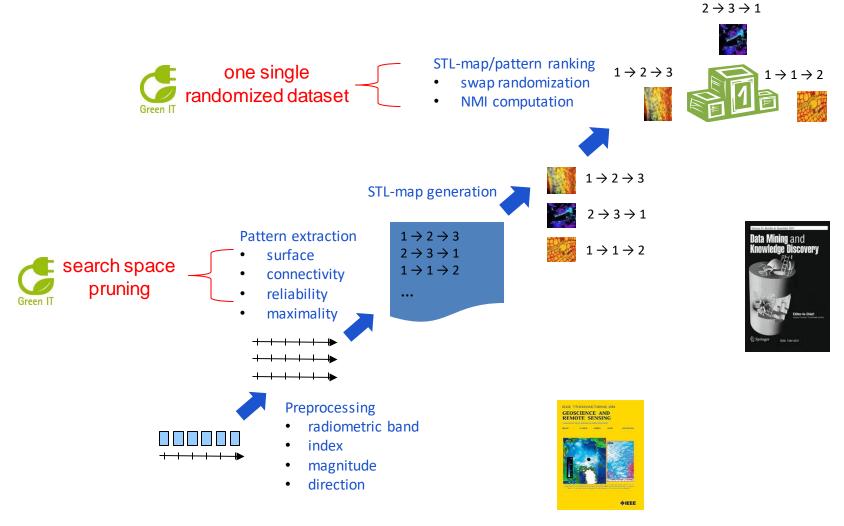
fouille de motifs séquentiels


 $A \longrightarrow C \longrightarrow B$

description prévision

complétude, justesse, signification statistique, interprétabilité

22/01/2021


POLYTEC

ANNECY-CHAMBÉRY

22/01/2021

Satellite Image Time Series

Large graphs monitoring

Graph monitoring is the process of deciding if a local change will lead to global changes or not ?

- □ Large set of applications
 - Computer Networks, biology, social networks, complex systems

How can we know if a local change is scaling into global?

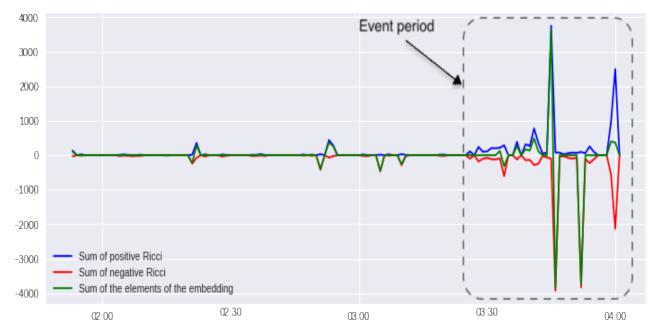
Complex relation between intrinsic factors (the graph structure) and extrinsic ones (the change)

Gauss question:

Do an ant moving on a shape can figure out what is the shape ?

Gauss-Bonnet theorem

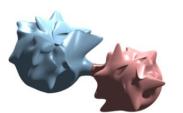
$$\int_M K \, dA + \int_{\partial M} k_g \; ds = 2\pi \chi(M)$$



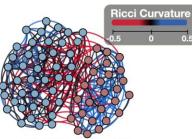
Ollivier-Ricci Curvature monitoring system

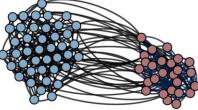
Compare the Ollivier-Ricci between all nodes of two snapshots of the graph Evaluate the importance of the change by the magnitude of the change Is Gauss-Bonnet theorem is valid ?

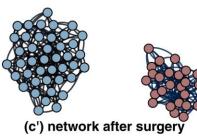
□ Seems to hold for self-healing networks



Ricci flow and clustering

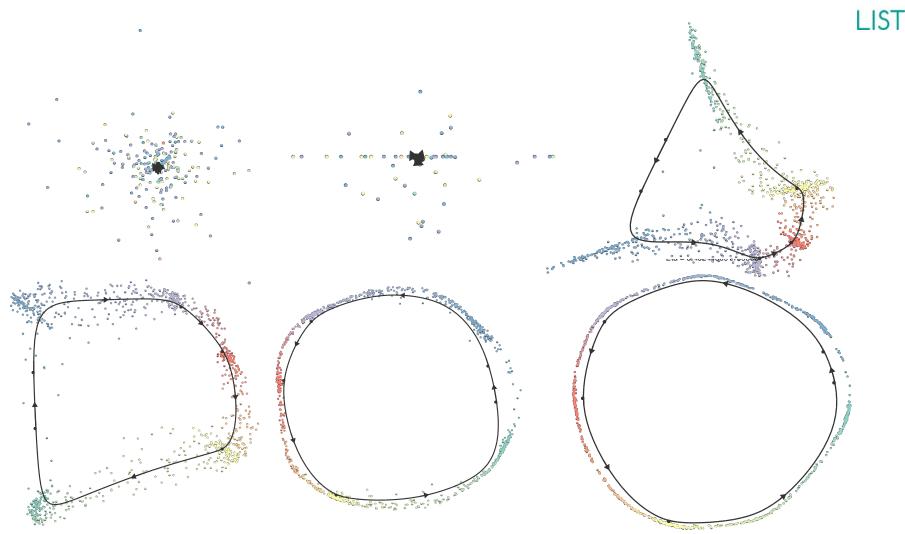

(a) initial manifold


(b) manifold after Ricci flow


(c) manifold after surgery

(a') initial network

(b') network after Ricci flow



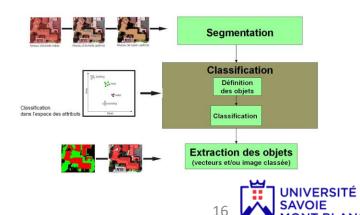
Analyse de grands graphes

Distribution : les problèmes

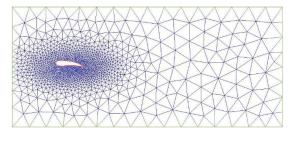
Caractéristiques classiques des problèmes distribuables :

- Représentation spatiale
- Représentation temporelle
- Traitement itératif

Problématiques de la distribution :

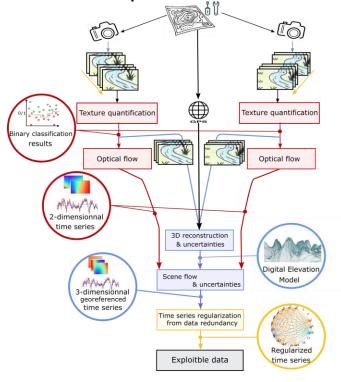

NNECY-CHAMBERY 22/01/2021

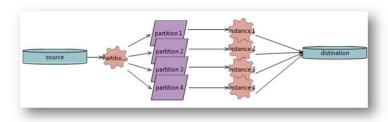
- Modélisation distribuée du problème
- Distribution des traitements et données
- Recherche de l'optimalité algorithmique


Problèmes classiques :

- EDP
- Traitement d'image
- Chaînes de traitements

• ...




Distribution : les chaînes de traitements Listic

Chaîne de traitements :

- Suite de traitements de données modélisée par un DAG
- Modélisation distribuée d'un traitement
- Composition de chaînes de traitements

ANNECY-CHAMBERY 22/01/2021

Problématiques des chaînes de traitements :

- Description « user-friendly » des chaînes
- Gestion de la distribution
- Distribution des tâches et données de manière conjointe
- Recherche de l'optimalité de distribution
- Monitoring

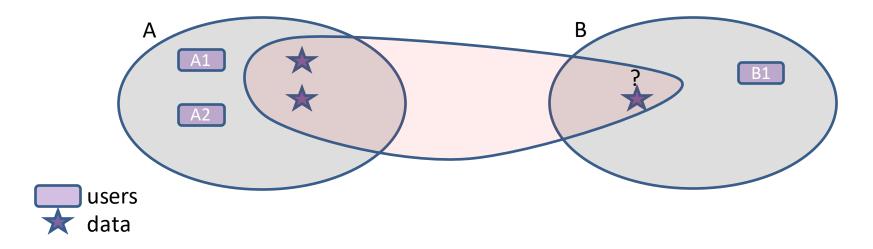
Data management for large-scale distributed systems

Motivations

- Massive data
- Need for reliable, efficient and consistent data-management systems
 => What about the CAP theorem ?
- Targeted architectures
 - Data center/clouds
 - Fog
- Problems / chalenges

22/01/2021

- Large scale (high number of nodes, huge volumes of data)
- Dynamicity (hardware and software)
- Virtualization (resources fragmentation)


Data management – Main contributions

- Key mechanism : data replication
 - Handling multiple copies of the same piece of data
- Three main goals
 - Fault tolerance (data durability/availability)
 - Access performance
 - Data consistency
 - => Application dependant
- The « system » has to decide
 - How many data copies
 - Which consistency procotols (data types ?)
 - Data placement ?

Perspectives / ongoing work

Gadget : Toward energy-aware data management systems

ANR 2021 submission (LISTIC, LIP, LIP6, CELESTE)

Conclusion

Spécificité AFuTE

Apprendre sur des données temporelles et/ou imparfaites en développant des travaux méthodologiques basés sur une riche palette théorique pour des applications en télédétection.

Spécificité ReGaRD

S'appuyer sur des connaissances multidisciplinaires pour construire des systèmes informatiques fiables et rapides afin de répondre aux besoins de l'humain.

