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Detection of gravitational waves (GWs)

Annecy

• Detection principle: Michelson interferometer 
measures the difference in phase associated to 
the passing gravitational wave (GW) 
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Quantum noise in GW detectors
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•  Introduction:
 Quantum noise (QN) limits the sensitivity of GW detectors
 QN due only to vacuum fluctuations entering interferometer’s 

output port
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Quantum noise in GW detectors
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Minimal noise at Ω frequency is called the standard quantum limit (SQL):

Heisenberg Uncertainty 
Principle:

EM field Hamiltonian:
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Quantum noise in GW detectors
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Coherent states are so-called minimum uncertainty states: =

Squeezed states fulfil Heisenberg Uncertainty 
Principle decreasing the variance in one 
quadrature and increasing it in the orthogonal one:

e-r

er

Squeezing

Anti -- squeezing

Where r = squeeze factor



Eleonora Polini 7

Quantum noise in GW detectors
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Quantum noise reduction
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•  First step:
 Injecting squeezed vacuum states from the 

output port to improve sensitivity, run O3
 Implemented in AdVirgo and aLIGO

Plot from M. Vardaro
Plot from M. Vardaro
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~3dBs 
improved 

sensitivity at 
high frequency

Advanced Virgo
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Quantum noise reduction

• Next step:
 Vacuum squeezed state angle become 

frequency dependent when reflected 
by a detuned Fabry-Perot filter cavity 

 Implementation in GW detectors in O4

Broadband reduction 
factor

Annecy
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Frequency dependent squeezing states generation
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Squeezing generation by Optical Parametric Oscillator 
(non-linear optical process in PPKTP crystal) Filtered by a detuned cavity (FC)

Credit S. Di Pace SQZ angle θ
fc
 rotation induced by a FP cavity at frequency Ω:

FC resonates at ω
fc
 = ω

0 
+ Δω

fc

Parameters to consider:
• Linewidth γ

fc
 = FWHM/F

• Detuning Δω
fc

AdVirgo+: rot. @20-30Hz
AdLIGO: rot. @50Hz
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Frequency dependent squeezing (FDS) demonstration
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R&D experiment at NAOJ, Tokyo, Japan, was the first demonstration (2020) 
of a frequency dependent squeezed vacuum source, realized with a 300 m 
suspended filter cavity. The squeezing rotation takes place in the frequency 
region (~ 100 Hz) needed to reduce the quantum noise in the whole 
spectrum of advanced GW detectors.

Zhao et al. (2020)
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Decoherence and degradation of FDS
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Decoherence (optical losses + mode mismatch) and degradation (phase noise due to phase lock 
errors + stray light + cavity length fluctuations) mechanisms limit the experimentally achievable QN 
reduction.

Squeezer 
(~9.1 dB)

Detection 
benches 

Detector
(~3dB) Kwee et al. (2014)
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Losses and phase noise
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Losses: recombination of the 
squeezing with the ordinary vacuum

Phase noise: shaking of the 
squeezing ellipse
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FDS implementation in AdV+
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FDS implementation in AdV+
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40m

12m

EQB1

SQB1

SQB2
285m FC

IM
EM

Filter Cavity parameters:
- Cavity length: 285 m
- Mirrors diameter: 150 mm
- RoC mirrors: 558 m
- Finesse@1064nm = 11000
- Finesse@532nm = 100
- SQZ rotation: 20-30 Hz
- Round-trip losses < 40ppm
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FDS control strategy

Sqz - BAB

LO

SC

Sqz = vacuum squeezed beam
BAB = bright alignment beam (not used in Science mode)
LO = local oscillator (used for homodyne detection)
SC = sub- carrier beam (used to control the filter cavity)

Homodyne

Sqz – BAB + SC 

FDS – BAB + SC

GREEN QDS for FC 
back- reflection 
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FDS control strategy
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Sensors: 
- PSDs
- Quadrants
- Photodiodes
- LVDTs
- Cameras

Actuators:
- LVDTs
- Mirror coils 
- Mirrors
- Lenses

Phase Lock Loops:
1. Virgo – Main laser squeezer = 80 MHz
2. SQZ main laser – Coherent Control = 4 MHz 
3. SQZ main laser – Sub Carrier = 1.2 GHz 
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Conclusions
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● Quantum noise limits detectors sensitivity both at high and low frequencies

● Quantum noise is generated by quantum fluctuations entering the output port of the 
interferometer

● First step done in Advanced Virgo and Advanced LIGO: frequency independent 
squeezing injection to improve the sensitibity at high frequency

● Work ongoing for AdV+ and aLIGO+: frequency dependent squeezing injection to 
improve the sensitivity at high and low frequencies

● AdV+ situation: infrastructure constructed, commissioning ongoing

● Thanks to FDS we will see a volume 8 times bigger of our Universe in the next run!
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THANK YOU FOR THE ATTENTION
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Quantum noise reduction
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•  First step:
 Injecting squeezed vacuum states from the 

output port to improve sensitivity, run O3
 Implemented in AdVirgo and aLIGO

Plot from M. Vardaro
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Losses and phase noise
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Losses and phase noise estimation from squeezing and anti-squeezing measurements at NAOJ.
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