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•  Introduction to cosmology : a brief history to what brings 
us where we are 

• How can we understand it better : Observational tools 

• Cosmic voids : a promising probe 

• Application to DES data : VOIDSXCMB
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Figure 1. Portrait by M.M. Devyatov. Alexander Friedman. Petrograd,
1925. Courtesy of the Voeikov Main Geophysical Observatory (St. Petersburg),
http://www.voeikovmgo.ru/ru/istoriya.

sumed providing Russian scientists with sufficient access to the contemporary scientific
literature. Physicist Vsevolod Frederiks, on his return to Petrograd in 1920, brought in-
sider’s information: interned in Germany during the war, he worked at Göttingen Uni-
versity as a private assistant to David Hilbert, who wrote GR’s equations in covariant
form in 1916, about the same time as Einstein.2

In collaboration with Frederiks, Friedman organized a seminar dedicated to the
study of GR. Together they aimed to write a comprehensive textbook on GR; the first
volume, devoted to tensor calculus, appeared in 1924. In parallel, in his own book,
The World as Space and Time (Friedman 1923) Friedman developed a philosophical
interpretation of GR. But his fame rests on two papers, published in Zeitschrift für
Physik in 1922 and 1924 (Friedman 1922, 1924),3 with new solutions of GR equations.
In these papers he introduced the fundamental idea of modern cosmology – that the
Universe is dynamic and may evolve in different manners, for example, starting from
singularity.

3. Cosmology before Friedman: Rivalry between two static Universes’ models

The 16 (or actually 10 different) equations of GR are:

Rik −
1
2

gikR − Λgik = −κTik, (1)

2The exact timing remains somewhat controversial, see Corry et al. (1997).

3There also exist English translations of both papers (Friedman 1999a,b).
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FIG. 7.— Best-fit confidence regions in the �M–�� plane for our primary analysis, Fit C. The 68%, 90%, 95%, and 99% statistical confidence regions in
the �M–�� plane are shown, after integrating the four-dimensional fit over MB and �. (The table of this two-dimensional probability distribution is available
at http://www-supernova.lbl.gov/.) See Figure 5(e) for limits on the small shifts in these contours due to identified systematic uncertainties. Note that the spatial
curvature of the universe—open, flat, or closed—is not determinative of the future of the universe’s expansion, indicated by the near-horizontal solid line. In
cosmologies above this near-horizontal line the universe will expand forever, while below this line the expansion of the universe will eventually come to a halt and
recollapse. This line is not quite horizontal because at very high mass density there is a region where the mass density can bring the expansion to a halt before the
scale of the universe is big enough that the mass density is dilute with respect to the cosmological constant energy density. The upper-left shaded region, labeled “no
big bang,” represents “bouncing universe” cosmologies with no big bang in the past (see Carroll, Press, & Turner 1992). The lower right shaded region corresponds
to a universe that is younger than the oldest heavy elements (Schramm 1990), for any value of H0 � 50 km s−1 Mpc−1.

F��. 1.1.3 – Left panel: Results from the two Supernovae experiments showing
the magnitude distance relation Perlmutter (2003) Right panel: Best fit cosmo-
logical parameter estimation results from the The Supernova Cosmology Project

Perlmutter et al. (1999).

explosion the Big Bang followed by a short period of accelerated expansion where the
energy content was dominated by relativistic particles until the electrons recombined
with protons and a residual radiation from this process is now observed in the microwave
background signal in the sky: the so-called cosmic microwave background. Recom-
bination was followed by a matter dominated era where the expansion got smoother
and recently entered an accelerating expansion era caused by an unknown entity that
observations tends to prefer as a cosmological constant ⇤.

Figure(1.1.4) is a representation of this universe scenario. This scenario can be mod-
eled as mentioned above as a ⇤-Cold-Dark-Matter standard model with the Friedmann
equation (1.6). This concordance model, albeit consistent with current observation,
presents two evident intriguing caveats, namely the unexplained nature of Dark Energy
and Dark Matter, which together represent about 95% of the present energy content of
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A brief history of cosmology
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Chapter 1 Cosmological background

Einstein tensor Gµ⌫ describing the curvature of space time and obtain the so-called
Einstein equations:

Gµ⌫ =
8⇡G
c4 Tµ⌫ � ⇤gµ⌫, (1.2)

where ⇤ is the cosmological constant1 and gµ⌫ the metric of our universe.

These equations appeared to be complicated to solve (if not making any particular
assumptions) and not having a single solution. However, in Einstein (1917) Einstein
exposed a solution to the universe field equation assuming our universe follows a cos-
mological principle. The cosmological principle is based on two hypothesis made on
our universe at large scales, namely this principle states that we are in a :

• Homogeneous universe: the observed universe at large scales does not depend
on the observer position.

• Isotropic universe: At large scales, the observed universe does not show any
preference from one direction to another.

In the largest scales, these properties have shown to be in agreement with observa-
tions. However, the model presented by Einstein is instable, and assume a cosmological
constant to ensure a static universe, which was later discarded by observations (see
1.1.3).

1.1.2 The Friedmann equations (1922):

A few years later, A. Friedmann Friedmann (1922) and G. Lemaitre Lemaître (1927), pro-
posed a solution for Einstein’s field equations relaxing the assumption of a static universe.
Allowing the universe to expand (or contract) with time implies that the Minkowski
metric and line element of eq.(1.1) used in special relativity should be modified by intro-
ducing the scale factor of the universe a(t) that parametrizes the expansion/contraction.
Namely, if an object is at a distance x0 from an observer today, at an earlier time t, the
distance between the observer and the object was a(t)x0. Thus, in an expanding uni-
verse, the metric will depend on this scale factor as gµ⌫ = diag(1,�a2

(t),�a2
(t),�a2

(t)),
having then the line element :

1Note that Einstein initially introduced the cosmological constant to allow static solutions to equation
1.2. However, even though this constant disappeared after the discovery of the universe’s expansion (see
1.1.3), it has been recently reintroduced to explain cosmic acceleration (see 1.1.6).

9



4

Pirsa: 17110049 Page 5/56



5

History and Theory

• The horizon problem : The smoothness of the CMB temperature is intriguing in
the sense that two points located at large distances (larger than the horizon size4)
should not in principle show any causality between them.

Nevertheless, in 1981, A. Guth presented a theory of an accelerated period in the early
universe that solves these two problems (Guth (1981)). Beside this, the early inflationary
scenario also gives a mechanism for the apparition of the structure we are observing
today in the universe. Indeed, the quantum fluctuations in the early universe grew
exponentially during the inflation era and are the seed of the anisotropies observed today
(both in the CMB as developed in 1.2.4 and in the Large Scale Structure of our universe,
as it will be developed in 1.2.2).

1.1.5 The presence of Cold Dark Matter: 1937 - today

An additional crucial discovery that occurred in the past century is the existence in our
universe of an ’invisible’ matter. Indeed, in the early 1930’s, Zwicky (Zwicky (1937))
measuring the radial velocities of galaxies in the Coma cluster estimated a total mass
⇠ 400 times larger than the mass coming from ordinary (visible) matter5. After this,
several other measurements also showed a missing mass problem in galaxy clusters as
well as galaxies themselves (see for example Smith (1936); Babcock (1939); Kahn &
Woltjer (1959)). Moreover, in Ostriker & Peebles (1973), using numerical simulations,
the stability of galaxy disks was shown to be maintained only in the presence of a
surrounding halo of invisible matter. More recently, even if already proposed by Zwicky,
gravitational lensing techniques (see 1.2.3) have been used to map the mass distribution
and have also found mass excess in galaxies. The presence of this invisible matter was
therefore been indirectly observed using di�erent probes and targets. As a consequence,
one can separate the matter component in the Friedmann equation ( (1.17)) into two
distinct terms:

⌦m = ⌦dm +⌦b, (1.19)

where ⌦b stands for the ordinary matter (the baryons) and ⌦dm accounts for the dark
matter.

4The horizon size being the larger distance that light could have travel since the beginning of the
universe.

5 Note that Zwicky had been using the value of the Hubble constant as measured by Hubble. By using
the current Hubble constant, the discrepancy between total and visible mass reduces from 400 to ⇠ 50.
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A brief history of cosmology 
+ Cold  Dark Matter

Dark matter is a hypothetical type of matter which does not 
emit or interact with electromagnetic radiation, but its 

presence can be inferred through its gravitational effect.

Introduced by Fritz Zwicky in the 30’s (!) to explain the total 
mass of the Coma cluster and have been indirectly detected 

after in different cosmological probes.
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5 Chapter 2 Cosmological background

with the Christo�el symbol

�
�
µ⌫ =

@x�

@⇠↵
@2⇠↵

@xµ@x⌫
(2.7)

Metric tensor :
d⌧2 = ⌘↵,�d⇠↵d⇠� (2.8)

with :

⌘↵,� =

©≠≠≠≠≠≠
´

�1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

™ÆÆÆÆÆÆ
¨

(2.9)

the metric tensor :
gµ⌫ = ⌘↵�

@⇠↵

@xµ
@⇠�

@x⌫
(2.10)

2.1.1.2 The field equations

Un champs graviatationnel peut dÃ�vier la lumiere.
Einstein field equation :

Gµ⌫ =
8⇡G
c4 Tµ⌫ � ⇤gµ⌫ (2.11)

2.1.2 the Friedmann equations 1922

from cosmological principle : universe spatially isotropic and homogeneous at scales larger than
100Mpc. metric

gµ⌫ =

©≠≠≠≠≠≠
´

�1 0 0 0
0 a2

(t) 0 0
0 0 a2

(t) 0
0 0 0 a2

(t)

™ÆÆÆÆÆÆ
¨

(2.12)

ds2 = �c2dt2 + a(t)2
✓

dr2

1 � kr2 + r2
(d✓2 + sin2�2

)

◆
(2.13)

H(a)2

H2
0
= ⌦0,ra�4 +⌦0,ma�3 +⌦0,ka�2 +⌦0,⇤ (2.14)

What is the Nature of 
Dark Matter?

What causes the late 
cosmic acceleration? 

Dark Energy? our theory 
of gravity is wrong?

How can we 
probe our 
theory?

STATE OF THE ART OF COSMOLOGY



7

Galaxy Surveys :
looking at the late universe
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Large Scale Structure
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Spectroscopic 
surveys

Photometric 
surveys

Provide precise 3D 
information for each 

object, getting galaxy 
spectras 

Observed through 
pass-band filters, get 

color and shape 
information for a lot 

of object at the same 
time

• No shapes,
• Time 

consuming,
• not complete

• Difficult to 
infer radial 
position of 
objects

�(z)/(1 + z) < 0.001
�(z)/(1 + z) ⇠ 0.05

27

Redshift espectroscòpic vs. Photo-z

Espectroscopia:
Photo-z:

12

Cartografiats de galàxies

�(z)/(1 + z) < 0.001
�(z)/(1 + z) ⇠ 0.05

27

Redshift espectroscòpic vs. Photo-z

Espectroscopia:
Photo-z:

12

Cartografiats de galàxies
Observing the Universe at low-z :

Galaxy Surveys 

• RSD
• BAO
• clustering

• Cosmic shear
• Galaxy clustering
• Galaxy-Galaxy 

lensing



9

Th
e

D
ar

k
En

er
gy

Ca
m

er
a

&
th

e
D

ar
k

En
er

gy
Co

lla
bo

ra
tio

n

Survey Number of galaxiesa redshift
area
(deg2)

Observation period

Sloan Digital Sky Survey
(SDSS Legacy)

York et al. (2000)

⇠ 1M galaxies
⇠ 120000 Quasars

z . 0.25 7500
observation finished

2000-2008

Wiggle-Z
Drinkwater et al. (2010)

239000 ELGs 0.2 < z < 1.0 1000
observation finished

2006-2011

The Baryon Oscillation
Spectroscopic Survey (BOSS)

Dawson et al. (2013)

1.5M LRGs
160000 Quasars

z < 0.7
2.2 < z < 3 10000

observation finished
2008-2014

The Extended Baryon Oscillation
Spectroscopic Survey (eBOSS)

Dawson et al. (2016)

300000 LRGs
189000 ELGs

573000 Quasars

0.6 < z < 0.8
0.6 < z < 1.0
0.9 < z < 3.5

7500
1000
7500

2014-2020

Dark Energy Spectroscopic
Instrument (DESI)

DESI Collaboration et al. (2016)

4M LRGs
18M ELGs

2.4M Quasars

z < 1
z < 1.7

2.1 < z < 3.5
14000 First light in 2019

Euclid
Laureijs et al. (2011)

50M galaxies 0.5 < z < 2.0 15000 Launching in 2021

T���� 2.1.1 – Summary of recent and future spectroscopic surveys.

aLRG standing for Luminous Red galaxies and ELG Emission Lines Galaxies

42

Chapter2
The

D
ark

Energy
Survey

photometric
Survey

photometric
bands

Number of
galaxies

area
deg2

observation
period

Canada-France-Hawaii
Telescope Legacy Survey (CFHTLS) ugriz 38M 4 fields

over 171deg2
observation finished

2004-2009

Kilo Degree Survey
(KiDS)

de Jong et al. (2015)
ugri 90M 1500 First light in 2011

Dark Energy Survey
(DES)

The Dark Energy Survey Collaboration (2005)
grizy 300M 5000

started in 2013
for 577 nights of observation

Hyper Suprime-Cam
(HSC)

Aihara et al. (2018)
grizy 100M 1400

started in 2014
for 300 nights of observation

Physics of the Accelerating Universe Survey
(PAU)

Mart́ı et al. (2014)
40 narrow bands 2M 100

started in 2015
123 nights of observation

Large Synoptic Survey Telescope
(LSST)

LSST Science Collaboration et al. (2009)
ugrizy 4B 20000 First light 2021

Euclid
Laureijs et al. (2011)

R,I,Z YJH 1.5B 15000 Launching in 2021

COSMOS-30 band)
Laigle et al. (2016)

30 UV/Visible/IR bands > 500000 2 Combined sample of various surveys
in the COSMOS field

T���� 2.1.2 – Summary of recent and future photometric surveys.

43

Launch is now foreseen for 2022

Launch is now foreseen for 2022
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Lensing

Background galaxy will be observed 
with a distorted shape due to the matter 

density field between them and us

Measuring this effect will give us 
information on the foreground matter 

distribution, including Dark Matter

General relativity predicts the deviation  
of light trajectories due to gravity
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Galaxies tend to trace Dark matter 

Pirsa: 17110049 Page 10/56

Observables

(i.e. the correlation function) equals unity ⇠(r0) = 1. The larger will be the correlation
length, the stronger will be the clustering amplitude of a given sample.

If we are now placing ourselves in a large volume V, it is possible to compute the Fourier
transformed of this correlation function, defined as the power spectrum:

P(k) =
π
⇠(x)e�ix.kd3x. (1.37)

1.2.2.3 The bias

It is important to note that the observable used to estimate the density contrast might be
a biased estimator of the underlying matter field. For instance, if one observes galaxies,
one observes light, and as it will be explain later, one cannot assume that light is an
unbiased tracer of our universe’s matter distribution (Kaiser (1984); Fry & Gaztanaga
(1993)). Indeed, as it has been seen in section (1.1), most of the matter in our universe
is in the form of Dark Matter that we are not able to observe directly. We therefore
have to consider the di�erence between the spatial distributions of luminous and dark
matter, and this is done through the so-called tracer bias. In the standard Halo model
(Peacock & Smith (2000); Ma & Fry (2000); Seljak (2000); Cooray & Sheth (2002)),
galaxies form in collapsed matter over-densities known as Dark matter halos, and there
is a correlation between the mass of the host halo and the galaxy properties such as
color and luminosity. Therefore, the so called galaxy bias is highly dependent on the
considered galaxy sample, the redshift we are observing, as well as the scales we are
looking at. We thus define the relation between the tracer density contrast �i(Æk, z) and
the underlying matter density contrast as:

�i(Æk, z) = bi(z, Æk)�(Æk, z) (1.38)

where bi(z, Æk) is the bias of the considered tracer i. And consequently, if we aim to relate
the correlation function of a given sample i at redshift z to the underlying Dark Matter
correlation function one has:

⇠i(Ær, Æk) = b2
i (z, Æk)⇠(Ær, Æk). (1.39)

26

Galaxy clustering
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Galaxy galaxy lensing

Source : 
 Shape of 

background 
galaxies

Lenses: 
 position of 
foreground 

galaxies

Part II day 2: Shear estimation Galaxy-galaxy lensing in detail

Tangential shear and surface mass II
Assume that the lens mass distribution ⇢ extends over the inverval
[D

l

��D/2;D
l

+�D/2].

(✓) =
4⇡G

c2
D

l

D
ls

D
s

D
l

+�D/2Z

D
l

��D/2

dD�⇢(D✓, D).

Define the critical surface mass density

⌃�1

cr

(✓) :=
4⇡G

c2
D

l

D
ls

D
s

to write convergence as

(✓) =
⌃(✓)

⌃
cr

. (2)

[Why is ⌃
cr

called critical surface mass?]
With that, we define the surface mass excess

�⌃( ✓) := h�
t

i (✓)⌃
cr

= ⌃̄(✓)� h⌃i (✓).
Martin Kilbinger (CEA) Weak Gravitational Lensing Part II/II 48 / 120

Part II day 2: Shear estimation Galaxy-galaxy lensing in detail

Statistical galaxy-galaxy lensing (GGL) I
The convergence or tangential shear defined in the last slides depend linearly
on the mass distribution ⇢, or ⌃. So it seems to be a first-order statistic.

However, when measured statistically using a population of foreground
galaxies, it can be written as two-point correlation function. The convergence
is then the correlation of background lensing convergence and foreground
galaxy position.

If we write the latter as galaxy over-density �
g

, we get

hi (✓) = h(#)�
g

(#+ ✓)i#
= ⌃�1

cr

⇢̄

Z
dD h�(D✓, D)�

g

(D
l

✓, D
l

)i

= ⌃�1

cr

⇢̄

Z
dD ⇠�g(

p
(D✓)2 + (D �D

l

)2).

Martin Kilbinger (CEA) Weak Gravitational Lensing Part II/II 49 / 120

Surface mass excess :
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Galaxy Clustering

Cosmic Shear

Galaxy Galaxy lensing

Galaxy-Galaxy correlation

Shear-Shear correlation
correlations between galaxy 

ellipticity as a function of 
their separation

Galaxy-Shear correlation 

correlations between galaxy 
position as a function of their 

separation

correlations between the 
ellipticity of background 

galaxy with the position of 
foreground ones as a 

function of their separation

< �g�g >

13 Chapter 2 Cosmological background

Davis and Peebles : Davis & Peebles (1983)

w(✓) =
[DD] � [DR]

[DR]
(2.35)

< �g�g >

< �g�✏ >

< �✏ �✏ >

2.2.2.6 Baryon Accoustic Oscillation

In the primordial universe, matter density were so high that baryons, leptons and photons were
coupled and were forming a plasma. As the expansion were happening, the temperature was
cooling and at time of recombination (z ⇠ 1090), the temperature were cool enough for proton
and electrons to form neutral hydrogen atoms, leaving then free the photons.

2.2.3 Lensing

As mentioned before, in general relativity theory the photons are following the geodesics of a
curved space-time, where the deformations are made by gravitational potential. In this context,
the theory is then predicting the deviation of photons travelling toward us when approaching
massive object. This e�ect is known as Gravitational Lensing, and measuring it should in
principle bring more information on the underlying matter field that these photons are crossing.

2.2.3.1 Propagation and deflection in an in-homogeneous universe

In section 2.1.2, we solved the general relativity equations considering an isotropic and homoge-
neous universe, in the case of gravitational lensing however, one has to consider scales where the
homogeneity cannot be assumed anymore. Applying first order perturbation, one can reformulate
equation 2.13 and obtain a the line element equation for light propagation in an inhomegeneous
universe as :

ds2 =

✓
1 + 2 

c2

◆
c2dt2

� a2
(t)

✓
1 �

2�
c2

◆
dl2 (2.36)

Using the Fermat’S principle of minimal light travel time, it’s possible to derive the time travel
of the light ray in the metric of equation 2.36 as :

t =
1
c

π ✓
1 �

2�
c2

◆
dr (2.37)
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coupled and were forming a plasma. As the expansion were happening, the temperature was
cooling and at time of recombination (z ⇠ 1090), the temperature were cool enough for proton
and electrons to form neutral hydrogen atoms, leaving then free the photons.

2.2.3 Lensing

As mentioned before, in general relativity theory the photons are following the geodesics of a
curved space-time, where the deformations are made by gravitational potential. In this context,
the theory is then predicting the deviation of photons travelling toward us when approaching
massive object. This e�ect is known as Gravitational Lensing, and measuring it should in
principle bring more information on the underlying matter field that these photons are crossing.

2.2.3.1 Propagation and deflection in an in-homogeneous universe

In section 2.1.2, we solved the general relativity equations considering an isotropic and homoge-
neous universe, in the case of gravitational lensing however, one has to consider scales where the
homogeneity cannot be assumed anymore. Applying first order perturbation, one can reformulate
equation 2.13 and obtain a the line element equation for light propagation in an inhomegeneous
universe as :

ds2 =

✓
1 + 2 

c2

◆
c2dt2

� a2
(t)

✓
1 �

2�
c2

◆
dl2 (2.36)

Using the Fermat’S principle of minimal light travel time, it’s possible to derive the time travel
of the light ray in the metric of equation 2.36 as :

t =
1
c

π ✓
1 �

2�
c2

◆
dr (2.37)

Main probe of photometric galaxy surveys  
3X2pts
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Agreement between lensing and 
clustering

17

TABLE II. 68%CL marginalized cosmological constraints in ⇤CDM and wCDM using a variety of datasets. “DES Y1 3x2” refers to results
from combining all 3 two-point functions in DES Y1. Cells with no entries correspond to posteriors not significantly narrower than the prior
widths. The only exception is in wCDM for Planck only, where the posteriors on h are shown to indicate the large values inferred in the model
without any data to break the w � h degeneracy.

Model Data Sets ⌦m S8 ns ⌦b h
P

m⌫ (eV)
(95% CL) w

⇤CDM DES Y1 ⇠±(✓) 0.323+0.048
�0.069 0.791+0.019

�0.029 . . . . . . . . . . . . . . .

⇤CDM DES Y1 w(✓) + �t 0.293+0.043
�0.033 0.770+0.035

�0.030 . . . . . . . . . . . . . . .

⇤CDM DES Y1 3x2 0.264+0.032
�0.019 0.783+0.021

�0.025 . . . . . . . . . . . . . . .

⇤CDM Planck (No Lensing) 0.334+0.037
�0.020 0.840+0.024

�0.028 0.960+0.006
�0.008 0.0512+0.0036

�0.0022 0.656+0.015
�0.026 . . . . . .

⇤CDM DES Y1 + Planck (No Lensing) 0.303+0.029
�0.013 0.793+0.018

�0.014 0.971+0.006
�0.005 0.0481+0.0040

�0.0010 0.681+0.010
�0.025 < 0.62 . . .

⇤CDM DES Y1 + JLA + BAO 0.301+0.013
�0.018 0.775+0.016

�0.027 1.05+0.02
�0.08 0.0493+0.006

�0.007 0.680+0.042
�0.045 . . . . . .

⇤CDM Planck + JLA + BAO 0.306+0.007
�0.007 0.815+0.013

�0.015 0.969+0.005
�0.005 0.0485+0.0007

�0.0008 0.679+0.005
�0.007 < 0.25 . . .

⇤CDM DES Y1 +
Planck + JLA + BAO 0.301+0.006

�0.008 0.799+0.014
�0.009 0.973+0.005

�0.004 0.0480+0.0009
�0.0006 0.682+0.006

�0.006 < 0.29 . . .

wCDM DES Y1 ⇠±(✓) 0.317+0.074
�0.054 0.789+0.036

�0.038 . . . . . . . . . . . . �0.82+0.26
�0.47

wCDM DES Y1 w(✓) + �t 0.317+0.045
�0.041 0.788+0.039

�0.067 . . . . . . . . . . . . �0.76+0.19
�0.45

wCDM DES Y1 3x2 0.279+0.043
�0.022 0.794+0.029

�0.027 . . . . . . . . . . . . �0.80+0.20
�0.22

wCDM Planck (No Lensing) 0.220+0.064
�0.025 0.798+0.035

�0.035 0.960+0.008
�0.006 0.0329+0.0100

�0.0030 0.800+0.050
�0.090 . . . �1.50+0.34

�0.18

wCDM DES Y1 + Planck (No Lensing) 0.230+0.023
�0.015 0.780+0.013

�0.023 0.967+0.005
�0.004 0.0359+0.0037

�0.0021 0.785+0.023
�0.037 < 0.56 �1.34+0.08

�0.15

wCDM Planck + JLA + BAO 0.304+0.008
�0.011 0.814+0.013

�0.016 0.968+0.005
�0.005 0.0480+0.0010

�0.0020 0.681+0.010
�0.009 < 0.29 �1.03+0.05

�0.05

wCDM DES Y1 +
Planck + JLA + BAO 0.299+0.009

�0.007 0.798+0.012
�0.011 0.973+0.005

�0.004 0.0479+0.0015
�0.0012 0.683+0.009

�0.010 < 0.35 �1.00+0.04
�0.05

VII. COMPARISON WITH EXTERNAL DATA

We next explore the cosmological implications of com-
parison and combination of DES Y1 results with other ex-
periments’ constraints. For the CMB, we take constraints
from Planck [51]. In the first subsection below, we use only
the temperature and polarization auto- and cross-spectra from
Planck, omitting the information due to lensing of the CMB
that is contained in the four-point function. The latter de-
pends on structure and distances at late times, and we wish in
this subsection to segregate late-time information from early-
Universe observables. We use the joint TT, EE, BB and TE
likelihood for ` between 2 and 29 and the TT likelihood for
` between 30 and 2508 (commonly referred to as TT+lowP),
provided by Planck.5 In all cases that we have checked, use
of WMAP [130] data yields constraints consistent with, but
weaker than, those obtained with Planck. Recent results from
the South Pole Telescope [131] favor a value of �

8

that is 2.6-
� lower than Planck, but we have not yet tried to incorporate
these results.

5 Late-universe lensing does smooth the CMB power spectra slightly, so
these data sets are not completely independent of low redshift information.

We use measured angular diameter distances from the
Baryon Acoustic Oscillation (BAO) feature by the 6dF Galaxy
Survey [132], the SDSS Data Release 7 Main Galaxy Sam-
ple [133], and BOSS Data Release 12 [48], in each case ex-
tracting only the BAO constraints. These BAO distances are
all measured relative to the physical BAO scale correspond-
ing to the sound horizon distance r

d

; therefore, dependence
of r

d

on cosmological parameters must be included when de-
termining the likelihood of any cosmological model (see [48]
for details). We also use measures of luminosity distances
from observations of distant Type Ia supernovae (SNe) via the
Joint Lightcurve Analysis (JLA) data from [134].

This set of BAO and SNe experiments has been shown to
be consistent with the ⇤CDM and wCDM constraints from the
CMB [49, 51], so we can therefore sensibly merge this suite
of experiments—BAO, SNe, and Planck—with the DES Y1
results to obtain unprecedented precision on the cosmological
parameters. We do not include information about direct mea-
surements of the Hubble constant because those are in tension
with this bundle of experiments [135].

LCDM

Before the data were unblinded, we decided that we
would combine results from these two sets of two-point
functions if the Bayes factor defined in Eq. (5.3) did not
suggest strong evidence for inconsistency. According to the
Jeffreys scale, our condition to combine is therefore that
R > 0.1 (since R < 0.1 would imply strong evidence for
inconsistency). We find a Bayes factor of R ¼ 583, an
indication that DES Y1 cosmic shear and galaxy clustering
plus galaxy-galaxy lensing are consistent with one another
in the context of ΛCDM.
The DES Y1 data were thus validated as internally

consistent and robust to our assumptions before we gained
any knowledge of the cosmological parameter values that
they imply. Any comparisons to external data were, of
course, made after the data were unblinded.

VI. DES Y1 RESULTS: PARAMETER
CONSTRAINTS

A. ΛCDM
We first consider the ΛCDM model with six cosmo-

logical parameters. The DES data are most sensitive to two
cosmological parameters, Ωm and S8, as defined in
Eq. (4.7), so for the most part we focus on constraints
on these parameters.
Given the demonstrated consistency of cosmic shear

with clustering plus galaxy-galaxy lensing in the context of
ΛCDM as noted above, we proceed to combine the
constraints from all three probes. Figure 5 shows the
constraints on Ωm and σ8 (bottom panel) and on Ωm and

the less degenerate parameter S8 (top panel). Constraints
from cosmic shear, galaxy clustering þ galaxy-galaxy
lensing, and their combination are shown in these two-
dimensional subspaces after marginalizing over the 24
other parameters. The combined results lead to constraints

Ωm ¼ 0.267þ0.030
−0.017

S8 ¼ 0.773þ0.026
−0.020

σ8 ¼ 0.817þ0.045
−0.056 : ð6:1Þ

The value of Ωm is consistent with the value inferred
from either cosmic shear or clustering plus galaxy-galaxy
lensing separately. We present the resulting marginalized
constraints on the cosmological parameters in the top rows
of Table II.
The results shown in Fig. 5, along with previous analyses

such as that usingKiDSþ GAMAdata [67], are an important
step forward in the capability of combined probes from
optical surveys to constrain cosmological parameters.
These combined constraints transform what has, for the past
decade, been a one-dimensional constraint on S8 (which
appears banana shaped in the Ωm-σ8 plane) into tight
constraints on both of these important cosmological param-
eters. Figure 6 shows the DES Y1 constraints on S8 and Ωm
along with some previous results and in combination with
external data sets, as will be discussed below. The sizes of
these parameter error bars from the combinedDESY1 probes
are comparable to those from the CMB obtained by Planck.
In addition to the cosmological parameters, these probes

constrain important astrophysical parameters. The intrinsic-
alignment signal is modeled to scale as AIAð1þ zÞηIA ; while
the data do not constrain the power law well (ηIA ¼
−0.7% 2.2), they are sensitive to the amplitude of the
signal:

AIA ¼ 0.44þ0.38
−0.28 ð95% C:L:Þ: ð6:2Þ

Further strengthening evidence from the recent combined
probes analysis of KiDS [67,68], this result is the strongest
evidence to date of IA in a broadly inclusive galaxy sample;
previously, significant IA measurements have come from
selections of massive elliptical galaxies, usually with
spectroscopic redshifts (e.g., Ref. [140]). The ability of
DES data to produce such a result without spectroscopic
redshifts demonstrates the power of this combined analysis
and emphasizes the importance of modeling IA in the
pursuit of accurate cosmology from weak lensing. We are
able to rule out AIA ¼ 0 at 99.76% C.L. with DES alone
and at 99.90% C.L. with the full combination of DES and
external data sets. The mean value of AIA is nearly the same
when combining with external data sets, suggesting that IA
self-calibration has been effective. Interestingly, the mea-
sured amplitude agrees well with a prediction made by
assuming that only red galaxies contribute to the IA signal
and then extrapolating the IA amplitude measured from

FIG. 5. ΛCDM constraints from DES Y1 on Ωm; σ8, and S8
from cosmic shear (green), REDMAGIC galaxy clustering plus
galaxy-galaxy lensing (red), and their combination (blue). Here,
and in all such 2D plots below, the two sets of contours depict the
68% and 95% confidence levels.
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TABLE II. 68%CL marginalized cosmological constraints in ⇤CDM and wCDM using a variety of datasets. “DES Y1 3x2” refers to results
from combining all 3 two-point functions in DES Y1. Cells with no entries correspond to posteriors not significantly narrower than the prior
widths. The only exception is in wCDM for Planck only, where the posteriors on h are shown to indicate the large values inferred in the model
without any data to break the w � h degeneracy.

Model Data Sets ⌦m S8 ns ⌦b h
P

m⌫ (eV)
(95% CL) w

⇤CDM DES Y1 ⇠±(✓) 0.323+0.048
�0.069 0.791+0.019

�0.029 . . . . . . . . . . . . . . .

⇤CDM DES Y1 w(✓) + �t 0.293+0.043
�0.033 0.770+0.035

�0.030 . . . . . . . . . . . . . . .

⇤CDM DES Y1 3x2 0.264+0.032
�0.019 0.783+0.021

�0.025 . . . . . . . . . . . . . . .

⇤CDM Planck (No Lensing) 0.334+0.037
�0.020 0.840+0.024

�0.028 0.960+0.006
�0.008 0.0512+0.0036

�0.0022 0.656+0.015
�0.026 . . . . . .

⇤CDM DES Y1 + Planck (No Lensing) 0.303+0.029
�0.013 0.793+0.018

�0.014 0.971+0.006
�0.005 0.0481+0.0040

�0.0010 0.681+0.010
�0.025 < 0.62 . . .

⇤CDM DES Y1 + JLA + BAO 0.301+0.013
�0.018 0.775+0.016

�0.027 1.05+0.02
�0.08 0.0493+0.006

�0.007 0.680+0.042
�0.045 . . . . . .

⇤CDM Planck + JLA + BAO 0.306+0.007
�0.007 0.815+0.013

�0.015 0.969+0.005
�0.005 0.0485+0.0007

�0.0008 0.679+0.005
�0.007 < 0.25 . . .

⇤CDM DES Y1 +
Planck + JLA + BAO 0.301+0.006

�0.008 0.799+0.014
�0.009 0.973+0.005

�0.004 0.0480+0.0009
�0.0006 0.682+0.006

�0.006 < 0.29 . . .

wCDM DES Y1 ⇠±(✓) 0.317+0.074
�0.054 0.789+0.036

�0.038 . . . . . . . . . . . . �0.82+0.26
�0.47

wCDM DES Y1 w(✓) + �t 0.317+0.045
�0.041 0.788+0.039

�0.067 . . . . . . . . . . . . �0.76+0.19
�0.45

wCDM DES Y1 3x2 0.279+0.043
�0.022 0.794+0.029

�0.027 . . . . . . . . . . . . �0.80+0.20
�0.22

wCDM Planck (No Lensing) 0.220+0.064
�0.025 0.798+0.035

�0.035 0.960+0.008
�0.006 0.0329+0.0100

�0.0030 0.800+0.050
�0.090 . . . �1.50+0.34

�0.18

wCDM DES Y1 + Planck (No Lensing) 0.230+0.023
�0.015 0.780+0.013

�0.023 0.967+0.005
�0.004 0.0359+0.0037

�0.0021 0.785+0.023
�0.037 < 0.56 �1.34+0.08

�0.15

wCDM Planck + JLA + BAO 0.304+0.008
�0.011 0.814+0.013

�0.016 0.968+0.005
�0.005 0.0480+0.0010

�0.0020 0.681+0.010
�0.009 < 0.29 �1.03+0.05

�0.05

wCDM DES Y1 +
Planck + JLA + BAO 0.299+0.009

�0.007 0.798+0.012
�0.011 0.973+0.005

�0.004 0.0479+0.0015
�0.0012 0.683+0.009

�0.010 < 0.35 �1.00+0.04
�0.05

VII. COMPARISON WITH EXTERNAL DATA

We next explore the cosmological implications of com-
parison and combination of DES Y1 results with other ex-
periments’ constraints. For the CMB, we take constraints
from Planck [51]. In the first subsection below, we use only
the temperature and polarization auto- and cross-spectra from
Planck, omitting the information due to lensing of the CMB
that is contained in the four-point function. The latter de-
pends on structure and distances at late times, and we wish in
this subsection to segregate late-time information from early-
Universe observables. We use the joint TT, EE, BB and TE
likelihood for ` between 2 and 29 and the TT likelihood for
` between 30 and 2508 (commonly referred to as TT+lowP),
provided by Planck.5 In all cases that we have checked, use
of WMAP [130] data yields constraints consistent with, but
weaker than, those obtained with Planck. Recent results from
the South Pole Telescope [131] favor a value of �

8

that is 2.6-
� lower than Planck, but we have not yet tried to incorporate
these results.

5 Late-universe lensing does smooth the CMB power spectra slightly, so
these data sets are not completely independent of low redshift information.

We use measured angular diameter distances from the
Baryon Acoustic Oscillation (BAO) feature by the 6dF Galaxy
Survey [132], the SDSS Data Release 7 Main Galaxy Sam-
ple [133], and BOSS Data Release 12 [48], in each case ex-
tracting only the BAO constraints. These BAO distances are
all measured relative to the physical BAO scale correspond-
ing to the sound horizon distance r

d

; therefore, dependence
of r

d

on cosmological parameters must be included when de-
termining the likelihood of any cosmological model (see [48]
for details). We also use measures of luminosity distances
from observations of distant Type Ia supernovae (SNe) via the
Joint Lightcurve Analysis (JLA) data from [134].

This set of BAO and SNe experiments has been shown to
be consistent with the ⇤CDM and wCDM constraints from the
CMB [49, 51], so we can therefore sensibly merge this suite
of experiments—BAO, SNe, and Planck—with the DES Y1
results to obtain unprecedented precision on the cosmological
parameters. We do not include information about direct mea-
surements of the Hubble constant because those are in tension
with this bundle of experiments [135].
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TABLE II. 68%CL marginalized cosmological constraints in ⇤CDM and wCDM using a variety of datasets. “DES Y1 3x2” refers to results
from combining all 3 two-point functions in DES Y1. Cells with no entries correspond to posteriors not significantly narrower than the prior
widths. The only exception is in wCDM for Planck only, where the posteriors on h are shown to indicate the large values inferred in the model
without any data to break the w � h degeneracy.

Model Data Sets ⌦m S8 ns ⌦b h
P

m⌫ (eV)
(95% CL) w
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⇤CDM DES Y1 3x2 0.264+0.032
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�0.020 0.840+0.024

�0.028 0.960+0.006
�0.008 0.0512+0.0036

�0.0022 0.656+0.015
�0.026 . . . . . .

⇤CDM DES Y1 + Planck (No Lensing) 0.303+0.029
�0.013 0.793+0.018

�0.014 0.971+0.006
�0.005 0.0481+0.0040

�0.0010 0.681+0.010
�0.025 < 0.62 . . .

⇤CDM DES Y1 + JLA + BAO 0.301+0.013
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�0.027 1.05+0.02
�0.08 0.0493+0.006
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⇤CDM Planck + JLA + BAO 0.306+0.007
�0.007 0.815+0.013

�0.015 0.969+0.005
�0.005 0.0485+0.0007

�0.0008 0.679+0.005
�0.007 < 0.25 . . .
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Planck + JLA + BAO 0.301+0.006

�0.008 0.799+0.014
�0.009 0.973+0.005

�0.004 0.0480+0.0009
�0.0006 0.682+0.006
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�0.18

wCDM DES Y1 + Planck (No Lensing) 0.230+0.023
�0.015 0.780+0.013

�0.023 0.967+0.005
�0.004 0.0359+0.0037

�0.0021 0.785+0.023
�0.037 < 0.56 �1.34+0.08
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�0.011 0.814+0.013

�0.016 0.968+0.005
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�0.010 < 0.35 �1.00+0.04
�0.05
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that is contained in the four-point function. The latter de-
pends on structure and distances at late times, and we wish in
this subsection to segregate late-time information from early-
Universe observables. We use the joint TT, EE, BB and TE
likelihood for ` between 2 and 29 and the TT likelihood for
` between 30 and 2508 (commonly referred to as TT+lowP),
provided by Planck.5 In all cases that we have checked, use
of WMAP [130] data yields constraints consistent with, but
weaker than, those obtained with Planck. Recent results from
the South Pole Telescope [131] favor a value of �

8

that is 2.6-
� lower than Planck, but we have not yet tried to incorporate
these results.

5 Late-universe lensing does smooth the CMB power spectra slightly, so
these data sets are not completely independent of low redshift information.

We use measured angular diameter distances from the
Baryon Acoustic Oscillation (BAO) feature by the 6dF Galaxy
Survey [132], the SDSS Data Release 7 Main Galaxy Sam-
ple [133], and BOSS Data Release 12 [48], in each case ex-
tracting only the BAO constraints. These BAO distances are
all measured relative to the physical BAO scale correspond-
ing to the sound horizon distance r

d

; therefore, dependence
of r

d

on cosmological parameters must be included when de-
termining the likelihood of any cosmological model (see [48]
for details). We also use measures of luminosity distances
from observations of distant Type Ia supernovae (SNe) via the
Joint Lightcurve Analysis (JLA) data from [134].

This set of BAO and SNe experiments has been shown to
be consistent with the ⇤CDM and wCDM constraints from the
CMB [49, 51], so we can therefore sensibly merge this suite
of experiments—BAO, SNe, and Planck—with the DES Y1
results to obtain unprecedented precision on the cosmological
parameters. We do not include information about direct mea-
surements of the Hubble constant because those are in tension
with this bundle of experiments [135].

17

TABLE II. 68%CL marginalized cosmological constraints in ⇤CDM and wCDM using a variety of datasets. “DES Y1 3x2” refers to results
from combining all 3 two-point functions in DES Y1. Cells with no entries correspond to posteriors not significantly narrower than the prior
widths. The only exception is in wCDM for Planck only, where the posteriors on h are shown to indicate the large values inferred in the model
without any data to break the w � h degeneracy.
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�0.023 0.967+0.005
�0.004 0.0359+0.0037

�0.0021 0.785+0.023
�0.037 < 0.56 �1.34+0.08

�0.15

wCDM Planck + JLA + BAO 0.304+0.008
�0.011 0.814+0.013

�0.016 0.968+0.005
�0.005 0.0480+0.0010

�0.0020 0.681+0.010
�0.009 < 0.29 �1.03+0.05

�0.05

wCDM DES Y1 +
Planck + JLA + BAO 0.299+0.009

�0.007 0.798+0.012
�0.011 0.973+0.005

�0.004 0.0479+0.0015
�0.0012 0.683+0.009

�0.010 < 0.35 �1.00+0.04
�0.05

VII. COMPARISON WITH EXTERNAL DATA

We next explore the cosmological implications of com-
parison and combination of DES Y1 results with other ex-
periments’ constraints. For the CMB, we take constraints
from Planck [51]. In the first subsection below, we use only
the temperature and polarization auto- and cross-spectra from
Planck, omitting the information due to lensing of the CMB
that is contained in the four-point function. The latter de-
pends on structure and distances at late times, and we wish in
this subsection to segregate late-time information from early-
Universe observables. We use the joint TT, EE, BB and TE
likelihood for ` between 2 and 29 and the TT likelihood for
` between 30 and 2508 (commonly referred to as TT+lowP),
provided by Planck.5 In all cases that we have checked, use
of WMAP [130] data yields constraints consistent with, but
weaker than, those obtained with Planck. Recent results from
the South Pole Telescope [131] favor a value of �

8

that is 2.6-
� lower than Planck, but we have not yet tried to incorporate
these results.

5 Late-universe lensing does smooth the CMB power spectra slightly, so
these data sets are not completely independent of low redshift information.

We use measured angular diameter distances from the
Baryon Acoustic Oscillation (BAO) feature by the 6dF Galaxy
Survey [132], the SDSS Data Release 7 Main Galaxy Sam-
ple [133], and BOSS Data Release 12 [48], in each case ex-
tracting only the BAO constraints. These BAO distances are
all measured relative to the physical BAO scale correspond-
ing to the sound horizon distance r

d

; therefore, dependence
of r

d

on cosmological parameters must be included when de-
termining the likelihood of any cosmological model (see [48]
for details). We also use measures of luminosity distances
from observations of distant Type Ia supernovae (SNe) via the
Joint Lightcurve Analysis (JLA) data from [134].

This set of BAO and SNe experiments has been shown to
be consistent with the ⇤CDM and wCDM constraints from the
CMB [49, 51], so we can therefore sensibly merge this suite
of experiments—BAO, SNe, and Planck—with the DES Y1
results to obtain unprecedented precision on the cosmological
parameters. We do not include information about direct mea-
surements of the Hubble constant because those are in tension
with this bundle of experiments [135].
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TABLE II. 68%CL marginalized cosmological constraints in ⇤CDM and wCDM using a variety of datasets. “DES Y1 3x2” refers to results
from combining all 3 two-point functions in DES Y1. Cells with no entries correspond to posteriors not significantly narrower than the prior
widths. The only exception is in wCDM for Planck only, where the posteriors on h are shown to indicate the large values inferred in the model
without any data to break the w � h degeneracy.

Model Data Sets ⌦m S8 ns ⌦b h
P

m⌫ (eV)
(95% CL) w

⇤CDM DES Y1 ⇠±(✓) 0.323+0.048
�0.069 0.791+0.019

�0.029 . . . . . . . . . . . . . . .

⇤CDM DES Y1 w(✓) + �t 0.293+0.043
�0.033 0.770+0.035

�0.030 . . . . . . . . . . . . . . .

⇤CDM DES Y1 3x2 0.264+0.032
�0.019 0.783+0.021

�0.025 . . . . . . . . . . . . . . .

⇤CDM Planck (No Lensing) 0.334+0.037
�0.020 0.840+0.024

�0.028 0.960+0.006
�0.008 0.0512+0.0036

�0.0022 0.656+0.015
�0.026 . . . . . .

⇤CDM DES Y1 + Planck (No Lensing) 0.303+0.029
�0.013 0.793+0.018

�0.014 0.971+0.006
�0.005 0.0481+0.0040

�0.0010 0.681+0.010
�0.025 < 0.62 . . .

⇤CDM DES Y1 + JLA + BAO 0.301+0.013
�0.018 0.775+0.016

�0.027 1.05+0.02
�0.08 0.0493+0.006

�0.007 0.680+0.042
�0.045 . . . . . .

⇤CDM Planck + JLA + BAO 0.306+0.007
�0.007 0.815+0.013

�0.015 0.969+0.005
�0.005 0.0485+0.0007

�0.0008 0.679+0.005
�0.007 < 0.25 . . .

⇤CDM DES Y1 +
Planck + JLA + BAO 0.301+0.006

�0.008 0.799+0.014
�0.009 0.973+0.005

�0.004 0.0480+0.0009
�0.0006 0.682+0.006

�0.006 < 0.29 . . .

wCDM DES Y1 ⇠±(✓) 0.317+0.074
�0.054 0.789+0.036

�0.038 . . . . . . . . . . . . �0.82+0.26
�0.47

wCDM DES Y1 w(✓) + �t 0.317+0.045
�0.041 0.788+0.039

�0.067 . . . . . . . . . . . . �0.76+0.19
�0.45

wCDM DES Y1 3x2 0.279+0.043
�0.022 0.794+0.029

�0.027 . . . . . . . . . . . . �0.80+0.20
�0.22

wCDM Planck (No Lensing) 0.220+0.064
�0.025 0.798+0.035

�0.035 0.960+0.008
�0.006 0.0329+0.0100

�0.0030 0.800+0.050
�0.090 . . . �1.50+0.34

�0.18

wCDM DES Y1 + Planck (No Lensing) 0.230+0.023
�0.015 0.780+0.013

�0.023 0.967+0.005
�0.004 0.0359+0.0037

�0.0021 0.785+0.023
�0.037 < 0.56 �1.34+0.08

�0.15

wCDM Planck + JLA + BAO 0.304+0.008
�0.011 0.814+0.013

�0.016 0.968+0.005
�0.005 0.0480+0.0010

�0.0020 0.681+0.010
�0.009 < 0.29 �1.03+0.05

�0.05

wCDM DES Y1 +
Planck + JLA + BAO 0.299+0.009

�0.007 0.798+0.012
�0.011 0.973+0.005

�0.004 0.0479+0.0015
�0.0012 0.683+0.009

�0.010 < 0.35 �1.00+0.04
�0.05

VII. COMPARISON WITH EXTERNAL DATA

We next explore the cosmological implications of com-
parison and combination of DES Y1 results with other ex-
periments’ constraints. For the CMB, we take constraints
from Planck [51]. In the first subsection below, we use only
the temperature and polarization auto- and cross-spectra from
Planck, omitting the information due to lensing of the CMB
that is contained in the four-point function. The latter de-
pends on structure and distances at late times, and we wish in
this subsection to segregate late-time information from early-
Universe observables. We use the joint TT, EE, BB and TE
likelihood for ` between 2 and 29 and the TT likelihood for
` between 30 and 2508 (commonly referred to as TT+lowP),
provided by Planck.5 In all cases that we have checked, use
of WMAP [130] data yields constraints consistent with, but
weaker than, those obtained with Planck. Recent results from
the South Pole Telescope [131] favor a value of �

8

that is 2.6-
� lower than Planck, but we have not yet tried to incorporate
these results.

5 Late-universe lensing does smooth the CMB power spectra slightly, so
these data sets are not completely independent of low redshift information.

We use measured angular diameter distances from the
Baryon Acoustic Oscillation (BAO) feature by the 6dF Galaxy
Survey [132], the SDSS Data Release 7 Main Galaxy Sam-
ple [133], and BOSS Data Release 12 [48], in each case ex-
tracting only the BAO constraints. These BAO distances are
all measured relative to the physical BAO scale correspond-
ing to the sound horizon distance r

d

; therefore, dependence
of r

d

on cosmological parameters must be included when de-
termining the likelihood of any cosmological model (see [48]
for details). We also use measures of luminosity distances
from observations of distant Type Ia supernovae (SNe) via the
Joint Lightcurve Analysis (JLA) data from [134].

This set of BAO and SNe experiments has been shown to
be consistent with the ⇤CDM and wCDM constraints from the
CMB [49, 51], so we can therefore sensibly merge this suite
of experiments—BAO, SNe, and Planck—with the DES Y1
results to obtain unprecedented precision on the cosmological
parameters. We do not include information about direct mea-
surements of the Hubble constant because those are in tension
with this bundle of experiments [135].

when varying a full set of cosmological parameters (includ-
ing σ8, which is quite degenerate with bias when using
galaxy clustering only) and 15 other nuisance parameters,
the combined probes in DES Y1 therefore constrain bias at
the 10% level.

B. wCDM

A variety of theoretical alternatives to the cosmological
constant has been proposed [6]. For example, it could be
that the cosmological constant vanishes and that another
degree of freedom, e.g., a very light scalar field, is driving
the current epoch of accelerated expansion. Here, we
restrict our analysis to the simplest class of phenomeno-
logical alternatives, models in which the dark energy
density is not constant but rather evolves over cosmic
history with a constant equation-of-state parameter, w. We
constrain w by adding it as a seventh cosmological
parameter. Here, too, DES obtains interesting constraints
on only a subset of the seven cosmological parameters, so
we show the constraints on the three-dimensional subspace
spanned byΩm, S8, and w. Figure 8 shows the constraints in
this three-dimensional space from cosmic shear and from
galaxy-galaxy lensingþ galaxy clustering. These two sets
of probes agree with one another. The consistency in the
three-dimensional subspace shown in Fig. 8, along with the
tests in the previous subsection, is sufficient to combine
the two sets of probes. The Bayes factor in this case is equal
to 1878. The combined constraint from all three two-point
functions is also shown in Fig. 8.
The marginalized 68% C.L. constraints on w and on the

other two cosmological parameters tightly constrained by

DES, S8 andΩM, are shown in Fig. 9 and given numerically
in Table II. In the next section, we revisit the question of
how consistent the DES Y1 results are with other experi-
ments. The marginalized constraint on w from all three
DES Y1 probes is

w ¼ −0.82þ0.21
−0.20 : ð6:3Þ

Finally, if one ignores any intuition or prejudice about
the mechanism driving cosmic acceleration, studying
wCDM translates into adding an additional parameter to
describe the data. From a Bayesian point of view, the
question of whether wCDM is more likely than ΛCDM can
again be addressed by computing the Bayes factor. Here,
the two models being compared are simpler: ΛCDM and
wCDM. The Bayes factor is

Rw ¼ PðD⃗jwCDMÞ
PðD⃗jΛCDMÞ

: ð6:4Þ

Values of Rw less than unity would imply ΛCDM is
favored, while those greater than 1 argue that the intro-
duction of the additional parameter w is warranted. The
Bayes factor is Rw ¼ 0.39 for DES Y1, so although ΛCDM

FIG. 7. The bias of the REDMAGIC galaxy samples in the five
lens bins from three separate DES Y1 analyses. The two labeled
“fixed cosmology” use the galaxy angular correlation function
wðθÞ and galaxy-galaxy lensing γt, respectively, with cosmo-
logical parameters fixed at best-fit values from the 3 × 2 analysis,
as described in Refs. [93,94]. The results labeled “DES Y1—all”
vary all 26 parameters while fitting to all three two-point
functions.

FIG. 8. Constraints on the three cosmological parameters σ8,
Ωm, and w in wCDM from DES Y1 after marginalizing over four
other cosmological parameters and 10 (cosmic shear only) or 20
(other sets of probes) nuisance parameters. The constraints from
cosmic shear only (green), wðθÞ þ γtðθÞ (red), and all three two-
point functions (blue) are shown. Here and below, outlying panels
show the marginalized 1D posteriors and the corresponding
68% confidence regions.

T. M. C. ABBOTT et al. PHYS. REV. D 98, 043526 (2018)
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Cosmic Microwave Background : lensing

similarly to the deflection 
effects induced by the large 
structures that we observe 
on the sky on the photons 
coming from background 
galaxies, we should have 
lensing effects by the 
foreground matter field on 
the photons that come from 
the CMB 

 

5

Elvin-Poole et al. (2018)

Troxel et al. (2018)

Prat et al. (2018) Omori et al. (2018a)

Omori et al. (2018b)

Planck (2015)

��

�g�g �g� �g�CMB

��CMB

�CMB�CMB

3x2pt
Methodology:
Krause et al. (2018)
Simulation:
MacCrann et al. (2018)
Results:
DES et al. (2018)

6x2pt 
Results: 
This work

5x2pt 
Methodology:
Baxter et al. (2018)
Results:
This work

FIG. 1. Summary of papers presenting analyses of two-point functions of DES-Y1 measurements of projected galaxy density, �g, and shear, �,
as well as cross-correlations with the CMB lensing maps, CMB, from [25]. The blue box represents the joint 3⇥2pt analysis, while the orange
and black boxes represent the 5⇥2pt and 6⇥2pt analyses considered in this work.

q�ig = bi
g

ni
g(z(�))

n̄i
g

dz
d�
, (4)

where ni
s(z) and ni

g(z) are the redshift distributions of source
and tracer galaxies in the ith bin, and n̄i

s and n̄i
g are the corre-

sponding integrated number densities in this redshift bin. In
Eq. 4 we have assumed linear galaxy bias with a single bias
parameter, bi

g, for each galaxy redshift bin i.
The position-space correlation functions can be related to

the harmonic-space cross-spectra as follows. The correlations
of the galaxy density field with itself and with the CMB con-
vergence field are computed via

w�
i
g�

j
g (✓) =

X 2` + 1
4⇡

P`(cos(✓))C�
i
g�

j
g (`) (5)

w�
i
gCMB (✓) =

X 2` + 1
4⇡

F(`)P`(cos(✓))C�
i
gCMB (`), (6)

where P` is the `th order Legendre polynomial, and F(`) de-
scribes filtering applied to the CMB map. For correlations
with the CMB map of [25] (hereafter O17), we set F(`) =
B(`)⇥(` � 30)⇥(3000 � `), where ⇥(`) is a step function and
B(`) = exp(�`(` + 1)/`2beam) with `beam ⌘

p
16 ln 2/✓FWHM ⇡

2120. The motivation for this filtering is discussed in more
detail in B18.

We compute the cosmic shear two-point functions, ⇠+ and
⇠�, using the flat-sky approximation:

⇠i j
+/�(✓) =

Z
d` `
2⇡

J0/4(`✓)C
i
s

j
s (`), (7)

where Ji is the second order Bessel function of the ith kind.
For ease of notation, we will occasionally use w�� to generi-
cally refer to both ⇠+ and ⇠�.

When measuring the cross-correlations between galaxies
and shear, or between CMB and shear, we consider only the
tangential component of the shear field, �t. These correlation

functions are then given by

w�
i
g�

j
t (✓) =

Z
d` `
2⇡

J2(`✓)C�
i
g

j
s (`), (8)

w�
i
tCMB (✓) =

Z
d` `
2⇡

F(`)J2(`✓)C
i
sCMB (`). (9)

In addition to the coherent distortion of galaxy shapes
caused by gravitational lensing, galaxies can also be intrin-
sically aligned as a result of gravitational interactions. We
model intrinsic galaxy alignments using the nonlinear linear
alignment (NLA) model [49], which modifies qis as:

qis (�)! qis (�) � A(z(�))
ni

s((z(�))
n̄i

s

dz
d�
, (10)

where

A(z) = AIA,0

 
1 + z
1 + z0

!⌘IA 0.0139⌦m

D(z)
, (11)

and where D(z) is the linear growth factor and z0 is the redshift
pivot point which we set to 0.62 as done in K17.

We also model two sources of potential systematic mea-
surement uncertainties in our analysis: biases in the photo-
metric redshift estimation, and biases in the calibration of
the shear measurements. Photometric redshift bias is mod-
eled with an additive shift parameter, �z, such that the true
redshift distribution is related to the observed distribution via
ntrue(z) = nobs(z � �z). We adopt separate redshift bias param-
eters �zi

g and �zi
s for each tracer and source galaxy redshift

bin, respectively.
We model shear calibration bias via a multiplicative bias

parameter, mi, for the ith redshift bin. We then make the re-
placements

⇠i j
+/�(✓)! (1 + mi)(1 + mj) ⇠i j

+/�(✓) (12)

w�
i
tCMB (✓)! (1 + mi)w�

i
tCMB (✓). (13)
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FIG. 4. Marginalized constraints on ⌦m and S 8 ⌘ �8(⌦m/0.3)0.5

for di↵erent combinations of correlation functions in the context of
⇤CDM+⌫ cosmology: 5⇥2pt (gold), wCMBCMB (gray) and 6⇥2pt
(purple). The wCMBCMB contours are derived from the Planck 2015
lensing data [21]. The 5⇥2pt contours are identical to those in Fig. 2.
The wCMBCMB constraints are complementary to those of the 5⇥2pt
analysis.

allows us to ignore covariance between the 5⇥2pt data vec-
tor and the CMB lensing autospectrum. This simplification
comes at no reduction in cosmological constraining power.
Furthermore, the SPT+Planck and Planck-only measurements
of the CMB lensing autospectrum are consistent [68].

Ignoring the covariance between the 5⇥2pt data vector and
the Planck CMB lensing autospectrum measurements is justi-
fied for several reasons. First, the CMB lensing auto-spectrum
is most sensitive to large scale structure at z ⇠ 2, at signif-
icantly higher redshifts than that probed by the 5⇥2pt data
vector. Second, the instrumental noise in the SPT CMB tem-
perature map is uncorrelated with noise in the Planck CMB
lensing maps. Finally, and most significantly, the measure-
ments of the 5⇥2pt data vector presented here are derived from
roughly 1300 deg2 of the sky, while the Planck lensing au-
tospectrum measurements are full-sky. Consequently, a large
fraction of the signal and noise in the Planck full-sky lensing
measurements is uncorrelated with that of the 5⇥2pt data vec-
tor. We therefore treat the Planck CMB lensing measurements
as independent of the 5⇥2pt measurements in this analysis.

The cosmological constraints from Planck lensing au-
tospectrum measurements alone are shown as the grey con-
tours in Fig. 4. The constraints from the 5⇥2pt analysis
and those of the Planck lensing autospectrum overlap in this
two dimensional projection of the multidimensional posteri-
ors. We find an evidence ratio of log10 R = 4.1 when eval-
uating consistency between the 5⇥2pt data vector and the
Planck lensing autospectrum measurements, indicating “de-

cisive” preference on the Je↵reys scale for the consistency
model.

When using the PPD to assess consistency, we set D2 equal
to wCMBCMB (✓) and set D1 equal to the 5⇥2pt data vector. The
p-value computed from the PPD is determined to be p = 0.09;
there therefore no significant evidence for inconsistency be-
tween the 5⇥2pt and wCMBCMB measurements in the context of
⇤CDM. The distributions of the test statistic for the data and
realizations are shown in Fig. 6 in the Appendix.

F. Combined constraints from 5⇥2pt and the Planck lensing
autospectrum

Having found that the cosmological constraints from the
5⇥2pt and Planck lensing analyses are statistically consistent,
we perform a joint analysis of both datasets, i.e. of the 6⇥2pt
data vector. The constraints resulting from the analysis of this
joint data vector are shown as the purple contours in Fig. 4
(constraints on more parameters can be found in Section D).

As seen in Fig. 4, the DES+SPT+Planck 5⇥2pt analysis
yields cosmological constraints that are complementary to the
auto-spectrum of Planck CMB lensing, as evidenced by the
nearly orthogonal degeneracy directions of the two contours
in ⌦m and S 8. When combining the constraints, we obtain for
the 6⇥2pt analysis:

⌦m = 0.271+0.022
�0.016

�8 = 0.800+0.040
�0.025

S 8 = 0.776+0.014
�0.021.

The constraints on ⌦m and S 8 are 25% and 24% tighter, re-
spectively, than those obtained from the 3⇥2pt analysis of
DES-Y1-3x2. The addition of Planck lensing provides ad-
ditional constraining power coming from structure at higher
redshifts than is probed by DES.

VII. DISCUSSION

We have presented a joint cosmological analysis of two-
point correlation functions between galaxy density, galaxy
shear and CMB lensing using data from DES, the SPT-SZ
survey and Planck. The 5⇥2pt observables — w�g�g (✓), ⇠±(✓),
w�g�(✓), w�gCMB (✓), and w�tCMB (✓) — are sensitive to both the
geometry of the Universe and to the growth of structure out
to redshift z . 1.3.4 The measurement process and analysis
has been carried out using a rigorous blinding scheme, with
cosmological constraints being unblinded only after nearly all
analysis choices were finalized and systematics checks had
passed.

4 The cross-correlations with CMB depend on the distance to the last scatter-
ing surface at z ⇠ 1100 through the lensing weight of Eq. 3. This sensitivity
is purely geometric, though, and does not reflect sensitivity to large scale
structure at high redshifts.

12

0.20 0.24 0.28 0.32 0.36
�m

0.60

0.75

0.90

1.05

S 8
�
�

8(
�

m
/0
.3

)0.
5

5�2pt wide m prior
3�2pt wide m prior
5�2pt
3�2pt

FIG. 3. Marginalized constraints on ⌦m and S 8 ⌘ �8(⌦m/0.3)0.5

for the 3⇥2pt (gray) and 5⇥2pt (gold) combinations of correlation
functions in the context of ⇤CDM+⌫ cosmology when priors on
multiplicative shear bias are relaxed (filled contours). In this case,
the cosmological constraints obtained from the 5⇥2pt data vector are
significantly tighter than those resulting from the 3⇥2pt data vector.
The dashed contours show the constraints when the fiducial priors on
multiplicative shear bias (see Table I) are applied.

Sample 3⇥2pt bi 5⇥2pt bi

0.15 < z < 0.30 1.42+0.13
�0.08 1.41+0.11

�0.11

0.30 < z < 0.45 1.65+0.08
�0.12 1.60+0.11

�0.09

0.45 < z < 0.60 1.60+0.11
�0.08 1.60+0.09

�0.10

0.60 < z < 1.75 1.93+0.14
�0.10 1.91+0.11

�0.11

0.75 < z < 1.90 2.01+0.13
�0.14 1.96+0.15

�0.11

TABLE II. Constraints on the linear galaxy bias parameters, bi, from
the 3⇥2pt and 5⇥2pt data vectors for the five redshift samples.

and multiplicative shear bias. For the fiducial DES-Y1 priors
on multiplicative shear bias from DES-Y1-3x2, the degener-
acy breaking is weak since multiplicative shear bias is already
tightly constrained using data and simulation based methods,
as described in [42]. However, if these priors are relaxed, the
5⇥2pt analysis can obtain significantly tighter cosmological
constraints than the 3⇥2pt analysis. In essence, the cosmo-
logical constraints can be made more robust to the e↵ects of
multiplicative shear bias.

The 3⇥2pt and 5⇥2pt constraints on⌦m and S 8 when priors
on multiplicative shear bias are relaxed to mi 2 [�1, 1] are
shown in Fig. 3. In contrast to Fig. 2, the 5⇥2pt constraints
are significantly improved over 3⇥2pt when the multiplicative
shear bias constraints are relaxed.

For these relaxed priors, the data alone calibrate the multi-

Sample 3⇥2pt mi 5⇥2pt mi

0.20 < z < 0.43 �0.03+0.34
�0.16 0.03+0.25

�0.15

0.43 < z < 0.63 �0.02+0.27
�0.14 0.07+0.19

�0.11

0.63 < z < 0.90 �0.04+0.20
�0.15 �0.01+0.13

�0.09

0.90 < z < 1.30 �0.02+0.18
�0.17 �0.08+0.14

�0.08

TABLE III. Constraints on the shear calibration parameters, mi, from
the 3⇥2pt and 5⇥2pt data vectors when priors on mi are relaxed. In
all cases, the posteriors obtained on the mi from the 5⇥2pt analysis
are consistent with the priors adopted in the 3⇥2pt analysis of [9].

plicative shear bias. The resultant constraints on the shear cal-
ibration parameters are shown in Table III. These constraints
are consistent with the fiducial shear calibration priors shown
in Table I. In other words, we find no evidence for unac-
counted systematics in DES measurements of galaxy shear.

We have also performed similar tests for other nuisance
parameters such as photo-z bias and IA. However, the ef-
fect of self-calibration for these other parameters tends to be
smaller than for shear calibration. As shown in B18, this
is because shear calibration, galaxy bias, and As are part of
a three-parameter degeneracy. Consequently, the 3⇥2pt data
vector cannot tightly constrain these parameters without exter-
nal priors on shear calibration. For the other systematics pa-
rameters, however, such strong degeneracies are not present,
and significant self-calibration can occur. Consequently, for
these parameters, adding the additional correlations with CMB
does not add significant constraining power beyond that of the
3⇥2pt data vector.

E. Consistency with Planck measurements of the CMB lensing
autospectrum

While the 5⇥2pt data vector includes cross-correlations of
galaxies and galaxy shears with CMB lensing, it does not in-
clude the CMB lensing auto-spectrum. Both the 5⇥2pt data
vector and CMB lensing auto-spectrum are sensitive to the
same physics, although the CMB lensing auto-spectrum is
sensitive to higher redshifts as a result of the CMB lensing
weight peaking at z ⇠ 2. Consistency between these two
datasets is therefore a powerful test of the data and the as-
sumptions of the cosmological model.

Measurements of the CMB lensing autospectrum over the
2500 deg2 patch covered by the SPT-SZ survey have been ob-
tained from a combination of SPT and Planck data by [25],
and this power spectrum has been used to generate cosmolog-
ical constraints by [68]. Because of lower noise and higher
resolution of the SPT maps relative to Planck, the cosmolog-
ical constraints obtained in [68] are comparable to those of
the full sky measurements of the CMB lensing autospectrum
presented in [21], despite the large di↵erence in sky coverage.

In this analysis, we choose to test for consistency between
the 5⇥2pt data vector and the Planck-only measurement of the
CMB lensing autospectrum. The primary motivation for this
choice is that it significantly simplifies the analysis because it
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Figure 3. Illustration of the structures identified by the six void finding methods employed in this paper. Each circle corresponds to an underdensity of radius
equal to the one shown in the plots. The left column plots the SVF (top-left), WVF (centre-left) and ZOBOV (bottom-left) 3D voids in a 50 h�1Mpc slice, with the
background image showing the density in that slice. The right column plots the 2D SVF_2D voids (top-right), tunnels (centre-right) and troughs (bottom-right),
with the background image showing the projected density of the full box (which has a 1024 h�1Mpc side length) along the line-of-sight. Note the different
scales for the left and right columns.
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F��. 4.3.2 – Example from Cautun et al. (2018) of a cosmic void identified in
a simulation box by di�erent void-finders algorithms. The circles represents the
underdensity spotted and the background color the density field considered. Left
panels: 3D void finders using either a growing sphere methodology (top) or
watershed method (bottom). Right panel: 2D void-finders using either growing

circles (top) or troughs (bottom)

Such scenarios are in fact the only viable void definitions in photo-z surveys like DES
given the significant smearing e�ect of redshift uncertainties. Figure (4.3.2) is an
example of a void find by three di�erent algorithms probed by Cautun et al. (2018). As
it can be seen in the figure, the void-finders employed will influence the void populations
identified (in number or size) and this will have an impact on the cosmology one wants
to do.
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Void Clustering in SDSS 3

Void Tracer Properties of SDSS LRGs and Simulation Halos

sample name dataset density inter-particle spacing halo mass threshold halo bias

Data SDSS 1⇥ 10�4 (Mpc/h)�3 21.5 Mpc/h - 2.1
Matched HR simulation 1⇥ 10�4 (Mpc/h)�3 21.5 Mpc/h 1.3⇥ 1013M�/h 2.1
Sparse HR simulation 1⇥ 10�4 (Mpc/h)�3 21.5 Mpc/h 2.1⇥ 1013M�/h 1.8
Medium HR simulation 2⇥ 10�4 (Mpc/h)�3 17.1 Mpc/h 1.3⇥ 1013M�/h 2.1
Dense HR simulation 4⇥ 10�4 (Mpc/h)�3 13.5 Mpc/h 0.7⇥ 1013M�/h 2.4

Table 1. Description of the SDSS galaxies and HR simulated halos used to define voids. The halo mass threshold of the mock samples
indicates the minimum halo mass included. The Matched sample of simulated halos is our primary sample for comparison to the Data.

Figure 1. Void-void clustering ⇠
vv

using both Data (black circles) and Matched mock catalogs (green triangles). The data and mocks
give qualitatively consistent results outside twice the void radius 2 r

e↵

(vertical dotted line). There is a visible decrease in clustering
amplitude as void radius increases (left to right panels). As in galaxy-galaxy clustering, ⇠

vv

can be written as the product of the matter-
matter correlation function with the square of the void bias. The predicted ⇠

vv

with the best-fit values of the linear bias (see Fig. 4) from
data (solid line) and mocks (dashed) are shown. The consistency with linear bias supports the symmetric relationship between galaxies
and clusters, which form from peaks in the primordial matter field, and voids, formed from troughs.

r
e↵

= 15 � 20 Mpc/h bin is slightly larger than 5�, corre-
sponding to a p-value ⇠ 2 ⇥ 10�7. For the 20 � 25 Mpc/h
bin we obtain a 3� measurement, corresponding to a p-value
0.0014. The largest radius voids are fewest in number, lead-
ing to a measurement consistent with both the null hypoth-
esis and the simulations.

The data is strong enough to discern a decrease in the
correlation strength with void size, and the mocks show this
trend even more clearly. In § 3.3 we comment more on these
trends, and quantify the variation further with fits to the
void bias b

v

. In Fig. 1 we also plot our best fit model of the
void-void correlation, ⇠

vv

= b2
v

⇠
mm

for both data and mocks.
These theoretical curves match the measurement very well,
as expected if voids are biased tracers of the dark matter
density field. In addition to comparing this single-parameter
model to the data, it is useful to directly compare the data
to the Matched sample of simulated voids. The reduced chi-
square (using radial bins 2r

e↵

< r < 200 Mpc/h) is 8/6, 4/5,
and 2/5 for the three size bins, all acceptable fits. However,
the more sensitive likelihood ratio test shows tension at the
1 to 2� level for the 15�20 Mpc/h and 20�25 Mpc/h bins.
Although this tension is relatively small, it may be point-
ing to a slight mismatch between our Data and Matched
simulation samples (see Sec. 4 for further discussion).

3.2 Void-galaxy clustering

The void-galaxy clustering measurement, ⇠
vg

, is shown in
Fig. 2. Due to the much larger number of galaxies com-
pared to voids (⇠ 10 times more), the signal to noise (S/N)
is much higher in this measurement compared to the auto-
correlation. It thus yields more precise values for void bias
(see § 3.3). We plot our best fit model, ⇠

vg

= b
v

b
g

⇠
mm

for
both data and mocks. The galaxy bias, defined as b

g

=p
⇠
gg

/⇠
mm

, is b
g

= 2.1 for the Data LRGs, and b
g

= 2.1
for our Matched halo sample. As with ⇠

vv

, the goodness-of-
fit of the simulation model is acceptable for all three void
radius bins: in order of increasing void size the reduced �2

is 4/6, 6/5, and 7/5. The tension between mocks and data
in ⇠

vv

based on the likelihood ratio statistic is not present
in the measurement of ⇠

vg

. In all three r
e↵

bins, mocks and
data are consistent within ⇠ 1� using the likelihood ratio
test (see Sec. 3.1 for details).

In Fig. 3 we show the entire range of the void-galaxy
clustering measurement: (i) the innermost scales r < r

e↵

/2
where ⇠

vg

= �1 by definition, (ii) the void profile regime
between r

e↵

/2 and 2r
e↵

, and (iii) the linear regime r > 2r
e↵

(the subject of Fig. 2). Regarding (i), we note simply that
both the data and mock measurements are indeed equal to -
1 at small scales, a reassuring check of the measurement and
random point catalogs. The void profile in (ii) shows more
structure: the smallest voids display a clear positive bump
which becomes less prominent as void size r

e↵

increases,
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surements of the same. Finally, in Sec. 4 we discuss the impli-
cations of the measurements and possible future directions
for void clustering studies.

2 SDSS AND MOCK DATA SETS

2.1 SDSS void catalog

For void tracers in SDSS we use the Luminous Red Galaxy
(LRG) sample of Kazin et al. (2010), specifically the vol-
ume limited sample at 0.16 < z < 0.36. We use the largest
contiguous patch (⇠ 7,000 square degrees) of the available
data. This sample has ⇠ 56,000 LRGs and covers a comov-
ing volume ⇠ 0.6 (Gpc/h)3. See Table 1 for more details on
this sample.

The void finder of CJ15 begins by dividing the SDSS
LRG sample into redshift slices of various thickness. Within
each of these slices, all LRGs are projected onto a 2D spheri-
cal space and holes in the LRG distribution are found within
each slice. These potential void centers are then culled with
several quality cuts on the void axis ratio, location (required
to be well within the survey edges), and volume overlap be-
tween voids. CJ15 showed that the density profiles derived
from weak lensing were consistent between samples with vol-
ume overlap cutoffs of 50% and 90%. For most of our results,
we require that each void has an overlapping volume fraction
of 50% or less; this simplifies somewhat the interpretation of
the clustering measurements as coming from unique voids.
This fiducial sample has ⇠11,000 voids. In Sec. 3.4 we briefly
compare the void-galaxy correlation using the 90% overlap
sample, with 19,000 objects this sample increases the num-
ber of voids by about a factor of 2.

The void finder outputs two sizes for each void: a pro-
jected radius in the plane of the sky (R

v

) and a size in the
line-of-sight direction (s

v

). We expect voids with the same
clustering amplitude and bias to have comparable total vol-
ume. Thus we define an effective radius which is the radius
of the sphere with the same volume as the ellipsoid output
by the void finder:

r
e↵

⌘ (R2

v

s
v

)1/3 . (1)

For all measurements, we group the voids in three size bins:
r
e↵

= 15� 20 Mpc/h, 20� 25 Mpc/h, and 25� 30 Mpc/h.

2.2 Horizon Run mocks

For mock void samples, we use one of the eight public full-
sky mock surveys from the Horizon Run Simulation2 (Kim
et al. 2009) with cosmology ⌦m = 0.26, ⌦

⇤

= 0.74, and
�
8

= 0.79. Restricting to the same redshift range as the
data, this gives us ⇠ 6 times the volume. We make use of
four different simulated halo samples as void tracers. First,
the Matched sample is chosen to have the same density and
halo bias as the LRGs in the data. The other three halo
samples are chosen by setting minimum mass thresholds
such that, in comparison to the data, they have: exactly the
same density (Sparse), 2⇥ the density (Medium), and 4⇥
the density (Dense). The result is that the tracer bias varies

2 http://sdss.kias.re.kr/astro/Horizon-Run/

by ⇠ 15�30% along with the larger variation in tracer den-
sity. We summarize the tracer densities, inter-particle spac-
ing, halo mass thresholds, and halo bias of these samples in
Table 1.

Note that our Sparse and Matched sample voids have an
average inter-particle spacing of 21.5 Mpc/h, which is larger
than our smallest measured bin of void sizes, 15 Mpc/h <
r
e↵

< 20 Mpc/h. Although this bin may therefore have some
contamination from chance gaps between galaxies (“Poisson”
voids), the lensing measurements of CJ15 indicate that voids
in this sample are on average significantly underdense in the
dark matter. Furthermore, for these smaller voids we see a
smooth change in void bias (see Sec. 3.3 and Fig. 4) as tracer
density is increased from the Sparse to Medium, and finally
to the Dense sample (for which all voids are larger than the
inter-particle spacing). This provides further evidence that
we do not see a qualitative change from true voids to spuri-
ous voids as the tracer inter-particle spacing is increased to
be slightly larger than the void size.

3 RESULTS

We measure the 2-point correlation function ⇠(r) using the
estimator of Landy & Szalay (1993):

⇠(r) =
DD(r)�DR(r)�RD(r) +RR(r)

RR(r)
, (2)

where, e.g., for void-void clustering DD(r) denotes the num-
ber of void-void pairs, DR(r) and RD(r) the number of void-
random pairs, and RR(r) the number of random-random
pairs with comoving separation r. We use TreeCorr 3 (Jarvis
et al. 2004) to compute all correlation functions. We ob-
tain the covariance by splitting the survey into 128 patches
and using the jackknife method described in Norberg et al.
(2009). Likewise for the whole-sky simulation covariance,
but in that case we use 192 patches, each 4x larger than the
data jackknife patches. We make use of HEALpix4 (Górski
et al. 2005) for defining equal-area jackknife patches. We
checked that our error bars are not sensitive to this differ-
ence between the size of mock and data patches by repeating
the measurements using a set of data patches with compara-
ble size to the mock patches. For both voids and galaxies, we
use corresponding random catalogs with 20 times as many
points.

3.1 Void-void clustering

In Fig. 1 we show the void-void clustering measurement,
⇠
vv

, in data and mocks. Outside 2 r
e↵

all correlations in-
volve distinct voids, and in this regime the data and mocks
are in qualitative agreement. To obtain the significance of
detection, we use a likelihood ratio test comparing two hy-
potheses: the null hypothesis of no clustering and the simu-
lation hypothesis that the data was generated from a model
with central values and covariance matching the simula-
tion measurements. Considering only the data on scales
2 r

e↵

< r < 200 Mpc/h, the detection significance for the

3 https://github.com/rmjarvis/TreeCorr
4 http://healpix.sf.net
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Figure 2. Same as Fig. 1, but showing void-galaxy cross-correlation ⇠
vg

. The cross-correlation signal to noise is much higher, since there
are ⇠ 10⇥ more galaxies than voids. Nonetheless, data and mock measurements are consistent outside twice the void radius (vertical
dotted line). The cross-correlation is expressed as the product of the matter-matter correlation function with one factor each of void and
galaxy bias (solid and dashed lines).

Figure 3. Same as Fig. 2, but showing the cross-correlation over a larger range of scales r and with a linear vertical axis. As expected
based on the definition of the void sample, the cross-correlation approaches �1 near the void center. At intermediate scales ⇠ r

e↵

/2 to
2r

e↵

, the void profile shows a prominent compensatory ridge of galaxies for the smallest voids. The ridge disappears for the largest voids,
which as a result are underdense out to very large scales.

and disappears entirely for voids with r
e↵

> 25 Mpc/h.
Thus the largest voids are the only ones that dominate
their environments and are underdense out to very large
scales. These results are qualitatively consistent with those
of Ceccarelli et al. (2013) and Hamaus et al. (2014), who
find that larger voids lack the compensatory ridge that sur-
rounds many smaller voids. (Although see also Nadathur et
al. (2015), on void profiles that show less significant differ-
ences as a function of size.) Due to the sharply rising profile
and good signal-to-noise in this regime, even slight differ-
ences between data and mocks are easy to see. Fig. 3 shows
that for all three void size bins, the mock profiles have a
denser and somewhat sharper ridge of galaxies around the
void. In Sec. 4, we discuss possible differences between data
and mocks that could be the cause. In the following sec-
tion, we discuss in more detail the linear regime results and
implications for void bias.

3.3 Void bias

For both data and mocks we obtain two values for the best fit
bias of each void size bin: one via the void-galaxy correlation,

bcross
v

=
⇠
vg

b
g

⇠
mm

, (3)

and one via the void-void correlation,

bauto
v

= ±

s
⇠
vv

⇠
mm

, (4)

where ⇠
mm

is the matter-matter correlation function mea-
sured from the simulations. With the auto-correlation we
actually measure bias squared, then take the square root and
choose the sign of bias that matches the sign of ⇠

vg

/(⇠
mm

b
g

).
Both fits use only the data between 2 r

e↵

< r < 80 Mpc/h:
the lower limit assures we use only pairs of distinct voids in
the bias measurement, while the upper limit keeps us from
dividing by the value of ⇠

mm

where it is falling rapidly and
approaching the Baryon Acoustic Oscillations (BAO) scale

c� 0000 RAS, MNRAS 000, 000–000
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Cov

SN

[�⌃i,�⌃j ] =
1

N
SN

⇥
NSNX

SN�k=1

h
(�⌃i)

SN�k ��⌃i

i h
(�⌃j)

SN�k ��⌃j

i

(7)

where the mean value is

�⌃i =
1

N

NX

SN�k=1

(�⌃i)
SN�k , (8)

and (�⌃i)
SN�k denotes the measurement from the k-th shape

noise (SN) realization and the i-th spatial bin.
Figure 10 shows a comparison of the measurement vari-

ance estimated from jackknife and shape noise, following the
techniques described above. The errors coming from the two
approaches agree well on the smallest scales, as expected since
the small-scale regime is dominated by shape noise. However,
at mid to large scales (R ⇠ 0.28Rv and above) the JK er-
rors get bigger than SN only, as they can trace other effects
such as systematics in the data or sample variance. The shape
noise calculation is, on the other hand, more adequate for off-
diagonal elements of the covariance since it avoids the intrinsic
noise limitation of the JK technique. Hence, in order to have a
smooth covariance matrix with variance accurately estimated
from JK, we follow the approach of fixing the shape of the
covariance as given by the shape noise calculation, and renor-
malize it to the JK estimates of the variance:

Cov[�⌃i,�⌃j ] = Corr

SN

[�⌃i,�⌃j ]�JK

(�⌃i)�JK

(�⌃j) (9)

where Corr

SN

[�⌃i,�⌃j ] is the shape noise correlation matrix
(or reduced covariance) given by:

Corr

SN

[�⌃i,�⌃j ] =
Cov

SN

[�⌃i,�⌃j ]

�
SN

(�⌃i)�SN

(�⌃j)
(10)

The approach of renormalizing a smooth covariance to a
JK estimated variance has been used before in the literature,
for example by Crocce et al. (2016).

5.3 Null tests: Cross-component and randomized

voids

The cross-component of the measurement described in
Sect. 5.1 is not produced by gravitational lensing and there-
fore is expected to vanish at first order. Similarly, the tangen-
tial component of the same measurement around randomized

voids, which follow the size and redshift distribution of true
voids but are randomly distributed in the survey area (Ap-
pendix C), is also expected to vanish. Figure 11 shows the
cross-component of the stacked lensing measurement for true
voids and the tangential component for randomized voids.

With dof = N
bin

as the number of R/Rv bins in the mea-
surement and no model parameters, the null hypothesis �2 can
be computed as

�2

null

=

X

i,j

�⌃iCov
�1

ij �⌃j (11)

where i, j correspond to radial bins in �⌃ and Cov is the
covariance matrix.

The cross-component of the measurement yields a
�2

null

/dof = 8.2/16, and the tangential measurement around

Figure 11. Cross-component of the DES-SV data stacked lensing
measurement for true voids and tangential component for the lens-
ing around randomized voids, in bins of R/Rv . Both measurements
are compatible with the null hyposthesis with �2

null

/dof = 8.2/16
and �2

null

/dof = 18.7/16, respectively. The error using randomized

voids is smaller since the measurement involves ⇠ 10 times more
randomized voids.
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Figure 12. Stacked tangential shear profile around voids in DES-
SV data (black points) and simulations (red points) in bins of
R/Rv . The black solid line shows the best-fit model (see Sect. 5.5)
to the data shear signal. The �2 for the null hypothesis in the
data measurement is �2

null

/dof = 35.5/16, yielding an estimated
S/N = 4.4, while the theory model provides a good fit to the data
with �2/dof= 13.2/14. The measurement in the simulations shows
consistent with the data best-fit model, yielding �2/dof= 10.1/14.

randomized voids, which are 10 times more numerous than
true voids and whose production is described in greater detail
in Appendix C, yields a �2

null

/dof = 18.7/16, both showing
consistency with the null hypothesis.
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Table 1. Summary of DES Y1 void sample properties.

bin 1 bin 2 bin 3 all bins

2D
voids

Rv [ Mpc/h] 20-40 40-60 60-120 20-120

counts 267 100 76 443

Lensing SNR 7.9 5.9 4.8 10.7

3D
voids

Rv [ Mpc/h] 10-20 20-30 30-60 10-60

counts 2214 1873 667 4754

Lensing SNR 9.3 8.9 8.5 14.0

4 METHODOLOGY

With the void catalogues at hand, we are ready to measure
the tangential shear, as well as the galaxy density contrast
around voids in DES. A measurement of the lensing sig-
nal allows us to validate the ability of the employed void
finders to identify underdense regions in the matter distri-
bution of the Universe. It furthermore provides us with the
necessary information to constrain the radial mass-density
profiles of voids. In this section, we present our methodol-
ogy for obtaining the lensing measurement, an estimate of
its covariance, and the measurement of the clustering signal
of galaxies around voids.

4.1 Lensing around voids

The tangential shear �+ of background galaxies (sources) in-
duced by voids (lenses) is a direct probe of the excess surface
mass density �⌃ around voids, defined as

�⌃(rp/Rv) ⌘ ⌃(< rp/Rv) � ⌃(rp/Rv) = ⌃
crit

�+(rp/Rv) , (1)

where

⌃(< rp) =
2

r2

p

π rp

0

r 0p⌃(r 0p) dr 0p (2)

is the average surface mass density enclosed inside a circle
of projected radius rp from the void centre. Distances are
expressed in units of e↵ective void radius Rv and the critical
surface mass density is given by

⌃
crit

=
c2

4⇡G
DA(zs)

DA(zl)DA(zl, zs)
, (3)

with comoving angular diameter distance DA and the lens
and source redshifts zl and zs, respectively. Note that
⌃�1

crit

(zl, zs) = 0 for zs < zl . All distances and densities are
given in comoving coordinates assuming a flat �CDM cos-
mology with ⌦m = 0.30 (for the mocks we use the in-
put cosmology with ⌦m = 0.25). We apply inverse-variance
weights (Sheldon et al. 2004; Mandelbaum et al. 2013) and
follow the approach of McClintock et al. (2019) to estimate
our lensing observable via

�⌃(+,⇥)(rp/Rv) =
Õ
ls ⌃

�1

crit

(zl, hzsi) �(+,⇥),ls(rp/Rv)Õ
ls ⌃

�2

crit

(zl, hzsi)
�
R�,s + hR

sel

i
� (4)

where (+,⇥) denotes the two possible components of the
shear: tangential and cross. The sum runs over all lens-
source pairs ls in the radial bin rp/Rv , and we require the
mean of the source photo-z distribution per galaxy to obey
hzsi > zl +0.15. Note that for the DES Y1 data, we are using

the metacalibration shear catalogue (Hu↵&Mandelbaum
2017; Sheldon & Hu↵ 2017), so we need to apply response
corrections, namely the shear response R� and selection re-
sponse R

sel

to the shear statistics as described in McClintock
et al. (2019). In essence we stack the excess surface mass den-
sities of all voids within the redshift range of 0.2  zl  0.6
to obtain an average �⌃ profile at an e↵ective lens redshift of
hzli = 0.46. This is a reasonable approximation, given that
the density profile of voids in simulations does not evolve
much within the considered redshift range (Hamaus et al.
2014a).

4.2 Covariance estimation

To estimate the covariance of our lensing measurement, we
perform a void-by-void jackknife resampling technique as
described in Sánchez et al. (2017). We therefore repeat our
measurement Nv times (the number of voids in our sample),
each time omitting one void in turn to obtain Nv jackknife
realizations. The covariance of the measurement is therefore
given by

C(�⌃i,�⌃j ) =
Nv � 1

Nv
⇥

Nv’
k=1

⇣
�⌃ki � h�⌃ii

⌘ ⇣
�⌃kj �

⌦
�⌃j

↵⌘
, (5)

where �⌃ki denotes the excess surface mass density from the
k-th jackknife realization in the i-th radial bin, with a mean

h�⌃ii =
1

Nv

Nv’
k=1

�⌃ki . (6)

The signal-to-noise ratio (SNR) for our lensing measurement
can be calculated as (Becker et al. 2016)

S/N =

Õ
i, j �⌃

data

i C�1

i j �⌃
model

jqÕ
i, j �⌃

model

i C�1

i j �⌃
model

j

, (7)

where i, j are indices for the N
bin

radial bins of the measured
excess surface mass density �⌃data with model expectation
�⌃model (see section 5.1.2 below), and C�1 is an estimate of
its inverse covariance matrix including the Hartlap correc-
tion factor (Hartlap et al. 2007).

4.3 Galaxy clustering around voids

Apart from their ability to act as gravitational lenses due
to their low matter content as compared to the mean back-
ground density, voids are also underdense in terms of galax-
ies. In fact, this property is used for their definition in the
first place. It is therefore interesting to extract the average
radial galaxy distribution around voids, and to compare it to
the lensing signal. The stacked galaxy-density profile around
voids is equivalent to the void-galaxy cross-correlation func-
tion in 3D (e.g., Hamaus et al. 2015),

⇠3D

vg (r) =
nvg(r)⌦

ng
↵ � 1 , (8)

where nvg(r) is the density profile of galaxies around voids at
distance r (in 3D), and hngi the mean density of tracers at a
given redshift. Gravitational lensing, however, provides the
projected surface mass density along the LOS, as defined

MNRAS 000, 1–16 (2019)

So adding lensing + clustering information from cosmic 
void can also be considered 

Sánchez et al. (DES Collaboration), MNRAS 465, 746, 
2017.
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Voids and massive neutrinos

Figure 5. Average total matter density profiles around voids with different sizes: Re↵=10-11
Mpc/h (top), Re↵=16-18 Mpc/h (center), and Re↵=20-25 Mpc/h (bottom). Left and right panels
show results at redshifts z = 0 and z = 1, respectively. Red, purple, blue and green lines show the
0.0, 0.15, 0.3 and 0.6 eV cosmologies, respectively. At the bottom of each panel we display the ratio
between the results from the massive neutrino cosmologies and the ⇤CDM one. The vertical dashed
black lines indicate the mean value of the void radii in the selected range and two times the same
quantity.

– 11 –

Fingerprints of Massive Neutrinos on Cosmic Voids 3

neutrinos use a fast linear response algorithm (Ali-Häımoud
& Bird 2013). Due to the impact of mass resolution on
the halo catalogs, we now denote the DEMNUni simulations
as ‘low-res’ and the MassiveNuS simulations as ‘high-res’
throughout our analysis. We note, however, that both the
simulation mass resolution and the simulation volume im-
pact the size of the voids:

• For a fixed simulation volume: a lower mass resolution
simulation has more large voids than a higher mass reso-
lution simulation. Conceptually, this can be thought of in
terms of the simulation’s minimum halo mass– a larger min-
imum halo mass yields larger voids. We describe this further
in subsubsection 3.2.1 and section 4.

• For a fixed simulation mass resolution: the size of the
largest void is larger for the simulation with larger volume2.
For example, in our work, the maximum void radius in the
DEMNUni massless neutrino CDM field is 79 h

�1Mpc, whereas
the maximum void radius in the MassiveNuS massless neu-
trino CDM field is 37 h

�1Mpc. Further, the void abundance
smoothly decreases as a function of void size. Thus, there
will be a greater number of the small simulation’s largest
voids in the larger simulation. This, then, causes the larger
simulation to have better uncertainties for measurements
relating to large voids since the larger simulation has more
large voids than the smaller simulation.

Therefore, the DEMNUni simulations contain more large voids,
and larger voids in general, than the MassiveNuS simulations
due to both DEMNUni’s lower mass resolution and larger vol-
ume.

The sum of neutrino masses
Õ

m⌫ is varied in each
simulation suite with other cosmological parameters kept
fixed. The DEMNUni simulations assume a baseline cosmol-
ogy according to the Planck results (Planck Collaboration
et al. 2013), with h = 0.67, ns = 0.96, As = 2.1265 ⇥ 10�9,
⌦m = 0.32, and ⌦b = 0.05. The relative energy densities
of cold dark matter ⌦c (and neutrinos, ⌦⌫) vary for each
model as ⌦c = 0.27, 0.2659, 0.2628 and 0.2573, for

Õ
m⌫ = 0,

0.17, 0.30 and 0.53 eV, respectively. In the considered cases,
since As is fixed while varying the neutrino mass, the sim-
ulations with massive neutrinos have a lower value of �8
with respect to the massless neutrino ⇤CDM case. We use
the three fiducial models of MassiveNuS in this work, whereÕ

m⌫ = 0, 0.1, 0.6 eV and all other parameters are held con-
stant at As=2.1⇥10�9, ⌦m=0.3, h=0.7, ns=0.97, w=�1, and
⌦b=0.05.

We use the public void finder VIDE3 to locate voids in
the simulations (Sutter et al. 2015). Because the void finder
runs on a tracer distribution and uses the position of these
objects, we can find voids from both the halo distribution (in
this work we use the friends-of-friends (FoF) catalogs) and
the CDM particle distribution. For the latter, running the

2 An important caveat to this is if voids have a maximum physical
scale and if both simulations are large enough to capture this
physical scale. In this case, the size of the largest void in each
simulation (even if the simulations have di↵erent volumes) would
be the same. In our work, however, our simulations only contain
voids in size up to ⇡ 100h�1Mpc, and voids of this size have been
observed (see e.g. Figure 1 in Hamaus et al. 2017).
3
https://bitbucket.org/cosmicvoids/vide_public, version

most recently updated on 2017 � 11 � 27.

Figure 1. Void abundance in the sub-sampled cold dark matter
field of the DEMNUni simulation. Colors denote the sum of neu-
trino masses used in each simulation. The bottom panel shows
the ratio between void number densities (with uncertainties) for
di↵erent

Õ
m⌫ values and the number density in the massless neu-

trino case. Increasing
Õ
m⌫ increases the number of small voids

and decreases the number of large voids derived from the particle
field. All abundance plots are cut at ⇠ 2 times the mean particle
separation in the simulation and where voids are so large that
there are too few voids for informative uncertainties. All figures
are for z = 0.
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Figure 2. Void abundance in the halo field of the ‘low-res’ sim-
ulation. Colors denote the sum of neutrino masses used in each
simulation. The bottom panel shows the ratio between void num-
ber density with uncertainties for the di↵erent

Õ
m⌫ values and

the number density in the massless neutrino case. Increasing
Õ
m⌫

decreases the number of small voids and increases the number of
large voids derived from the halo field.
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Massara et al. 2015
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Intuitively, the neutrino field 
being less clustered with respect 
to the matter field (CDM and 
baryons) we expect the ratio 
between matter and neutrino to 
be higher at the maximum of the 
potential field, that is to say in 
cosmic voids. 
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Voids and alternative cosmologies

voids are by definition ‘matter less’ , corresponding then to 
really large zone where matter domination is down 

-> good target to study Dark Energy
Voids in MG with massive neutrinos 9

Figure 2. Density contrast profiles computed in shells around the centres of cosmic voids, identified with VIDE in the distribution of DM
particles. The results are displayed for each cosmological model at redshifts z = 0, 0.5, 1, 2. We report in the left plot the profiles measured
considering the ⇤CDM, fR4 and fR4 0.3eV simulations. These profiles are so similar that the markers with which they are represented
result superimposed. However, the di↵erences between them are highlighted in the residuals reported in each sub-panel, computed with
respect to the ⇤CDM case, in units of the errors associated to the profiles computed in the non-standard cosmologies. The latter are
represented as a shaded region in the plots. In this case, given the high number of profiles, this uncertainty is so small to be represented
with a simple line between the data points. To highlight the deviations from the ⇤CDM void profiles, we show in the sub-panels in the
two most-right columns only the residuals obtained with the other models analysed in this work: fR5 and fR6 MG models, with and
without massive neutrinos.

cleaning algorithm we rescale the void radii to match a spe-
cific density contrast, whereas in the study of the stacked
density profiles we aim at modelling voids to enhance the
self-similarity between their shapes. Indeed, the VIDE void
catalogues are composed by a hierarchy of voids separated
by high density walls, and the e↵ective radius assigned to
each void is, by construction, in proximity to the so-called
compensation wall. These voids are therefore characterised
by the same shape and their stacking allows to sharpen their
peculiar features, as the progressive emptying of the under-
dense internal parts and the formation of the compensation
wall over the cosmic time.

We start analysing the profiles computed in the DM par-
ticle distribution, considering only voids with radii included
in the range [5-7] times the mean particle separation (mps),
which corresponds to 1.55 Mpc/h, for all the sub-sampled
catalogues. This range covers the central parts of the inter-
val on which we perform the analysis of the abundance of
voids in the DM density field presented in the following Sec-
tion 4.2: the lower limit is given by the spatial resolution of
the sample, while the upper limit is chosen to include a su�-
cient number of voids with large radii. Since the shape of the
density profiles depends on the mean radius of the void sam-
ple (Hamaus et al. 2014), we avoid to select a wider range
of sizes to prevent an excessive mixing of di↵erent density
profiles during the operation of average.

In Figure 2 we show the stacked profiles of voids in the
DM field at di↵erent redshifts, for the 9 cosmological mod-

els considered in this analysis. In the left plot we report the
results obtained with the ⇤CDM simulations, compared to
those with MG models characterised by fR0

= �10

�4, with
and without massive neutrinos with m⌫ = 0.3 eV (namely,
fR4 and fR4 0.3eV). The density profiles in di↵erent cos-
mologies appear very similar, at all redshifts. We note that
that the central zones become deeper with cosmic time,
while the compensation wall grows and turns denser. Di↵er-
ences among the cosmological models can be better appreci-
ated by looking at the residuals, displayed in the lower sub-
panels. Here we compute the di↵erence between the mean
density contrast measured in the fR4 or fR4 0.3eV simula-
tions and the one measured in the ⇤CDM simulations, di-
vided by the errors associated to the former. The errors are
evaluated as the standard deviation of all the profiles consid-
ered for each simulation, divided by the square root of their
number. The most significant variation arises around z = 1,
where the fR4 model shows an increase of the mean density
in close proximity to the compensation wall and a lowering
near the void centres. This is in agreement with the expected
e↵ect of enhancing the growth of structures in MG, that ac-
celerates the process of void formation and evolution. Nev-
ertheless, these di↵erences are almost completely cancelled
by the e↵ect of the neutrino thermal free-streaming, nullify-
ing the possibility of disentangling the degeneracy between
these models. In the right panels of Figure 2 we present
the normalised residuals obtained by comparing the density
profiles measured using the remaining models to the ones

MNRAS 000, 1–18 (2020)

screening mechanisms operate 
weakly within cosmic voids, 
making them potentially more 
affected by the possible 
deviations from GR 

Contarini et al (2020)

Example modified gravity models
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Voids still unexplained: ISW

Kovács et al. 2019

1. Introduction

This paper, one of a set associated with the 2015 release of
data from the Planck

1 mission, describes the detection and
characterization of the integrated Sachs-Wolfe (ISW) ef-
fect using external (galaxy-survey catalogues) and internal
(Planck lensing map) large-scale tracers. The 2015 Planck

data release o�ers polarization information on the cosmic
microwave background (CMB) for angular scales smaller
than 5¶. Whenever possible, this polarization information
is used to improve our characterization of the ISW signal.

The ISW e�ect (Sachs & Wolfe 1967; Rees & Sciama
1968; Martinez-Gonzalez et al. 1990; Sugiyama 1995) is a
secondary anisotropy in the CMB, which is caused by grav-
itational interaction of CMB photons with the growing cos-
mic large-scale structure (LSS):

� = �T

T
CMB

= ≠ 2
c3

⁄ ‰
CMB

0

d‰
ˆ�
ˆ‰

. (1)

Here, the fractional temperature perturbation � is given as
a line of sight integral over the time-evolving potentials �
in the LSS. The integral is expressed in terms of comoving
distance ‰, which is related to the scale factor a according
to da/d‰ = a2H(a)/c, with the Hubble function H(a) and
the speed of light c. The integration is extended to the
surface of last scattering ‰

CMB

ƒ 10 Gpc/h corresponding
to a redshift of z ƒ 1100 in a �CDM cosmology.

The ISW e�ect measures the rate of growth of gravita-
tional potentials relative to universes with a critical den-
sity of matter through frequency shifts in the photon dis-
tribution. It is measured by cross-correlating with a tracer
of the LSS, such as a galaxy catalogue or a reconstructed
weak gravitational lensing map, in order to distinguish it
from primary CMB anisotropies; this is because gravita-
tional interaction conserves the Planckian shape of the pho-
ton spectrum. The ISW e�ect is generated at late times
when the growth of structure is influenced by a cosmologi-
cal constant, dark energy (Crittenden & Turok 1996), mod-
ified gravity (Hu 2002), or spatial curvature (Kamionkowski
1996).

The most direct way of detecting the ISW e�ect is the
determination of the cross-correlation or the cross-angular
power spectrum between the CMB temperature and the
density of tracer objects such as galaxies. In this way,
the first detection was reported by Boughn & Crittenden
(2004) which was subsequently refined by many groups on
the basis of WMAP data, yielding values for the detec-
tion significance in excess of 4 ‡ (e.g., Fosalba et al. 2003;
Nolta et al. 2004; Corasaniti et al. 2005; Padmanabhan
et al. 2005; Vielva et al. 2006; Giannantonio et al. 2006;
Cabré et al. 2007; Rassat et al. 2007; McEwen et al. 2007;
Giannantonio et al. 2012). Corresponding constraints on
cosmological parameters were derived for standard models
with a cosmological constant and for dark energy models
(e.g., Pietrobon et al. 2006; McEwen et al. 2007; Vielva
et al. 2006; Giannantonio 2008; Ho et al. 2008; Xia et al.

ú Corresponding author: P. Vielva vielva@ifca.unican.es
1

Planck (http://www.esa.int/Planck) is a project of the
European Space Agency (ESA) with instruments provided by
two scientific consortia funded by ESA member states and led
by Principal Investigators from France and Italy, telescope re-
flectors provided through a collaboration between ESA and a
scientific consortium led and funded by Denmark, and additional
contributions from NASA (USA).

2009), as well as for models with modified gravity (e.g.,
Zhao et al. 2010). A Bayesian ISW detection method, which
estimates the ISW amplitude conditionally to the observed
LSS, can be expected to provide 10 % better signal-to-
noise ratio compared to a direct CMB-LSS cross-correlation
study (Frommert et al. 2008), as used traditionally and in
this psper beacuse of its lower computational complexity.

In fact, using the ISW signal alone (but fixing the re-
maining cosmological parameters), the dark energy density
parameter �

�

was estimated to be ¥ 0.75 with an error
of about 20 % (e.g., Nolta et al. 2004; Vielva et al. 2006;
Giannantonio et al. 2006), the dark energy equation of state
parameter was found to be close to w = ≠1 (e.g., Vielva
et al. 2006; Giannantonio et al. 2006; Ho et al. 2008), and
tests on spatial flatness yielded upper limits of a few per-
cent for �K (e.g., Ho et al. 2008; Li & Xia 2010), thus
confirming the concordance cosmological model.

The presence of systematics at large angular scales
in LSS surveys and their possible impact on ISW stud-
ies was first emphasized in Hernández-Monteagudo (2010)
and formally addressed in Giannantonio et al. (2012) and
Hernández-Monteagudo et al. (2014). The ISW analysis
with the Planck data release in 2013 (Planck Collaboration
XIX 2014) was consistent with WMAP results using the
NVSS radio catalogue and catalogues of tracer objects de-
rived with optical SDSS data, while lowering the claimed
detection levels to smaller numbers (from > 4 ‡ down
to around 2.5 ‡). In addition, a non-zero correlation be-
tween the reconstructed CMB-lensing map as an LSS tracer
and the microwave background was reported for the first
time, using the non-vanishing bispectrum of the CMB
anisotropies on the relevant scales. The strength of this
correlation was measured to be 3 ‡, and provides fur-
ther evidence for a late-time accelerated expansion of the
Universe, as theoretically shown by Hu & Okamoto (2002)
and Okamoto & Hu (2003).

An alternative method for detecting the ISW e�ect is
the stacking of CMB fields at the positions of known su-
perstructures; if the ISW e�ect is associated with regions
of large density, it should be possible to reduce the noise
due to primary, uncorrelated CMB anisotropies by superpo-
sition and to reach a reduction inversely proportional to the
square root of the number of stacked fields. Detections using
this method range between 2 ‡ and 4 ‡, based on WMAP

data (e.g., Granett et al. 2008a; Pápai et al. 2010) and on
Planck data (Planck Collaboration XIX 2014).

A third application of the ISW e�ect is the reconstruc-
tion of a large-scale map of projected gravitational poten-
tials (Barreiro et al. 2008). Using the correlation between
temperature anisotropies and a map of the tracer den-
sity, it is possible to estimate these secondary temperature
anisotropies directly.

The purpose of this paper is the measurement of the
ISW e�ect with the full Planck 2015 data set and to es-
tablish the corresponding constraints on cosmological pa-
rameters. In principle, including polarization data allows us
to reduce the error bars in estimating angular cross-power
spectra (Frommert & Enßlin 2009), and it provides a sepa-
ration of the temperature anisotropies into those correlated
and uncorrelated with polarization, through which the sec-
ondary nature of the ISW e�ect can be better investigated.
Furthermore, the reconstruction of the weak lensing poten-
tial is improved, and a better template for cross-correlation
is provided. However, as mentioned above, the current po-

Cold ISW imprint of DES Y3 supervoids 7

Figure 3. Left: template fitting results of DES supervoids are compared to those of Jubilee supervoids (identified as in DES data). For
completeness, we estimated the uncertainty of the simulated signal by random stackings in the Jubilee simulation (shaded region around
the solid Jubilee curve). No CMB color dependence was observed. Right: A combination with BOSS supervoid results by Kovács (2018).
We found evidences for a rather high A

ISW

amplitude for both DES and BOSS+DES. Note that the measured signals are quite similar
in most of the profile, while the estimated signals are di↵erent for the DES and BOSS supervoid samples. Most probably, the elongated
shape of the DES supervoids is responsible for this di↵erence. The error bars are based on the 1000 random stacking measurements using
Gaussian CMB simulations that we describe in Section 3.3.

left panel of Figure 3). We thus argue that the highest mea-
sured temperature in the DES Y3 profile at R/Rv

>⇠ 2.7 is a
fluctuation given the error bars and it does not correspond
to a real peak in the ISW imprint profile that is expected at
R/Rv ⇡ 1.8 based on our Jubilee analysis.

In our methodology, we fit an A
ISW

amplitude to the
observable imprints in the DES data using the Jubilee ISW
template profile we constructed. We evaluated a statistic

�2 =
X

ij

(�TDES

i �A
ISW

�T Jub

i )C�1

ij (�TDES

j �A
ISW

�T Jub

j )

(1)

where C is the covariance matrix obtained by performing
1000 random stacking measurements using Gaussian CMB
simulations. The randoms have been generated with the
HEALPix synfast routine using the Planck 2015 data re-
lease best fit CMB power spectrum (Planck 2015 results.
XI. 2016). Gaussian CMB simulations without instrumental
noise su�ce because the CMB error is dominated by cos-
mic variance on the scales we consider (see Hotchkiss et al.
2015).

We first determined the sample variance associated with
the DES Y3 window on the simulated CMB skies (` > 10
modes included) as each masked random map has a di↵erent
non-zero mean temperature that adds a bias to the stacked
images. We found that the standard deviation of these fluc-
tuations is �(�T̄DES) ⇡ 1.1 µK. We then found a fairly
typical �T̄DES ⇡ 0.3 µK bias value in the filtered Planck

temperature map. We de-biased the observed temperature
profile and each simulated CMB map in the masked DES Y3
window, and tested the e↵ect of this correction on the re-
sulting covariance matrices and errors. When removing the
bias, we found a moderate ⇡ 10% larger noise inside the
re-scaled void radius (R/Rv < 1) and a rather important

⇡ 50� 60% increment in the errors and stronger bin-to-bin
covariance in the outer profile at R/Rv

>⇠ 2 (see Figure 4 for
a visual impression).

We then repeated the stacking procedure on the sim-
ulated CMB skies. A potential strategy to estimate the er-
ror bars is to keep the void positions fixed and vary the
CMB realization, because in this case overlap-e↵ects for
voids are accounted for more e�ciently (see related discus-
sions in Hotchkiss et al. 2015). We note that having over-
lapping supervoids does not automatically introduce a bias
in the measurement because we estimate the signal in Ju-
bilee with the same procedure, instead of modeling individ-
ual structures. Importantly, Flender et al. (2013) analyzed
the di↵erences between a spherical model of Gaussian per-
turbations and fully simulated ISW maps with ray-tracing.
The latter contain contributions from potentially very elon-
gated super-structures which add more to the total signal
than only spherical structures. They reported that the dif-
ferences are negligible thus overlapping voids that may form
elongated structures in the line-of-sight do not significantly
a↵ect the results.

However, Cabré et al. (2007) showed in their simulated
analyses of ISW error estimation methods in comparison
that keeping a single realization of the galaxy map that one
cross-correlates with the simulated CMB skies results in a
⇡ 10% under-estimation of the true measurement errors.
For DES Y3 redMaGiC data, a large set of mock galaxy
catalogues is not available (only five at the moment) to com-
pletely solve this problem but we performed two related tests
to check how a stacking measurement using voids is a↵ected.
As an external test, we first considered 1000 mock BOSS

MNRAS 000, 1–?? (2018)
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• Imaging galaxy survey.

• 5000 sq. deg. after 6 years 
(2013-2019)

• 570-Megapixel digital camera, 
DECam, mounted on the Blanco 4-
meter telescope at Cerro Tololo 
Inter-American Observatory 
(Chile). 

• Five filters are used (grizY) with a 
nominal limiting magnitude iAB≃24 
and with a typical exposure time of 
90 sec for griz and 45 sec for Y

The Dark Energy Survey
Camera
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35 million galaxies  
with measured shapes

Y1 area : ~1500 deg2
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ABSTRACT
Cosmic voids gravitationally lens the cosmic microwave background (CMB) radiation, re-
sulting in a distinct imprint on degree scales. We use the simulated CMB lensing convergence
map from the MICE N-body simulation to calibrate our detection strategy for a given void
definition and galaxy tracer density. We then identify cosmic voids in DES Year 1 data and
stack the Planck 2015 lensing convergence map on their locations, probing the consistency
of simulated and observed void lensing signals. When fixing the shape of the stacked con-
vergence profile to that calibrated from simulations, we find imprints at the 3� significance
level for various analysis choices. The best measurement strategies based on the MICE cal-
ibration process yield S/N ⇡ 4 for DES Y1, and the best-fit amplitude recovered from the
data is consistent with expectations from MICE (A ⇡ 1). Given these results as well as the
agreement between them and N-body simulations, we conclude that the previously reported
excess integrated Sachs-Wolfe (ISW) signal associated with cosmic voids in DES Y1 has no
counterpart in the Planck CMB lensing map.

Key words: large-scale structure of Universe – cosmic background radiation

1 INTRODUCTION

The standard model of cosmology is based on the assumption that
our universe is homogeneous and isotropic at large scales. How-
ever, going to smaller scales one can observe a hierarchical cluster-
ing of matter that forms different structures in the cosmic web.

? Corresponding author: pvielzeu@sissa.it
† Corresponding author: akovacs@iac.es

Surrounded by galaxies, galaxy clusters, filaments and walls,
cosmic voids are large underdense regions that occupy the majority
of space in our Universe. They are the most dark energy dominated
regions in the cosmic web, essentially devoid of dark matter and re-
lated non-linear effects. Their underdense nature thus makes them
good candidates for studying the dark energy phenomenon (Ryden
1995; Lee & Park 2009; Bos et al. 2012; Pisani et al. 2015; Sut-
ter et al. 2015) and to probe its alternatives (Zivick et al. 2015;

c� 2020 The Authors
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Chapter 4 CMB lensing around voids

• the mean density contrast: �̄ = ⇢/⇢̄ � 1 where ⇢ is the mean density inside the
void and ⇢̄ is the mean density of the corresponding redshift slice;

• the central density contrast: The density contrast evaluated at one quarter of the
void radius �1/4 = �(r = 0.25Rv).

4.4 Data sets

In the context of this thesis, we aimed to measure the lensing signal on the Planck
CMB lensing map (Planck 2015 results. XV. (2016)) at the location of voids found
in the DESY1 galaxy catalog. And more in particular, since an important source of
error that a�ects our void finding procedure is photo-z uncertainty (photometric DES
data does not provide as precise redshift estimate for the galaxy tracers of voids as
spectroscopic survey does), we have chosen to use LRGs identified by the redMaGiC
algorithm, similarly to what has been presented in 2.3.1. This analysis, as it will be
developed below, has been at first tested and optimized using a simulated galaxy catalog,
namely the MICE-GC catalog, on which the redMaGiC algorithm has been run and a
CMB lensing map is available.

4.4.1 Simulations - the MICE galaxy mock and  map

The MICE simulated sample is an N-body light-cone from the MICE Grand Challenge
(MICE-GC) that contains about 70 billion dark-matter particles in a (3h�1Gpc)2 comov-
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Comparison with MICE simulation

Goal : compare the correlation signal of cosmic voids with 
CMB lensing in simulation with DES observations
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Tracer of the matter field :
RedMagic Galaxies

redMaGiC algorithm is designed to select luminous red 
galaxies with high quality photometric redshift estimates 
(Rozo + 2016)

0.15<z<0.85
redmagic DES SVA Catalog 

Scacer'='0.025'
Bias'='0.004'

DES redMaGiC galaxies
σz ∼ 0.02

5

FIG. 1. Galaxy distribution of the redMaGiC Y1 sample used in this analysis. The fluctuations represent the raw counts,
without any of the corrections derived in this analysis. We have restricted the analysis to the contiguous region shown in the
figure. The area is 1321 square degrees.

FIG. 2. Redshift distribution of the combined redMaGiC
sample in 5 redshift bins. They are calculated by stacking
Gaussian PDFs with mean equal to the redMaGiC redshift
prediction and standard deviation equal to the redMaGiC
redshift error. Each curve is normalized so that the area of
each curve matches the number of galaxies in its redshift bin.

The first is based on SExtractor MAG AUTO quantities from
the Y1 coadd catalogs, as applied to redMaPPer in
[38]. The second is based on a simultaneous multi-epoch,
multi-band, and multi-object fit (MOF) (see Section 6.3 of
Y1GOLD), as applied to redMaPPer (Mcclintock et al.
2017, in preparation). In general, due to the careful han-
dling of the point-spread function (PSF) and matched

z range L

min

/L⇤ n

gal

(deg�2) N

gal

Photometry
0.15 < z < 0.3 0.5 0.0134 63719 MAGAUTO
0.3 < z < 0.45 0.5 0.0344 163446 MAGAUTO
0.45 < z < 0.6 0.5 0.0511 240727 MAGAUTO
0.6 < z < 0.75 1.0 0.0303 143524 MOF
0.75 < z < 0.9 1.5 0.0089 42275 MOF

TABLE I. Details of the sample in each redshift bin. L
min

/L⇤
describes the minimum luminosity threshold of the sample,
n

gal

is the number of galaxies per square degree, and N

gal

is
the total number of galaxies.

multi-band photometry, the MOF photometry yields lower
color scatter and hence smaller scatter in red-sequence
photo-zs. For each version of the catalog, photometric
redshifts and uncertainties are primarily derived from the
fit to the red-sequence template. In addition, an after-
burner step is applied to ensure that redMaGiC photo-
zs and errors are consistent with those derived from the
associated redMaPPer cluster catalog [13].

As described in [13], the redMaGiC algorithm com-
putes color-cuts necessary to produce a luminosity-
thresholded sample of constant co-moving density. Both
the luminosity threshold and desired density are inde-
pendently configurable, but in practice higher luminos-
ity thresholds require a lower density for good perfor-
mance. We note that in [13] the co-moving density was
computed with the central redshift of each galaxy (zRM).
For this work, the density was computed by sampling
from a Gaussian distribution zRM ± �

z

, which creates
a more stable distribution near filter transitions. This is
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-0.678 1.11

Ri

Rj

δ(Ri)�0 ⇒ i++ 
δ(Rj) ≥ 0 ⇒ Rv = Rj

Figure 1. Graphical description of the void-finding algorithm
presented in this paper. The background gray-scaled field is the
smoothed galaxy field (� = 10 Mpc/h) in a redshift slice used by
the void-finder. The two solid (red) dots show two void centers. For
the upper void, we show a circular shell or radius Ri. Since the den-
sity contrast �(Ri

) < 0, the algorithm checks larger shells, up to
radius Rj such that �(Rj

) > 0. The void radius is then defined as
Rv = Rj .

of 0.1 deg. and a physical resolution of 1.5 Mpc/h at z = 0.3
(3 Mpc/h at z = 0.6).

(ii) We compute the mean density in the map corresponding
to the given redshift slice, n̄

2d, and convert the galaxy map
to a density contrast map as � = n

2d/n̄2d � 1, where n
2d is

the galaxy map.
(iii) Then we smooth the density contrast map with a Gaus-

sian filter of comoving scale �s = 10 Mpc/h.
(iv) We take this smoothed contrast map and consider only the

most underdense pixels (with � < �m = �0.3) as potential
void centers. We define the most underdense pixel in the
map as the first void center.

(v) Next we start defining circular shells of increasing radius
around that center, stopping when the mean density within
the slice (� = 0) is reached. That is, starting with a shell
of radius R i

v , we measure the average galaxy density in the
shell �(R i

v ), and if the density is negative we check the next
larger shell �(R i+1

v ), where the increment between shells is
1 Mpc/h in radius. For some shell R j

v the density contrast
reaches zero, �(R j

v ) > 0, and at that point the void radius is
defined as Rv = R j

v (see Fig. 1 for a graphical explanation).
(vi) Then all pixels contained in this void are removed from

the list of potential void centers, preventing any of these
pixels to become the center of any other void. From the
remaining pixels that satisfy � < �m = �0.3, we define the
next most underdense pixel as the second void center. The
process is repeated until all pixels with � < �m = �0.3
have been assigned to a void.

Beyond the dependency on the line-of-sight size of the
projected slice in which the finder is executed, studied in more
detail later in this section, the void catalog produced by this
algorithm depends on two parameters: the smoothing scale,
�s, and the maximum density contrast of a pixel to become

a void center, �m. The smoothing scale (�s = 10 Mpc/h) is
chosen to be about half the radius of the smallest voids we
can access in our data sample (because of photo-z smearing),
and increasing it would erase the structure leading to some
of these smallest voids, leaving the large voids intact. On the
other hand, the most significant voids found by the algorithm,
the deepest ones, are independent of the choice �m = �0.3
since their void center pixel is more underdense than that. By
changing the value of �m we are only affecting the shallower
voids of the sample. The impact of the �m choice is studied in
Appendix A. Also, voids found by this algorithm can overlap or
even enclose one another, but just in the case where a subvoid
is deeper than the bigger void enclosing it.

The process detailed above will produce a list of voids for
a given redshift slice. Before describing how various slices are
combined to obtain the full void catalog, we first study the
performance of the single slice results in simulations.

3.2 Performance on simulations

In order to validate the performance of the algorithm we use
the simulations, where we have both spectroscopic and pho-
tometric redshift for void tracer galaxies, and we compare the
voids found by the algorithm in spec-z and photo-z space. In
particular, we run the void finding algorithm twice on each
redshift slice: first using spectroscopic redshifts for selecting
the galaxies that go into the slice and then using photometric
redshifts that mimic the ones we have in real DES data.

Once we have the spec-z and photo-z defined void cata-
logs, we measure the projected galaxy density profiles of the
voids in them in radial annuli using the true redshifts. Figure
2 shows the resulting density profiles for both cases in differ-
ent slice comoving thicknesses. As expected, the void finder
performs poorly if the size of the projected slice is smaller or
similar to the photo-z dispersion �z ' 50 Mpc/h. Therefore,
the accuracy of the finder is a function of the thickness of the
projected slice: for slice width ⇠ 2 times the size of the typical
photometric redshift scatter, the difference between the aver-
age density profiles of voids found in spec-z and photo-z is not
significant, being smaller than the standard deviation of the
stacked void profiles.

Figure 2 shows that voids found by the algorithm in photo-
z space can indeed have very similar density profiles as voids
found in spec-z space. However, it is also important to know
the relative number of voids found in the two cases. Photomet-
ric redshifts produce a smearing in the line-of-sight position of
tracers that can actually erase some of the structure, espe-
cially on scales comparable to the size of the photo-z scatter
or smaller. That will have the consequence of some small voids
not being detected in the photo-z case. The voids of size larger
than the photo-z scatter should be detected in both cases. Fig-
ure 3 shows the distribution of void radii in simulations for
spec-z and photo-z samples. As expected, we find less voids in
the photo-z case, with the difference being more important for
small voids and becoming negligible for the voids substantially
larger than the photo-z dispersion (�z ' 50 Mpc/h).

In addition to the comparison of the galaxy density pro-
files of voids, which is the most important test of the algo-
rithm, Fig. 4 shows a visual comparison between the positions
and radius of spec-z and photo-z defined voids in a random
100 Mpc/h-thick slice of our simulations. The correlation be-
tween the two sets of voids is very clear, in both positions and
radii. In some cases, especially for the biggest voids, the match

c� 0000 RAS, MNRAS 000, 1–15

• Divide the sample in redshift slices. 100Mpc/h 
slices are shown to be a good  
compromise considering photometric redshift 
accuracy.  

• Compute the density field for each slice by 
counting the galaxy number in each  
pixel and smoothing the field with a Gaussian 
with a predefined smoothing scale.  

• Select the most underdense pixel and grow 
around it the void until it reaches the mean 
density.  

• Save the void, erase it from the density map 
and iterate the process with the following 
underdense pixel.  

Sánchez et al. (DES Collaboration), MNRAS 465, 746, 
2017.

Finding the voids
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Two tracers :
• RedMagiC High-luminosity 

sample
• RedMagiC High-density 

sample

Two smoothing scales:
10 Mpc/h
20 Mpc/h

4 void catalogs

smoothing scale
20Mpc/h smoothing scale

10Mpc/h

Finding the voids
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Figure 1. Comparison of the 2D void catalogue characteristics constructed in simulated MICE1 and MICE2 (orange bars and blue steps) and observed DES
Y1 samples (blue bars) with the di�erent void catalogue versions (HD10, HD20, HL10, HL20). We present results for the high-density sample (first and second
columns) and the high-luminosity sample (third and fourth columns) for di�erent void finder smoothing scales of 10 Mpc/h and 20 Mpc/h.

each void is assigned an e�ective radius re�
v that is equal to the

radius of a sphere with a volume identical to the total void volume.
Then centers of 3D VIDE voids are defined as volume-weighted
barycenters of all the Voronoi cells that make up the given void.

We note that the possible elongation properties of ZOBOV/VIDE
voids identified in photo-z samples have also been investigated by
Granett et al. (2015) using overlapping tracer with accurate spec-
troscopic redshift information as ground truth. Then Fang et al.
(2019) reconstructed the average shape of the DES Y1 and MICE
VIDE voids we also use in this study and reported a significant line-
of-sight elongation (with an axis ratio of about 4) due to photo-z
errors. They concluded, however, that individual voids are not nec-
essarily more elongated but a selection bias in orientation aligned
with our line-of-sights breaks the isotropy. Relatedly, Cautun et al.
(2018) argued that tunnel-like structures provide better signal-to-
noise compared to spherical voids of the same angular size, and
therefore this property of our VIDE voids is not a disadvantage.

3.3 Cosmic void properties in the MICE galaxy mocks

We note that the definition of e�ective radius of 3D VIDE voids (re�
v )

is di�erent than the radius definition of 2D voids (rv) as we describe
above. In particular, the void radius of VIDE structures is defined
as a turning point in the density profile’s compensation around the
voids, while the 2D void radius is simply a distance where the pro-
files reach the mean density. Similarly, the underdensity parameters
are defined di�erently in the two void finders. Nevertheless the cat-
alogues are internally consistent and their CMB lensing signals can
meaningfully be compared to each other. We apply specific pruning
methods to make 2D and VIDE void catalogues more comparable,
especially in number counts, and we provide a detailed description
of these cuts in Section 4.

3.3.1 2D voids

We examine how potential systematic e�ects modify the resulting
void populations. We compare the void parameter distributions for
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di�erent tracer densities and various initial Gaussian smoothing
applied to the density fields. Edge/mask e�ects may lead to di�erent
mean void properties because at survey boundaries the full extent of
underdense regions around minima may not be captured with good
precision.

We run our 2D void finder using two di�erent redMaGiC
samples as tracers. The redMaGiC high-luminosity sample applies a
stronger cut in luminosity (L > 1.5L⇤) which o�ers higher precision
in photometric redshift. On the other hand, the redMaGiC high-
density sample has a more relaxed luminosity cut (L > 0.5L⇤),
resulting in an increased galaxy density. We then further probe
systematic e�ects by running the void finder on these two rather
di�erent samples using two di�erent initial Gaussian smoothing
scales, namely 10 Mpc/h and 20 Mpc/h.

We compare the void catalogues in terms of three characteristic
parameters of voids: distribution in physical size (rv), distribution
of mean density (�̄) and distribution in central void density (�1/4).
We observe the following properties:

• Comparing the di�erent resulting catalogues, a higher number
of voids is detected when the tracer density is lower (redMaGiC
high-luminosity sample). Sutter et al. (2014a) found a di�erent
behavior for VIDE voids in simulations. Shot noise appears to drive
these e�ects. In particular, a higher number of pixels are identified
as 2D void center candidates when the tracer density is lower, and
the mean density might be reached more frequently, splitting voids
up.

• A larger smoothing scale decreases the total number of voids
for both tracer densities , as the role of shot noise is reduced.

• The mean void radius is shifted towards larger values for larger
smoothings, as smaller voids merge into larger encompassing voids.

• Small smoothing scales result in a larger fraction of deep voids,
given the same tracer density. This feature is also related to shot
noise properties.

When testing mask e�ects, we found that the voids identified
using redMaGiC tracers in the MICE octant have di�erent prop-
erties compared to void properties of DES Y1-like survey patches
inside the octant. We therefore decided to use the same mask as in
the DES Y1 cosmological analysis (Elvin-Poole et al. 2018) as this
guarantees faithful comparison to the observed data. We consider
two rotated positions of the Y1 mask with some overlap that is un-
avoidable inside the octant. Therefore, as a consistency test, we will
study two MICE Y1-like void catalogues (MICE 1 and MICE 2; see
Table 1 for more details).

3.3.2 VIDE voids

Aiming at a di�erent catalogue of voids from the same data set,
we also run the VIDE void finder on the MICE redMaGiC photo-z
catalogue in the full octant, focusing on the high density sample of
galaxies.

We find a total of 36115 voids using this 3-dimensional algo-
rithm. The VIDE algorithm provides various output parameters to
characterize the voids. We judge that the most important parameters
for our CMB lensing study are the e�ective radius (re�

v ), density
contrast (r), and the TreeLevel (for details see e.g. Neyrinck 2008;
Sutter et al. 2015).

Unlike for 2D voids, we find no significant di�erence in VIDE
void properties when using Y1-like mask patches or a full octant
mask in MICE. This agrees with the findings of Pollina et al. (2019).
We therefore consider all voids in the MICE octant for our stacking

High luminosity (HL)

Smoothing DES Y1 MICE 1 MICE 2

10 Mpc/h 1218 1158 1219
20 Mpc/h 411 364 400

High density (HD)

Smoothing DES Y1 MICE 1 MICE 2

10 Mpc/h 518 521 495
20 Mpc/h 122 85 106

VIDE DES Y1 MICE

All 7383 36115
Pruned 239 1687

Table 1. We list the numbers of 2D voids identified in two Y1-like MICE
patches vs. in DES Y1 data. We also provide void number counts for VIDE
voids for the full MICE octant and for the DES Y1 data set, with and without
pruning cuts that we consider in our measurements.

tests , i.e. a factor of ⇠ 5 more voids than in a Y1 patch (see also
Table 1 for void number count comparisons).

In our empirical tests, we found that a re�
v > 35 Mpc/h limit in

radius e�ectively removes small voids that tend to live in overdense
environments. The positive central  imprint of these small voids
decreases the negative stacked  signal inside the void radius, bring-
ing the signal closer to zero thus harder to detect. We also found
that an additional cut that removes the least significant voids below
the 1� extremeness level (r > 1.22) (Neyrinck 2008) is helpful to
eliminate voids with less negative central imprints and remaining
larger voids with positive central imprints. While these choices are
subject to further optimization, we use them in the present analysis
in order to test a di�erent definition using a robust and clean VIDE
sub-sample.

Finally, we apply a cut with TreeLevel = 0 to only keep voids
which are highest in the hierarchy, i.e. do not overlap with sub-
voids. These three conditions result in a set of voids that is a very
conservative subset of the full catalogue. However, such a pruned
catalogue with clean expected CMB  imprints is su�cient for
providing an alternative for our main analysis with 2D voids.

3.4 DES Y1 catalogues compared to simulations

In the light of the simulated stacking measurements using the MICE
 map, we aim to measure the DES Y1 voids ⇥ Planck CMB 
signal. We thus use the observed redMaGiC catalogues from DES
Y1, presented in 3.3, to construct void catalogues with the di�erent
tracer densities and initial smoothing scales.

Figure 1 shows a comparison of the observed and simulated
2D void catalogues. We report a very good agreement in terms
of sizes, central density, and mean density for both MICE Y1-
like patches when they are compared to DES Y1 data. We find
that the simple two-sample Kolmogorov-Smirnov (KS) histrogram
consistency tests (Kolmogorov 1933; Smirnov 1948) suggest that,
in general, high luminosity samples are in slightly better agreement
(see Table 1). However, the overall agreement is su�cient (with KS
test p-values ranging from 0.28 to 0.97), thus we aim to test the
consistency of simulations and observations for all void catalogue
versions.

We also find good agreement between void properties of the
simulated and observed catalogues using the VIDE algorithm on
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• Cutting out patches of the CMB map 
centered at superstructure position 
using healpix (Górski et al., 2005).

• Re-scaling the patches given the 
angular size of the structure. 

• Stacking all patches and measuring 
the average signal in different 
concentric radius bins around the 
center.  

 

Grannett et al., 2008

5 times the structure radius

Correlation methodology
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Stacked Healpix image CMB convergence 
profile

Correlation signal
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Figure 2. Simulated signal-only stacked  images from MICE (left) in comparison to noise-added versions (centre) and observed DES Y1 stacked results
(right) for the HL20 version of 2D voids. All versions of our results are displayed, without smoothing (top) and with FWHM= 1� (middle) or � = 1� (bottom)
Gaussian smoothings are used. The re-scaled void radius R/Rv = 1 is marked by the dashed circles. We identify important trends with changing smoothing
scales but overall report good consistency between data and simulations.

the DES Y1 redMaGiC high density sample. We identify a total of
239 voids in DES Y1 data considering the selection cuts explained
above. This is a very conservative cut on the total of 7383 voids
in the DES Y1 VIDE catalogue that also includes smaller and less
significant voids. Our primary goal with this work was to o�er
a robust alternative to 2D voids, and we thus leave the further
optimization of the VIDE sample for future work.

4 SIMULATED CROSS-CORRELATION ANALYSES

4.1 Stacking  maps on void positions

The CMB lensing imprint of single voids is impossible to detect (see
e.g. Krause et al. 2013). We therefore apply an averaging method
using cutouts of the CMB map at void positions (see e.g. Kovács
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Figure 4. Comparison of the radial  imprint profiles of 2D voids in the MICE simulation and in DES Y1 data. We show results based on all three  map
smoothing strategies, including no smoothing (left), FWHM= 1� smoothing (middle), and � = 1� smoothing (right). For completeness, we present the imprints
for all 2D void catalogue versions including HD10, HD20, HL10, and HL20 from top to bottom. Dashed red profiles mark the best fitting MICE templates
considering the DES measurements.
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Correlation signal
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MICE: light

DES Y1: dark

S/N comparison for di�erent void catalogs

Figure 6. We provide a detailed comparison of measurement significance in the form of A/�A. The conservative VIDE sample also provides useful consistency
tests in agreement with our 2D analyses. The dashed horizontal lines mark the mean of the DES Y1 (dark) and the MICE (light) significances with values 3.03
and 3.39, respectively.

their methodology but we put more emphasis on simulation analy-
ses to detect a signal with DES data, given di�erent galaxy tracer
density and void finding methods. In particular, we used simulated
DES-like redMaGiC galaxy catalogues together with a simulated
lensing convergence map from the MICE Grand Challenge N-body
simulation to test our ability to detect the CMB lensing imprint of
cosmic voids.

We constrained the ratio of the observed and expected lensing
systems, which we called A. We first analyzed the signal-to-noise
corresponding to the CMB  profile of MICE redMaGiC voids.
We considered di�erent void populations including 2D voids and
VIDE voids in 3D. We varied the galaxy density and also the initial
smoothing scale applied to the density field to find the centres of the
2D voids (see Sánchez et al. 2017, for details). These parameters
a�ect the significance of the measurement as the total number of
voids, mean void size, underdensity in void interiors, and their depth
in their centres are all a�ected by these choices and hence so is the
resulting lensing signal and noise.

We then comprehensively searched for the best combination
of parameters that guarantees the best chance to detect a signal with
observed DES data. We concluded that the lower tracer density of
the higher luminosity redMaGiC galaxy catalogue is preferable to
achieve a higher signal-to-noise for both 10 Mpc/h and 20 Mpc/h
initial Gaussian smoothing. We tested to prospects of using sub-
classes of voids instead of the full sample, but concluded that stack-
ing all voids is preferable for the best measurement configuration
with DES Y1 data.

We also tested the importance of post-processing in the MICE 
map. We experimentally verified that Gaussian smoothing of scales
FWHM= 1� and � = 1� reduce the size of the small-scale fluctu-
ations in the lensing map while preserving most of the signal. For
completeness, we created stacked images for all smoothing versions
and provided a detailed comparison of the results. In the MICE
analysis, we found that the best measurement configurations to
detect a stacked signal are achieved when considering a 2D void
catalogue with high luminosity tracers and 10 Mpc/h initial density
smoothing (HL10), exceeding S/N ⇡ 5 for all three  smoothing
strategies.

We then identified voids in the observed DES Y1 redMaGiC
catalogue and compared their properties with MICE voids. In gen-
eral, we found a good agreement when comparing observed 2D and
VIDE void catalogues with both DES Y1-like MICE mocks that we

used for predictions. We repeated the simulated stacking analyses
using the observed Planck CMB lensing map. The signal-to-noise
is typically slightly lower than expected from MICE, due to a trend
of lower amplitudes at the level of A ⇡ 0.8 in some of the cases.
Nevertheless, given the measurement errors, we detected a stacked
signal of voids with amplitudes consistent with A ⇡ 1.

Overall, we robustly detected imprints at the 3� significance
level with most of our analysis choices, reaching S/N ⇡ 4 in
the best predicted measurement configurations using DES Y1 high
luminosity redMaGiC data. We found that VIDE voids provided
similar imprints in the CMB lensing maps, albeit at consistently
lower S/N than 2D voids. This finding, however, is not unexpected
given the conservative cuts we apply to select our VIDE sample. We
leave the possible further improvements in the VIDE analysis for
future work.

Regarding the previously reported excess ISW signal in DES
void samples compared to ⇤CDM simulations, however, we con-
clude that the excess in the CMB temperature maps at void locations
has no counterpart in the Planck CMB lensing map. This finding
does not necessarily invalidate the ISW tension. First, Cai et al.
(2017) also reported excess ISW signals using BOSS data, but found
a stacked  signal in good agreement with ⇤CDM simulations. Sec-
ond, no detailed simulation work has jointly estimated the ISW and
CMB lensing signal of voids in some alternative cosmologies. It
is yet to be analyzed if the excess ISW signal should always be
imprinted in the corresponding CMB  map. Such simulation anal-
yses could potentially exclude the coexistence of an enhanced ISW
signal and a ⇤CDM-like CMB  imprint, pointing towards some
exotic systematic e�ect that results in an ISW-like excess in Planck
temperature data aligned with the biggest voids in both BOSS and
DES data.

Our goal for the future is to create a bigger catalogue of voids,
and potentially superclusters, using galaxy catalogues from three
years of observed DES data (DES Y3). These presumably more
accurate future detections with more voids will most probably allow
cosmological parameter constraints as suggested by e.g. Chantavat
et al. (2016). Furthermore, joint analyses of CMB lensing and galaxy
shear statistics may constrain modified gravity models (see e.g.
Cautun et al. 2018; Baker et al. 2018).

In the near future, beyond a better understanding of the method-
ologies, new simulations and new cosmic web decomposition data
from experiments such as the Dark Energy Spectroscopic Instru-
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• while approximately two thirds of the S/N is contained inside
the void radius (R/Rv < 1) and in the close surroundings (1 <
R/Rv < 2), measuring the cumulative S/N up to (R/Rv = 5) does
increase the detectability and provides a way to test convergence to
zero signal at large radii.

• the highest S/N is achieved by stacking all voids, even if some
voids are expected to contribute with less pronounced signal and
higher noise at small scales (see Kovács et al. 2017, for a counter-
example in the case of ISW imprints).

In terms of di�erent tracer density and smoothing, the highest
S/N is found when using the high luminosity catalogue with 10
Mpc/h smoothing (HL10). We note that such a result is not unex-
pected, given the wider redshift range and the larger fraction of deep
voids in the case of the HL sample (see Figure 1).

We estimate S/N = 4.0 for the case of no  map smoothing,
while we find an even higher S/N = 4.8 and S/N = 4.5 for Gaus-
sian smoothings using FWHM= 1� and � = 1�, respectively. We
use S/N and A/�A interchangeably to refer to the signal-to-noise
throughout the paper. We consider a DES Y1 measurement config-
uration and resulting errors and a MICE ⇤CDM signal (A = 1) of
the simulated 2D voids.

Nevertheless, all measurement configurations show moder-
ately significant S/N & 3 CMB lensing signals for voids in a survey
such as DES Y1, and thus we will measure the corresponding ob-
served lensing imprint of all DES void catalogues and smoothing
versions. See again Figure 2 for details.

We note that the main results above are based on the full
void sample with a variety of redshifts in 0.2 < z < 0.7. For
completeness, we also performed a simple redshift binning test for
voids of size 20 Mpc/h < rv < 70 Mpc/h. We found no clear
evidence for redshift evolution in their CMB lensing profile.

4.4.2 VIDE voids

Because in this paper we consider VIDE voids as a consistency test,
we do not formally optimize the signal-to-noise for the VIDE void
sample. Relatedly, we do not have a single recipe for pruning param-
eters in the presence of photo-z errors for 3D voids. Nevertheless, as
explained in Section 3.3.2, we apply various pruning cuts in order
to ensure a detectable CMB lensing signal in the MICE simulation
and therefore also in DES Y1 data (see Figure 3). These cuts result
in 1687 VIDE voids in the MICE octant to be used in the stacking
measurement, and 239 voids in the DES Y1 redMaGiC high den-
sity data. We present a comparison with 2D void types in Table 2,
finding good consistency in void number counts.

Overall, we find S/N = 2.3 for the case of no  map smooth-
ing, while S/N = 2.0 and S/N = 2.1 for Gaussian smoothings
using FWHM= 1� and � = 1�, respectively. In these tests, we again
consider a MICE ⇤CDM imprint signal (A = 1) and a DES Y1 mea-
surement configuration and resulting errors (�A) of the simulated
VIDE voids.

We note that our pruning cuts in fact remove most of the voids
from the original catalogue; thus the VIDE catalogue may promise
higher S/N with further optimization. However, for our purposes
of studying a sample complementary to the 2D void analysis the
sample defined above is adequate. We leave the optimization of
VIDE catalogues for CMB lensing measurements for future work,
including tests of VIDE voids in high luminosity tracer catalogues
that appear more promising for the 2D void definition.

No smoothing

Catalogue VIDE HD10 HD20 HL10 HL20

MICE 2.27 3.13 2.38 4.00 3.85

DES Y1 2.25 2.47 3.29 3.04 3.36

FWHM= 1� smoothing

Catalogue VIDE HD10 HD20 HL10 HL20

MICE 2.00 3.70 2.94 4.76 4.17

DES Y1 2.42 3.30 2.79 3.48 3.58

� = 1� smoothing

Catalogue VIDE HD10 HD20 HL10 HL20

MICE 2.13 3.70 3.33 4.55 4.00

DES Y1 2.11 2.89 2.40 4.91 3.19

Table 2. Signal-to-noise ratios (A/�A) are listed for all measurement con-
figurations using MICE and DES Y1 signals. We compare three di�erent
smoothing strategies and five void catalogue versions.

5 RESULTS FOR OBSERVATIONS: DES Y1 ⇥ PLANCK

We measure the stacked imprint of DES Y1 voids with the same
methodology and parameters as in the case of the MICE mock.
Together with the MICE results, the stacked  images of the DES
Y1 void catalogues are shown in Figures 2 and 3 for 2D and VIDE
voids, respectively. We find good consistency between simulations
and observations for all void definitions, smoothing strategy, and
tracer density.

We then use the stacked images to calculate a radial  imprint
profile in order to quantify the results, relying on the noise analysis
we introduced above. We present these results below and provide a
detailed description of our constraints on the A amplitude of DES
Y1 and MICE void lensing profiles.

5.1 2D voids

We continue our data analysis with the DES Y1 2D void catalogues
that promised higher S/N in our MICE analysis, where, recall, we
forecasted S/N ⇡ 4.8 for the high luminosity catalogue.

We compare the stacked images of the  imprints in the high
luminosity catalogue with 20 Mpc/h smoothing in the galaxy density
map in Figure 2 as a representative example of all 2D void results. A
visual inspection shows good agreement between MICE and DES
Y1  imprints both in the centres and surroundings of the voids.
We find consistency for all  smoothing strategies and report that
similar conclusions can be drawn from stacked images from other
void catalogue versions (see also Figure 3).

We then also measure the azimuthally averaged radial imprint
profile in the stacked images to quantify the results. We present the
results in Figure 4 for all four 2D void catalogue versions HD10,
HD20, HL10, and HL20. The shaded blue regions mark 1� errors
computed with 500 random realizations of the stacking measure-
ment on the MICE  map with Planck-like noise included, while
the error bars around DES Y1 measurements show the correspond-
ing uncertainties for the DES data. We observe a good general
agreement in the sign and the shape of the observed and simulated
profiles. Negative  values in the interior of voids plus an extended
range of positive convergence in the surroundings. We note that
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• 3σ significance level • We then comprehensively searched for 
the best combination of parameters that 
guarantees the best chance to detect a 
signal with observed DES data. We 
concluded that the lower tracer density of 
the higher luminosity redMaGiC galaxy 
catalogue is preferable to achieve a 
higher signal-to-noise for both 10 Mpc/h 
and 20 Mpc/h initial Gaussian smoothing. 

Results
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And now, waiting for

DESY3 : coming soon!

DESI and Euclid coming soonish!

Coming not soonish but 
hopefully after COVID: 

LSST
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Conclusions

•  Data are coming, be prepared! 

• Promising tool for future cosmology : LSSxCMB  

•  We are reaching the time where Cosmic voids could be part of the cosmological 
analysis 

• Cosmic voids are promising in various field : general cosmological inference, Modified 
Gravity constraints, Massive Neutrino constraints,… 

•  Using DES observations we manage to detect the imprint of cosmic void in the CMB 
lensing map with an unprecedented accuracy and future survey will manage to 
perform better 
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merci pour votre attention !


