

Looking at the cosmic voids, a promising cosmological probe

Pauline Vielzeuf Post-doc @ SISSA seminar @CPPM February 22nd 2021

Timeline

- Introduction to cosmology : a brief history to what brings us where we are
- How can we understand it better : Observational tools

Cosmic voids : a promising probe

Application to DES data : VOIDSXCMB

A brief history of cosmology

A brief history of cosmology + Cold Dark Matter

Dark matter is a hypothetical type of matter which does not emit or interact with electromagnetic radiation, but its presence can be inferred through its gravitational effect.

Introduced by Fritz Zwicky in the 30's (!) to explain the total mass of the Coma cluster and have been indirectly detected after in different cosmological probes.

$$\Omega_m = \Omega_{dm} + \Omega_b,$$

STATE OF THE ART OF COSMOLOGY

$$\frac{H(a)^2}{H_0^2} = \Omega_{0,r}a^{-4} + \Omega_{0,m}a^{-3} + \Omega_{0,k}a^{-2} + \Omega_{0,\Lambda}$$

Galaxy Surveys : looking at the late universe

Observing the Universe at low-z : Galaxy Surveys

Survey	Number of galaxies ^a	redshift	area (deg ²)	Observation period
Sloan Digital Sky Survey (SDSS Legacy) York et al. (2000)	~ $1M$ galaxies ~ 120000 Quasars	$z \lesssim 0.25$	7500	observation finished 2000-2008
Wiggle-Z Drinkwater et al. (2010)	239000 ELGs	0.2 < z < 1.0	1000	observation finished 2006-2011
The Baryon Oscillation Spectroscopic Survey (BOSS) Dawson et al. (2013)	1.5M LRGs 160000 Quasars	z < 0.7 2.2 < z < 3	10000	observation finished 2008-2014
The Extended Baryon Oscillation Spectroscopic Survey (eBOSS) Dawson et al. (2016)	300000 LRGs 189000 ELGs 573000 Quasars	0.6 < z < 0.8 0.6 < z < 1.0 0.9 < z < 3.5	7500 1000 7500	2014-2020
Dark Energy Spectroscopic Instrument (DESI) DESI Collaboration et al. (2016)	4 <i>M</i> LRGs 18 <i>M</i> ELGs 2.4 <i>M</i> Quasars	z < 1 z < 1.7 2.1 < z < 3.5	14000	First light in 2019
Euclid Laureijs et al. (2011)	50M galaxies	0.5 < z < 2.0	15000	Launching in 2021

Launch is now foreseen for 2022

 TABLE 2.1.1 – Summary of recent and future spectroscopic surveys.

photometric Survey	photometric bands	Number of galaxies	area deg ²	observation period
Canada-France-Hawaii Telescope Legacy Survey (CFHTLS)	ugriz	38 <i>M</i>	4 fields over $171 deg^2$	observation finished 2004-2009
Kilo Degree Survey (KiDS) de Jong et al. (2015)	ugri	90M	1500	First light in 2011
Dark Energy Survey (DES) The Dark Energy Survey Collaboration (2005)	grizy	300M	5000	started in 2013 for 577 nights of observation
Hyper Suprime-Cam (HSC) Aihara et al. (2018)	grizy	100M	1400	started in 2014 for 300 nights of observation
Physics of the Accelerating Universe Survey (PAU) Martí et al. (2014)	40 narrow bands	2M	100	started in 2015 123 nights of observation
Large Synoptic Survey Telescope (LSST) LSST Science Collaboration et al. (2009)	ugrizy	4B	20000	First light 2021
Euclid Laureijs et al. (2011)	R,I,Z YJH	1.5B	15000	Launching in 2021
COSMOS-30 band) Laigle et al. (2016)	30 UV/Visible/IR bands	> 500000	2	Combined sample of various surveys in the COSMOS field

Launch is now foreseen for 2022

TABLE 2.1.2 – Summary of recent and future photometric surveys.

Lensing

10

Measuring this effect will give us information on the foreground matter distribution, including Dark Matter

Galaxy clustering

Galaxies tend to trace Dark matter

$$\delta_i(\vec{k}, z) = b_i(z, \vec{k})\delta(\vec{k}, z)$$

Galaxy galaxy lensing

Source : Shape of background galaxies

Lenses: position of foreground galaxies

Surface mass excess :

 $\Delta \Sigma(\leq \theta) := \langle \gamma_{t} \rangle \left(\theta \right) \Sigma_{cr} = \bar{\Sigma}(\theta) - \langle \Sigma \rangle \left(\theta \right).$

Main probe of photometric galaxy surveys 3X2pts

Galaxy Clustering

$$<\delta_g\delta_g>$$

Cosmic Shear

$$<\delta_\epsilon\delta_\epsilon>$$

Galaxy Galaxy lensing

$$<\delta_g\delta_\epsilon>$$

Galaxy-Galaxy correlation correlations between galaxy position as a function of their separation

Shear-Shear correlation

correlations between galaxy ellipticity as a function of their separation

Galaxy-Shear correlation

correlations between the ellipticity of background galaxy with the position of foreground ones as a function of their separation

Agreement between lensing and clustering

Model	Data Sets	Ω_m	S_8
ΛCDM	DES Y1 $\xi_{\pm}(\theta)$	$0.323^{+0.048}_{-0.069}$	$0.791^{+0.019}_{-0.029}$
ΛCDM	DES Y1 $w(\theta) + \gamma_t$	$0.293^{+0.043}_{-0.033}$	$0.770^{+0.035}_{-0.030}$
ΛCDM	DES Y1 3x2	$0.264^{+0.032}_{-0.019}$	$\left 0.783^{+0.021}_{-0.025} \right $

No evidence of wCDM model

Model	Data Sets	Ω_m	S_8	w
wCDM	DES Y1 $\xi_{\pm}(\theta)$	$0.317\substack{+0.074 \\ -0.054}$	$0.789^{+0.036}_{-0.038}$	$-0.82^{+0.26}_{-0.47}$
wCDM	DES Y1 $w(\theta) + \gamma_t$	$0.317\substack{+0.045\\-0.041}$	$0.788^{+0.039}_{-0.067}$	$-0.76^{+0.19}_{-0.45}$
wCDM	DES Y1 3x2	$0.279^{+0.043}_{-0.022}$	$0.794^{+0.029}_{-0.027}$	$-0.80\substack{+0.20\\-0.22}$

CMB experiments: Looking at the early universe

Cosmic Microwave Background

 0.1°

1500

2000

 0.07°

Cosmic Microwave Background : lensing

17

Dark Energy Survey Year 1 Results: Joint Analysis of Galaxy Clustering, Galaxy Lensing, and CMB Lensing Two-point Functions

similarly to the deflection effects induced by the large structures that we observe on the sky on the photons coming from background galaxies, we should have lensing effects by the foreground matter field on the photons that come from the CMB

The cosmic voids and their potential role for future observations

Filament

Cluster

Void

Voids definition

20

Cautun et al. (2018)

Voids has tracer of the matter field

Gravitational lensing of cosmic voids

The tangential shear γ_+ of background galaxies (sources) induced by voids (lenses) is a direct probe of the excess surface mass density $\Delta\Sigma$ around voids, defined as

$$\Delta\Sigma(r_p/R_v) \equiv \overline{\Sigma}(\langle r_p/R_v) - \Sigma(r_p/R_v) = \Sigma_{\rm crit} \gamma_+(r_p/R_v), \qquad (1)$$

Sánchez et al. (DES Collaboration), MNRAS 465, 746, 2017.

So adding lensing + clustering information from cosmic void can also be considered

Voids and massive neutrinos

Voids and alternative cosmologies

voids are by definition 'matter less', corresponding then to really large zone where matter domination is down

-> good target to study Dark Energy

Example modified gravity models

screening mechanisms operate weakly within cosmic voids, making them potentially more affected by the possible deviations from GR

Voids still unexplained: ISW

$$\Theta = \frac{\Delta T}{T_{\rm CMB}} = -\frac{2}{c^3} \int_0^{\chi_{\rm CMB}} \mathrm{d}\chi \frac{\partial \Phi}{\partial \chi}.$$

The Dark Energy Survey Camera

Imaging galaxy survey.

5000 sq. deg. after 6 years (2013 - 2019)

570-Megapixel digital camera, DECam, mounted on the Blanco 4meter telescope at Cerro Tololo **Inter-American Observatory** (Chile).

Five filters are used (grizY) with a nominal limiting magnitude i_{AB}~24 and with a typical exposure time of 90 sec for griz and 45 sec for Y

7000

Wavelength (Å)

6000

8000

Dark Energy Survey Year 1 Results: the lensing imprint of cosmic voids on the Cosmic Microwave Background

P. Vielzeuf^{1,2,3*} A. Kovács^{1,4,5†}, U. Demirbozan¹, P. Fosalba^{6,7}, E. Baxter⁸, N. Hamaus⁹, D. Huterer¹⁰, R. Miquel^{11,1}, S. Nadathur¹², G. Pollina⁹, C. Sánchez⁸, L. Whiteway¹³, T. M. C. Abbott¹⁴, S. Allam¹⁵, J. Annis¹⁵, S. Avila¹⁶, D. Brooks¹³, D. L. Burke^{17,18}, A. Carnero Rosell^{19,20}, M. Carrasco Kind^{21,22}, J. Carretero¹, R. Cawthon²³, M. Costanzi^{24,25}, L. N. da Costa^{20,26}, J. De Vicente¹⁹, S. Desai²⁷, H. T. Diehl¹⁵, P. Doel¹³, T. F. Eifler^{28,29}, S. Everett³⁰, B. Flaugher¹⁵, J. Frieman^{15,31}, J. García-Bellido¹⁶, E. Gaztanaga^{6,7}, D. W. Gerdes^{32,10}, D. Gruen^{33,17,18}, R. A. Gruendl^{21,22}, J. Gschwend^{20,26}, G. Gutierrez¹⁵, W. G. Hartley^{13,34}, D. L. Hollowood³⁰, K. Honscheid^{35,36}, D. J. James³⁷, K. Kuehn^{38,39}, N. Kuropatkin¹⁵, O. Lahav¹³, M. Lima^{40,20}, M. A. G. Maia^{20,26}, M. March⁸, J. L. Marshall⁴¹, P. Melchior⁴², F. Menanteau^{21,22}, A. Palmese^{15,31}, F. Paz-Chinchón^{21,22}, A. A. Plazas⁴², E. Sanchez¹⁹, V. Scarpine¹⁵, S. Serrano^{6,7}, I. Sevilla-Noarbe¹⁹, M. Smith⁴³, E. Suchyta⁴⁴, G. Tarle¹⁰, D. Thomas¹², J. Weller^{45,46,9}, J. Zuntz⁴⁷

(THE DES COLLABORATION) Author affiliations are listed at the end of this paper

Comparison with MICE simulation

Goal : compare the correlation signal of cosmic voids with CMB lensing in simulation with DES observations

30

flat standard ΛCDM

$$\Omega_m = 0.25, \, \Omega_\Lambda = 0.75, \, \Omega_b = 0.044,$$

$$\sigma_8 = 0.8$$
 and $h = 0.7$

Planck 2015 results. XV. (2016)

Tracer of the matter field : RedMagic Galaxies

redMaGiC algorithm is designed to select luminous red galaxies with high quality photometric redshift estimates (Rozo + 2016)

0.15<z<0.85

DES redMaGiC galaxies

 $\sigma_z \sim 0.02$

z range	L_{\min}/L_*	$n_{\rm gal}~({\rm deg}^{-2})$	N_{gal}
0.15 < z < 0.3	0.5	0.0134	63719
0.3 < z < 0.45	0.5	0.0344	163446
0.45 < z < 0.6	0.5	0.0511	240727
0.6 < z < 0.75	1.0	0.0303	143524
0.75 < z < 0.9	1.5	0.0089	42275

Finding the voids

- Divide the sample in redshift slices. 100*Mpc/h* slices are shown to be a good compromise considering *photometric* redshift accuracy.
- Compute the density field for each slice by counting the galaxy number in each pixel and smoothing the field with a Gaussian with a predefined smoothing scale.
- Select the most underdense pixel and grow around it the void until it reaches the mean density.
- Save the void, erase it from the density map and iterate the process with the following underdense pixel.

Figure 1. Graphical description of the void-finding algorithm presented in this paper. The background gray-scaled field is the smoothed galaxy field ($\sigma = 10 \text{ Mpc}/h$) in a redshift slice used by the void-finder. The two solid (red) dots show two void centers. For the upper void, we show a circular shell or radius R^i . Since the density contrast $\delta(R^i) < 0$, the algorithm checks larger shells, up to radius R^j such that $\delta(R^j) \ge 0$. The void radius is then defined as $R_v = R^j$.

Sánchez et al. (DES Collaboration), MNRAS 465, 746, 2017.

Impact on the finder parameters

20 **Mpc/h**

0.065 1.44

33

30 Mpc/h

0.0857 0.607

Finding the voids

Two tracers : • RedMagiC High-luminosity sample • RedMagiC High-density sample

Two smoothing scales: 10 Mpc/h 20 Mpc/h

4 void catalogs

Catalog comparison

50

-0.4

 $-0.6 \\ \delta_{1/4}$

35

-0.4

	High lumin	osity (HL)		
Smoothing	DES Y1	MICE 1	MICE 2	
10 Mpc/h	1218	1158	1219	
20 Mpc/h	411	364	400	
High density (HD)				
Smoothing	DES Y1	MICE 1	MICE 2	
10 Mpc/h	518	521	495	
20 Mpc/h	122	85	106	
VIDE	DES Y1	MICE		
All	7383	36115		
Pruned	239	1687		

High luminosity, $\sigma = 20$ Mpc/h (HL20)

100

 $r_{
m v}$

0

Correlation methodology

Grannett et al., 2008

- Cutting out patches of the CMB map centered at superstructure position using healpix (Górski et al., 2005).
- Re-scaling the patches given the angular size of the structure.
- Stacking all patches and measuring the average signal in different concentric radius bins around the center.

5 times the structure radius

Correlation signal

Correlation signal

Results

S/N comparison for different void catalogs

2.89

2.40

39

4.91

3.19

2.11

DES Y1

And now, waiting for

DESY3 : coming soon!

40

Coming not soonish but hopefully after COVID: LSST

DESI and Euclid coming soonish!

Conclusions

- Data are coming, be prepared!
- Promising tool for future cosmology : LSSxCMB
- We are reaching the time where Cosmic voids could be part of the cosmological analysis
- Cosmic voids are promising in various field : general cosmological inference, Modified Gravity constraints, Massive Neutrino constraints,...
- Using DES observations we manage to detect the imprint of cosmic void in the CMB lensing map with an unprecedented accuracy and future survey will manage to perform better

merci pour votre attention !