

Just a taste: hints of new physics in flavour observables

Jonathan Kriewald

Laboratoire de Physique de Clermont-Ferrand

LPC Seminar

Based on: JHEP 12 (2019) 006, JHEP 07 (2020) 235 and arXiv:2012.05883 with C. Hati, J. Orloff and A. M. Teixeira

26 February 2021

- 1 Introduction
- 2 Heavy flavours: tales from the terascale
- 3 Flavour (de) light: anomalous magnetic moments
- 4 Summary

Introduction

Introduction

- Highly successful theory describing fundamental particles and their interactions
- Based on gauge symmetries:

$$\mathcal{G}_{SM} = SU(3)_c \times SU(2)_L \times U(1)_Y$$

 Completed by the discovery of the Higgs-boson in 2012

5 / 39

Flavour Physics

In SM, force carriers

 In SM, force carriers and 3 generations of matter

- In SM, force carriers and 3 generations of matter
- Quark sector: Higgs mechanism responsible for quark masses and quark flavour mixing

- In SM, force carriers and 3 generations of matter
- Quark sector: Higgs mechanism responsible for quark masses and quark flavour mixing
- Unitary CKM matrix ⇒ no flavour changing neutral current (FCNC) at tree-level

- In SM, force carriers and 3 generations of matter
- Quark sector: Higgs mechanism responsible for quark masses and quark flavour mixing
- Unitary CKM matrix ⇒ no flavour changing neutral current (FCNC) at tree-level
- Lepton sector: vanishing ν-masses ⇒
 accidental lepton flavour conservation

- In SM, force carriers and 3 generations of matter
- Quark sector: Higgs mechanism responsible for quark masses and quark flavour mixing
- Unitary CKM matrix ⇒ no flavour changing neutral current (FCNC) at tree-level
- Lepton sector: vanishing ν-masses ⇒
 accidental lepton flavour conservation
- BUT: ν oscillate, thus have (tiny) masses
 ⇒ explaining ν oscillations opens the door to lepton flavour violation (LFV)!

Lepton flavour universality

Only difference between leptons is their masses:

$$m_e \sim 511 \text{ keV}, \quad m_\mu \sim 105 \text{ MeV}, \quad m_\tau \sim 1.7 \text{ GeV}$$

Accidental "symmetry" in the SM: couplings of electroweak gauge bosons are "blind" to lepton flavour ⇒ Lepton Flavour Universality (LFU)

W ⁺ DECAY MODES	Fraction (Γ_i/Γ)	0
$\ell^+ \nu$	[b] (10.86± 0.09) %	20
$e^+ u$	$(10.71 \pm 0.16) \%$	
$\mu^+ u \ au^+ u$	(10.63± 0.15) %	* -
$ au^+ u$	(11.38± 0.21) %	1 S ag
hadrons	(67.41 ± 0.27) %	رم «ع
Z DECAY MODES	Fraction (Γ_i/Γ)	[PDG 2020]
e ⁺ e ⁻	[h] (3.3632±0.0042) %	
$\mu^+\mu^{ au^+ au^-}$	[h] (3.3662 ± 0.0066) %	
$\tau^+\tau^-$	[h] (3.3696 ± 0.0083) %	
$\ell^+\ell^-$	[b,h] (3.3658±0.0023) %	

⇒ BUT: current measurements in semi-leptonic B-meson decays and low energy precision observables appear to tell a different story!

7 / 39

Hadrons

QCD bound states of quarks: Baryons \sim 3 quarks, Mesons \sim 1 quark, 1 anti-quark

 $\begin{array}{l} \circ \ \, \mathsf{Proton} \, \, |p\rangle \sim |uud\rangle, \\ \; \mathsf{neutron} \, \, |n\rangle \sim |udd\rangle, \\ \; \mathsf{pions} \, |\pi^0\rangle \sim \frac{|u\bar{u}\rangle + |d\bar{d}\rangle}{\sqrt{2}}, \, |\pi^+\rangle \sim |u\bar{d}\rangle \end{array}$

- $\begin{array}{l} \circ \ \, \mathsf{Proton} \, \, |p\rangle \sim |uud\rangle, \\ \mathsf{neutron} \, \, |n\rangle \sim |udd\rangle, \\ \mathsf{pions} \, |\pi^0\rangle \sim \frac{|u\bar{u}\rangle + |d\bar{d}\rangle}{\sqrt{2}}, \, |\pi^+\rangle \sim |u\bar{d}\rangle \end{array}$
- \Rightarrow Kaons: $|K^0\rangle \sim |\bar{s}d\rangle$, $|K^+\rangle \sim |\bar{s}u\rangle$

- $\begin{array}{l} \circ \ \, \mathsf{Proton} \, \, |p\rangle \sim |uud\rangle, \\ \mathsf{neutron} \, \, |n\rangle \sim |udd\rangle, \\ \mathsf{pions} \, |\pi^0\rangle \sim \frac{|u\bar{u}\rangle + |d\bar{d}\rangle}{\sqrt{2}}, \, |\pi^+\rangle \sim |u\bar{d}\rangle \end{array}$
- \Rightarrow Kaons: $|K^0\rangle \sim |\bar{s}d\rangle$, $|K^+\rangle \sim |\bar{s}u\rangle$
- \Rightarrow ${\it B}$ mesons: $|B^0\rangle \sim |\bar{b}d\rangle$, $|B^+\rangle \sim |\bar{b}u\rangle$

- $\begin{array}{l} \circ \ \, \mathsf{Proton} \, \left| p \right\rangle \sim \left| uud \right\rangle, \\ \mathsf{neutron} \, \left| n \right\rangle \sim \left| udd \right\rangle, \\ \mathsf{pions} \, \left| \pi^0 \right\rangle \sim \frac{\left| u\bar{u} \right\rangle + \left| d\bar{d} \right\rangle}{\sqrt{2}}, \, \left| \pi^+ \right\rangle \sim \left| u\bar{d} \right\rangle \\ \end{array}$
- \Rightarrow Kaons: $|K^0\rangle \sim |\bar{s}d\rangle$, $|K^+\rangle \sim |\bar{s}u\rangle$
- \Rightarrow ${\it B}$ mesons: $|B^0\rangle \sim |\bar{b}d\rangle$, $|B^+\rangle \sim |\bar{b}u\rangle$
- \Rightarrow **D** mesons: $|D^0\rangle \sim |\bar{c}u\rangle$, $|D^-\rangle \sim |\bar{c}d\rangle$
 - Heavy flavours: hadrons involving
 b or c quarks
 - (top quark does not hadronise, it decays before a bound state can be formed)

Heavy flavours: tales from the terascale

B-meson decays I

B-mesons offer powerful probes of the SM and hints of new physics:

- Theoretically "clean(ish)" due to large mass of b-quark, certain theoretical approximations apply and precise predictions are possible
- Experimentally accessible mostly produced in forward region (design of LHCb), hundreds of decay channels to explore
- o Exciting future programme (LHCb, Belle II, ...)
- \circ Charged current B-decays used to measure CKM parameters (e.g. $|V_{cb}|, |V_{ub}|, \gamma$)
- o B and B_s -meson oscillations offer insight on $C\!P$ violation in the SM
- Due to extremely low SM background, rare FCNC B-meson decays are powerful probes of new physics

B-meson decays I

 $oldsymbol{B}$ -mesons offer powerful

- Theoretically "clean approximations apply
- Experimentally access hundreds of decay ch
- Exciting future progr
- \circ **Charged** current B-d
- \circ $m{B}$ and $m{B_s}$ -meson osc
- Due to extremely low probes of new physi

			and design of the second		AINZES
ı			Scale factor/	p	Les deux infinis
Ī	B+ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level ((MeV/c)	
	Semilento	nic and leptonic m	odes		
	$\ell^+ \nu_\ell X$	[///] (10.99 ± 0.2		_	
	$e^+\nu_e X_c$	(10.8 ± 0.4		_	
	$D\ell^+\nu_\ell X$	(9.7 ± 0.7		_	
I	$\overline{D}^0 \ell^+ \nu_{\ell}$	[III] (2.35 ± 0.0		2310	cs:
1	$\overline{D}^0 \tau^+ \nu_{\tau}$	(7.7 ± 2.5	5)×10 ⁻³	1911	P3.
1	$\overline{D}^*(2007)^0 \ell^+ \nu_{\ell}$	[III] (5.66 ± 0.2	22) %	2258	n theoretical
١	$\overline{D}^*(2007)^0 \tau^+ \nu_{\tau}$	(1.88 ± 0.2	20)%	1839	i theoretical
,	$D^{-}\pi^{+}\ell^{+}\nu_{\ell}$	(4.4 ± 0.4	1) × 10 ⁻³	2306	
1	$\overline{D}_0^*(2420)^0 \ell^+ \nu_\ell$, $\overline{D}_0^{*0} \rightarrow$	(2.5 ± 0.5	5) × 10 ⁻³	_	
	$\overline{D}_{2}^{-}(2460)^{0}\ell^{+}\nu_{\ell}, \ \overline{D}_{2}^{*0} \rightarrow$		_		lesign of LHCb),
1		(1.53 ± 0.3	16) × 10 ⁻³	2065	pesign of Liteby,
ı	$D^{(*)} \frac{D^- \pi^+}{\ln \pi \ell^+ \nu_{\ell}} (n \geq 1)$				
1	$D^{(*)} n \pi \ell^+ \nu_{\ell} (n \geq 1)$	(1.88 ± 0.2			
ı	$D^{*-}\pi^{+}\ell^{+}\nu_{\ell}$	(6.0 ± 0.4		2254	
i	$\overline{D}_1(2420)^{\bar{0}}\ell^+\nu_{\ell}, \ \overline{D}_1^0 \rightarrow$	(3.03 ± 0.2	20) × 10 ⁻³	2084	
	$\overline{D}_1^{\prime\prime}(2430)^0\ell^+ u_\ell, \ \overline{D}_1^{\prime0} ightarrow$	(2.7 ± 0.6			- ITZ ITZ
J	$D_1(2430)^*\ell \cdot \nu_\ell, \ D_1^* \rightarrow$	(2.7 ± 0.0) × 10 °	_	$ g. V_{cb} , V_{ub} ,\gamma$
	$\frac{D^{*-}\pi^{+}}{\overline{D}_{2}^{*}(2460)^{0}\ell^{+}\nu_{\ell}}$	(1.01 ± 0.2	24) × 10 ⁻³ S=2.0	2065	CNA
	$\overline{D}_{2}^{*0} \rightarrow D^{*-}\pi^{+}$	(1.01 ± 0.1	5-2.0	2000	SM
	$\overline{D}^0\pi^+\pi^-\ell^+\nu_\ell$	(1.7 ± 0.4	1) v 10-3	2301	
V	$\overline{D}^{*0}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell}$	(8 ± 5		2301	ays are powerful
	$D_{c}^{(*)-}K^{+}\ell^{+}\nu_{\ell}$	(6.1 ± 1.0		2240	3 1
I	3 -			_	
	$D_s^- K^+ \ell^+ \nu_\ell$	(3.0 + 1.4) × 10 ⁻⁴	2242	
	HTTP://PDG.LBL.GOV	Page 73	Created: 8/28/2020	18:31	J

2310 CS

1911

2258

1839

2306

2254

2084

2065

2242

B-meson decays I

 $D^{*-}K^{+}\ell^{+}\nu_{\ell}$

 $\pi^0 \rho^{\frac{s}{+}} \nu_{\rho}$

 $n\ell^+\nu_e$

 $\eta' \ell^+ \nu_{\ell}$

ω (+ νo

00 P+ Ve

 $p\overline{p}\ell^+\nu_{\ell}$

 $e^+\nu_e$

 $\mu^+ \nu_{\mu}$

 $\tau^{+}\nu_{-}$

 $\ell^+ \nu_\ell \gamma$

 $\mu^{+}\mu^{-}\mu^{+}\nu_{\mu}$

 $\mu^+ \nu_\mu \gamma$

 $p\overline{p}\mu^+\nu$..

 $p\overline{p}e^+\nu_a$

$e^+ \nu_e X_c$ $D\ell^+\nu_\ell X$

 $(2.9 \pm 1.9) \times 10^{-4}$

 $7.80 \pm 0.27 \times 10^{-5}$

 $3.9 \pm 0.5 \times 10^{-5}$

 $5.8 \begin{array}{c} + & 2.6 \\ - & 2.3 \end{array}$) $\times 10^{-6}$

 $8.2 \quad \begin{array}{c} + & 4.0 \\ - & 3.3 \end{array}) \times 10^{-6}$

8.6 ± 0.7)%

 2.90×10^{-07} to 1.07×10^{-06} CL = 90%

 1.09 ± 0.24) $\times 10^{-4}$ S=1.2

 $\times 10^{-6}$ CL=90%

 $\times 10^{-7}$ CL=90%

×10-6 CL=90%

× 10⁻⁶ CL=90%

× 10⁻⁶ CL=90%

 $\times 10^{-8}$ CL=95%

 $(2.3 \pm 0.8) \times 10^{-5}$

[///] (1.19 ± 0.09) $\times 10^{-4}$

[///] (1.58 ± 0.11) $\times 10^{-4}$

B+ DECAY MODES

B-mesons offer powerful $\overline{D}^0 \ell^+ \nu_\ell$

 $\ell^+ \nu_{\ell} X$

2185

2638

2611

2553

2582

2583

2467

2446

2467

2640

2639

2341

2640

2640

2639

2634

[///] (10.99 ± 0.28) % $(10.8 \pm 0.4)\%$ $(9.7 \pm 0.7)\%$ [III] (2.35 ± 0.09) % $(7.7 \pm 2.5) \times 10^{-3}$

Fraction (Γ_i/Γ)

Semileptonic and leptonic modes

5.66 ± 0.22) % $(1.88 \pm 0.20)\%$

 $(4.4 \pm 0.4) \times 10^{-3}$ $(2.5 \pm 0.5) \times 10^{-3}$

(1.53 ± 0.16) $\times 10^{-3}$

 $(1.88 \pm 0.25)\%$ $(6.0 \pm 0.4) \times 10^{-3}$

 $(3.03 \pm 0.20) \times 10^{-3}$

Scale factor/

Confidence level (MeV/c)

 $(2.7 \pm 0.6) \times 10^{-3}$

 $(1.7 + 0.4) \times 10^{-3}$ $+ 5) \times 10^{-4}$

 $(6.1 \pm 1.0) \times 10^{-4}$ $(3.0 + 1.4 \times 10^{-4}) \times 10^{-4}$

 $(1.01 \pm 0.24) \times 10^{-3}$ S=2.0

Page 73 Created: 8/28/2020 18:31

h theoretical

design of LHCb),

- |g. $|V_{cb}|, |V_{ub}|, \gamma$)

SM

2301 ays are powerful

Inclusive modes $D^0 X$ $\overline{D}^0 X$

± 4)% $D^+ X$ $(2.5 \pm 0.5)\%$ D^-X 9.9 ± 1.2)% (7.9 + 1.4)% $D_{\epsilon}^{+}X$

(1.10 + 0.40)% $D_s^- X$ $\left(\begin{array}{ccc}2.1&+&0.9\\ -&0.6\end{array}\right)\%$ $\Lambda_c^+ X$ $\overline{\Lambda}_{c}^{-}X$ (2.8 + 1.1)%

Ionathan Kriewald I PC LPC Seminar 26 February 2021

			Scale facto			Les deux	
	B+ DECAY MODES	Fraction (Γ_i/Γ)	Confidence lev	rel (MeV/c)			
D	Semi	leptonic and leptonic modes					
B-meson decays I	$\ell^+ \nu_\ell X$	[///] (10.99 ± 0.28) %		-			
	$e^+ \nu_e X_c$	(10.8 ± 0.4) %		-			
D massage offer manager	$\frac{D\ell^+}{\overline{D}^0}\ell^+\nu_\ell X$	$\pi^{+}\ell^{+}\ell^{-}$	B1	< 4.9	× 10 ⁻⁸	CI _00%	2620
$m{B}$ -mesons offer powerful	$\frac{D^{\circ}\ell \cdot \nu_{\ell}}{D^{\circ}\tau^{+}\nu}$	π ⁺ e ⁺ e ⁻	B1	< 8.0		CL=90% CL=90%	
$D_s^{*-}K^+\ell^+\nu_{\ell}$ (2.9 ±	± 1.9) × 10 ^{−4} 2:	$\pi^{+}\mu^{+}\mu^{-}$	B1		± 0.22)×10 ⁻⁸		2634
		$\pi^+ \nu \overline{\nu}$	B1	< 1.4	× 10 ⁻⁵		
		511 K ⁺ ℓ ⁺ ℓ ⁻	B1 [///]		$\pm 0.23) \times 10^{-7}$	S=1.1	2617
$\eta' \ell^+ \nu_{\ell}$ (2.3 ±	± 0.8) × 10 ^{−5} 2!	553 K ⁺ e ⁺ e ⁻	B1		± 0.7)×10 ⁻⁷		2617
		K ⁺ μ ⁺ μ ⁻	B1		± 0.22) × 10 ⁻⁷	S=1.2	
	,	K ⁺ μ ⁺ μ ⁻ nonresonant	B1	(4.37	$\pm 0.27) \times 10^{-7}$		2612
$p\overline{p}\ell^+\nu_{\ell}$ (5.8 ⁺	+ 2.6 - 2.3) × 10 ⁻⁶ 24	467 K++++	B1	< 2.25	× 10 ⁻³		
$p \overline{p} \mu^+ \nu_{\mu}$ < 8.5	$\times 10^{-6}$ CL=90% 24	$K^{+}\overline{\nu}\nu$	B1	< 1.6	× 10 ⁻⁵		
·	+ 4.0) × 10 ⁻⁶	ρ ⁺ νν̄	B1	< 3.0	× 10 ⁻⁵		
	_	K*(892)⊤ℓ⊤ℓ	B1 [///]		\pm 0.11) \times 10 ⁻⁶	S=1.1	2564
$e^+\nu_e$ < 9.8 $\mu^+\nu_\mu$ 2.90 × 10 ⁻⁰		K*(892) e e	B1	(1.55	$^{+~0.40}_{-~0.31}~)\times 10^{-6}$		2564
		$K^*(892)^+ \mu^+ \mu^-$	B1	(9.6	$\pm 1.0) \times 10^{-7}$		2560
$\ell^{+}\nu_{\ell}\gamma$ < 3.0		$K^*(892)^+ \nu \overline{\nu}$	B1	< 4.0	× 10 ⁻⁵	CL=90%	2564
$e^+\nu_e\gamma$ < 4.3		$K^{+}\pi^{+}\pi^{-}\mu^{+}\mu^{-}$	B1		\pm 0.4) \times 10 ⁻⁷		2593
$\mu^{+}\nu_{\mu}\gamma$ < 3.4		$639 \phi K^{+} \mu^{+} \mu^{-}$	B1	(7.9	+ 2.1 - 1.7)×10 ⁻⁸		2490
$\mu^{+}\mu^{-}\mu^{+}\nu_{\mu}$ < 1.6	×10 ⁻⁸ CL=95% 26	$\overline{\Lambda} p \nu \overline{\nu}$		< 3.0	× 10 ⁻⁵		
Inclusive modes		$\pi^{+} e^{+} \mu^{-}$	LF	< 6.4	× 10 ⁻³		
	E 0.7)%	$\pi^{+}e^{-}\mu^{+}$	LF	< 6.4	× 10 ⁻³		
	± 4)%	$- \pi^{+} e^{\pm} \mu^{\mp}$	LF	< 1.7	× 10 ⁻⁷		
	± 0.5)%	$-\pi^{+}e^{+}\tau^{-}$	LF	< 7.4		CL=90%	
D-X (9.9 ±	± 1.2)%	_ \pi^+ e^- \tau^+	LF	< 2.0		CL=90%	
$D_s^+ X$ (7.9	+ 1.4 - 1.3)%	$- \begin{vmatrix} \pi^+ e^{\pm} \tau^{\mp} \\ \pi^+ \mu^+ \tau^- \end{vmatrix}$	LF LF	< 7.5 < 6.2		CL=90% CL=90%	
		$-\frac{\pi^{+}\mu^{-}\tau^{+}}{\pi^{+}\mu^{-}\tau^{+}}$	LF LF	< 6.2 < 4.5		CL=90% CL=90%	
	+ 0.40 - 0.32) %	$\pi^+\mu^{\pm}\tau^{\mp}$	LF	< 7.2		CL=90%	
$\Lambda_c^+ X$ (2.1 +	- 0.9 - 0.6)%	- K ⁺ e ⁺ μ ⁻	LF	< 7.0		CL=90%	
	+ 1.1 - 0.9)%	$K^{+}e^{-}\mu^{+}$	LF	< 6.4	× 10 ⁻⁹	CL=90%	2615
/1 _c //	- 0.9 / "						

 $\times 10^{-8}$ CL=90% 2638

2638

2634

B-meson decays I

B-mesons offer powerful

	B+ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level (N	MeV/c)
		Semileptonic and leptonic modes		
	$\ell^+ \nu_\ell X$	[///] (10.99 ± 0.28) %		-
	$e^+ \nu_e X_c$	(10.8 ± 0.4) %		-
	$D\ell^+\nu_\ell X$	(07_+ 07)%		
ıl	$\overline{D}^0 \ell^+ \nu_\ell$	$\pi^{+}\ell^{+}\ell^{-}$	B1 <	4.9

```
D^{*-}K^{+}\ell^{+}\nu_{\ell}
                                                              \pm 1.9 \times 10^{-4}
                                                                                                    2185
                                                                                                                                                                                        \times 10^{-5} CL=90%
   \pi^{0}\ell^{\frac{s}{+}}\nu_{\ell}
                                                                                                                                                                                                                2638
                                                                                                                                                                      4.51 \pm 0.23 \times 10^{-7}
                                                                                                                                                                                                                2617
  n\ell^+\nu_{\ell}
                                                        3.9
                                                                                                                                                                     5.5 + 0.7 \times 10^{-7}
                                                                                                                                                                                                                 2617
  n'\ell^+\nu_{\ell}
                                                                   ... and hundreds more, most
                                                        2.3
                                                                                                                                                                     4.41 \pm 0.22 \times 10^{-7}
                                                                                                                                                                                                       S=1.2 2612
  ω (+ νo
                                             [///] ( 1.19
                                                                                                                                                                 (4.37 \pm 0.27) \times 10^{-7}
                                                                                                                                                                                                                2612
   00 P+ Ve
                                             [///] ( 1.58
                                                                    in excellent agreement with
   p\overline{p}\ell^+\nu_{\ell}
                                                       5.8
                                                                                                      SM!
                                                                                                                                                                                        \times 10^{-5} CL=90% 2617
      p \overline{p} u^+ \nu_{..}
                                                        8.5
                                                                                                                                                                                        × 10<sup>-5</sup> CI =90%
                                                                                                                                                                                                                2583
      p\overline{p}e^+\nu_a
                                                        8.2
                                                                                                                                                                     1.01 \pm 0.11 \times 10^{-6}
                                                                                                                                                                                                                2564
   e^+\nu_e
                                                                                                                                                                     1.55 \begin{array}{c} + & 0.40 \\ - & 0.31 \end{array} ) \times 10^{-6}
                                                                                                                K*(892)+e+e-
                                                                                                                                                   B1
                                                                                                                                                                                                                2564
  \mu^+ \nu_{\mu}
                                                 2.90 \times 10^{-07} to 1.07 \times 10^{-06}CL=90%
                                                                                                                K^*(892)^+ \mu^+ \mu^-
                                                                                                                                                   B1
                                                                                                                                                                     9.6 \pm 1.0 \times 10^{-7}
                                                                                                                                                                                                                2560
   \tau^{+}\nu_{-}
                                                        1.09 \pm 0.24 \times 10^{-4}
                                                                                        S=1.2
                                                                                                    2341
                                                                                                                                                                                        \times 10^{-5} CI = 90%
                                                                                                             K^*(892)^+ \nu \overline{\nu}
                                                                                                                                                   R1
                                                                                                                                                                                                                2564
  1+ v17
                                                                           \times 10^{-6} CL=90%
                                                                                                    2640
                                                                                                             K^{+}\pi^{+}\pi^{-}\mu^{+}\mu^{-}
                                                                                                                                                                  (4.3 \pm 0.4) \times 10^{-7}
                                                                                                                                                   B1
                                                                                                                                                                                                                2593
                                                                          \times 10^{-6} CL=90%
                                                                                                    2640
                                                                          \times 10^{-6} CL=90%
                                                                                                            \phi K^{+} \mu^{+} \mu^{-}
      \mu^+ \nu_\mu \gamma
                                                                                                    2639
                                                                                                                                                                                                                2490
\mu^{+}\mu^{-}\mu^{+}\nu_{n}
                                                                          \times 10^{-8} CL=95%
                                                                                                    2634
                                                                                                            \Lambda_{DV}\overline{\nu}
                                                                                                                                                                                        \times 10^{-5} CL=90% 2430
                                                                                                                                                                     3.0
                                                                                                             \pi^{+}e^{+}\mu^{-}
                                                                                                                                                   LF
                                                                                                                                                                                        \times 10^{-3} CL=90% 2637
                                          Inclusive modes
                                                                                                                                                                                        × 10<sup>-3</sup> CL=90% 2637
D^0 X
                                                        8.6 ± 0.7
                                                                                                                                                                                        \times 10^{-7} CL=90% 2637
\overline{D}^0 X
                                                                                                                                                   1 F
                                                                                                                                                                    1.7
D^+ X
                                                              ± 0.5 )%
                                                                                                                                                                                        \times 10^{-5} CL=90% 2338
D^- X
                                                              ± 1.2 )%
                                                                                                                                                                                        \times 10^{-5} CL=90% 2338
                                                                                                                                                   1 F
                                                                                                                                                                     7.5
D_{\epsilon}^{+}X
                                                                                                                                                                                        \times 10^{-5} CL=90% 2333
                                                                                                                                                                                        \times 10^{-5} CL=90% 2333
D_s^- X
                                                    (1.10 + 0.40 \atop -0.32)\%
                                                                                                                                                                                        \times 10^{-5} CL=90% 2333
                                                                                                             \pi^{+} \mu^{\pm} \tau^{\mp}
                                                                                                                                                                     7.2
```

 $\Lambda_c^+ X$

 $\overline{\Lambda}_{c}^{-}X$

(2.8 + 1.1)%

 $K^{+}e^{+}\mu^{-}$

 $K^{+}e^{-}\mu^{+}$

IF

7.0

6.4

 $\times 10^{-9}$ CL=90% 2615

 $\times 10^{-9}$ CL=90% 2615

\emph{B} -meson decays II

For example $B_{(s)} \to \mu^+ \mu^-$ Rare FCNC decays recently measured, in excellent agreement with SM predictions

Strongly constrains many (flavour changing) **BSM** constructions (e.g. SUSY) If new physics contributes to flavour (violating) processes:

- ⇒No new flavour violating couplings (forcing it to higher order)
- ⇒New physics at large scales

B-meson decays II

For example $B_{(s)} \rightarrow \mu^+ \mu^-$

Rare FCNC decays recently measured, in excellent agreement with SM predictions

eviations from SM $\Rightarrow cl\nu \text{ and } b \rightarrow s\ell\ell$

BUT: Significant deviations from SM observed in certain $b \to c\ell\nu$ and $b \to s\ell\ell$ decays!

Strongly cons

If new physics continuates to havour (violating) processes.

- ⇒No new flavour violating couplings (forcing it to higher order)
- ⇒New physics at large scales

(. SUSY)

Observables in $b \rightarrow c\ell\nu$

$$\mathbf{R}_{\mathbf{D}(*)} = \frac{\mathrm{BR}(B \to D^{(*)} \tau \nu)}{\mathrm{BR}(B \to D^{(*)} \ell \nu)}$$

- Charged current tree-level decay
- Theoretically clean: hadronic uncertainties cancel in the ratio
- **SM**: $R_D = 0.299 \pm 0.003$, $R_{D^*} = 0.258 \pm 0.005$
- \circ Exp.: $R_D = 0.340 \pm 0.030$, $R_{D^*} = 0.295 \pm 0.014$

- \Rightarrow SM predictions are significantly smaller than experimental results, (combined) deviation from SM $\sim 3.1\,\sigma!$
 - \Rightarrow Violation of LFU? New physics coupled to τ ?

Observables in $b \rightarrow s\ell\ell$

$$\mathbf{R}_{\mathbf{K^{(*)}}} = \frac{\mathrm{BR}(B \to K^{(*)}\mu\mu)}{\mathrm{BR}(B \to K^{(*)}ee)}$$

- o FCNC penguin decay
- Theoretically clean: hadronic uncertainties cancel in the ratio
- **SM**: $R_K = R_{K^*} \simeq 1$
- Exp.:

$$R_K = 0.845 \pm 0.06, R_{K^*} = 0.69 \pm 0.12$$

- Other deviations in angular observables
- (Local) deviations from SM $\sim 2 3\sigma!$
- ⇒ 2nd system with violation of LFU?
- \Rightarrow Strong hint on **new physics coupled** to μ !

15

Observables in $b \rightarrow s\ell\ell$

$$R_{K^{(*)}} = \frac{\mathrm{BR}(B \to K^{(*)}\mu\mu)}{\mathrm{BR}(B \to K^{(*)}\mu\mu)}$$

- o FCNC penguin decay
- Theoretically clean: had uncertainties cancel in the
- **SM**: $R_K = R_{K^*} \simeq 1$
- Exp.:

$$R_K = 0.845 \pm 0.06, R_{K^*} = 0.69 \pm 0.12$$

- Other deviations in angular observables
- (Local) deviations from SM $\sim 2 3\sigma!$
- ⇒ 2nd system with violation of LFU?
- \Rightarrow Strong hint on **new physics coupled** to μ !

Electroweak penguins in $b \to s\ell\ell$

FCNC transitions in the SM are "loop-suppressed":

13 / 39

Electroweak penguins in $b \rightarrow s\ell\ell$

FCNC transitions in the SM are "loop-suppressed":

Heavy BSM contributions are "mass suppressed" \Rightarrow If expected to be large, should contribute at tree-level:

Electroweak penguins in $b \rightarrow s\ell\ell$

FCNC transitions in the SM are "loop-suppressed":

Heavy BSM contributions are "mass suppressed" \Rightarrow If expected to be large, should contribute at tree-level:

Electroweak penguins in $b \rightarrow s\ell\ell$

FCNC transitions in the SM are "loop-suppressed":

Heavy BSM contributions are "mass suppressed" \Rightarrow If expected to be large, should contribute at tree-level:

EFT intermezzo I

Effective Field Theory \simeq SM lagrangian + non-renormalisable operators

Only valid in certain energy regime: heavy fields are "integrated out"

EFT intermezzo I

Effective Field Theory \simeq SM lagrangian + non-renormalisable operators

Only valid in certain energy regime: heavy fields are "integrated out"

 \Rightarrow Fermi constant G_F is an *effective* coupling constant

EFT intermezzo I

Effective Field Theory \simeq SM lagrangian + non-renormalisable operators

Only valid in certain energy regime: heavy fields are "integrated out"

 \Rightarrow Fermi constant G_F is an effective coupling constant

EFT Lagrangian for $b \to s\ell\ell$: $\mathcal{L}_{\text{eff}} \propto \frac{4G_F}{\sqrt{2}} \sum_k C_k(\mu) \mathcal{O}_k(\mu)$

- Effective operators O_k are accompanied by effective coupling constants C_k (Wilson coefficients)
- o Couplings run! (depend on energy scale μ)

${\cal O}_7^{ij} = rac{e m_{d_j}}{(4\pi)^2} (ar d_i \sigma_{\mu u} P_R d_j) F^{\mu u} ,$	$\mathcal{O}_9^{ij;\ell\ell'} = \frac{e^2}{(4\pi)^2} (\bar{d}_i \gamma^{\mu} P_L d_j) (\bar{\ell} \gamma_{\mu} \ell') ,$
${\cal O}_{10}^{ij;\ell\ell'} = rac{e^2}{(4\pi)^2} (ar{d}_i \gamma^\mu P_L d_j) (ar{\ell} \gamma_\mu \gamma_5 \ell') ,$	$O_S^{ij;\ell\ell'} = \frac{e^2}{(4\pi)^2} (\bar{d}_i P_R d_j) (\bar{\ell} \ell'),$
${\cal O}_P^{ij;\ell\ell'} = rac{e^2}{(4\pi)^2} (ar d_i P_R d_j) (ar\ell \gamma_5 \ell') ,$	$\mathcal{O}_{T}^{ij;\ell\ell'} = \frac{e^{2}}{(4\pi)^{2}} (\bar{d}_{i}\sigma_{\mu\nu} d_{j}) (\bar{\ell}\sigma^{\mu\nu} \ell') ,$
$O_{T5}^{ij;\ell\ell'} = \frac{e^2}{(4\pi)^2} (\bar{d}_i \sigma_{\mu\nu} d_j) (\bar{\ell} \sigma^{\mu\nu} \gamma_5 \ell'),$	

EFT intermezzo II

⇒All diagrams contribute to the **Wilson** coefficients!

EFT intermezzo II

⇒All diagrams contribute to the **Wilson** coefficients!

- Different energy bins are sensitive on different Wilson coefficients
- ⇒ Fit Wilson coefficients on data to discriminate between new physics scenarios!

Status of the global fit

New LHCb analyses of angular observables in $B \to K^* \mu \mu$ [PRL 125 (2020) 011802, arXiv:2012.13241]

- - -: old data

☆: SM

♦: former best fit (B.F.)

★: new B.F.

[C. Hati, JK, J. Orloff, A. M. Teixeira: arXiv:2012.05883]

RG running-induced universal contribution (from large au couplings) $\leadsto R_{D^{(*)}}$

- New physics scale in $b \to s\ell\ell$: $\Lambda_{\rm NP} \simeq m_{\rm NP}/C_{\rm NP} \sim \mathcal{O}(10-30\,{\rm TeV})$
- New physics scale in $b \to c\ell\nu$: $\Lambda_{\rm NP} \sim \mathcal{O}(1-3\,{\rm TeV})$
- \Rightarrow Single particle explanations need very different couplings, for $b\to c\ell\nu$ a low mass is required ${\cal O}({
 m TeV})$

- New physics scale in $b \to s\ell\ell$: $\Lambda_{\rm NP} \simeq m_{\rm NP}/C_{\rm NP} \sim \mathcal{O}(10-30\,{\rm TeV})$
- New physics scale in $b \to c\ell\nu$: $\Lambda_{\rm NP} \sim \mathcal{O}(1-3\,{\rm TeV})$
- \Rightarrow Single particle explanations need very different couplings, for $b\to c\ell\nu$ a low mass is required $\mathcal{O}({\rm TeV})$
 - o $b \rightarrow s\ell\ell$ requires **FCNC** at *tree*-level (competing with SM at 1-loop)
 - $\circ b \to c\ell\nu$ requires charged current at tree-level (competing with SM at tree-level)
- ⇒ Stringent constraints from cLFV observables are expected!

- New physics scale in $b \to s\ell\ell$: $\Lambda_{\rm NP} \simeq m_{\rm NP}/C_{\rm NP} \sim \mathcal{O}(10-30\,{\rm TeV})$
- New physics scale in $b \to c\ell\nu$: $\Lambda_{\rm NP} \sim \mathcal{O}(1-3\,{\rm TeV})$
- \Rightarrow Single particle explanations need very different couplings, for $b \to c \ell \nu$ a low mass is required $\mathcal{O}({\rm TeV})$
 - o $b \rightarrow s\ell\ell$ requires **FCNC** at *tree*-level (competing with SM at 1-loop)
 - $\circ b \to c\ell\nu$ requires charged current at tree-level (competing with SM at tree-level)
- ⇒ Stringent constraints from cLFV observables are expected!
 - Heavy Z' can explain only $b \to s\ell\ell$, most models ruled out by $B_s \bar{B}_s$ mixing

17 / 39

- New physics scale in $b \to s\ell\ell$: $\Lambda_{\rm NP} \simeq m_{\rm NP}/C_{\rm NP} \sim \mathcal{O}(10-30\,{\rm TeV})$
- New physics scale in $b \to c\ell\nu$: $\Lambda_{\rm NP} \sim \mathcal{O}(1-3\,{\rm TeV})$
- \Rightarrow Single particle explanations need very different couplings, for $b \to c \ell \nu$ a low mass is required $\mathcal{O}(\text{TeV})$
 - $\circ \ b \to s\ell\ell$ requires **FCNC** at *tree*-level (competing with SM at 1-loop)
 - \circ $b \to c\ell\nu$ requires charged current at tree-level (competing with SM at tree-level)
- ⇒ Stringent constraints from cLFV observables are expected!
 - Heavy Z' can explain only $b \to s\ell\ell$, most models ruled out by $B_s \bar{B}_s$ mixing
 - \circ Scalar $SU(2)_L$ -singlet leptoquark S_1 : only $b \to c\ell\nu$
 - \circ Scalar $SU(2)_L$ -triplet leptoquark S_3 : only $b \to s\ell\ell$
 - \circ Vector $SU(2)_L$ -triplet leptoquark V_3 : ruled out by $B o K \nu \bar{\nu}$

17 / 39

Requirements on (minimal) single-particle BSM explanations

- New physics scale in $b \to s\ell\ell$: $\Lambda_{\rm NP} \simeq m_{\rm NP}/C_{\rm NP} \sim \mathcal{O}(10-30\,{\rm TeV})$
- New physics scale in $b \to c\ell\nu$: $\Lambda_{\rm NP} \sim \mathcal{O}(1-3\,{\rm TeV})$
- \Rightarrow Single particle explanations need very different couplings, for $b \to c \ell \nu$ a low mass is required $\mathcal{O}(\mathrm{TeV})$
 - o $b \to s \ell \ell$ requires FCNC at tree-level (competing with SM at 1-loop)
 - \circ $b \to c\ell\nu$ requires charged current at tree-level (competing with SM at tree-level)
- ⇒ Stringent constraints from cLFV observables are expected!
 - Heavy Z' can explain only $b \to s\ell\ell$, most models ruled out by $B_s \bar{B}_s$ mixing
- \circ Scalar $SU(2)_L$ -singlet leptoquark S_1 : only $b \to c\ell\nu$
- \circ Scalar $SU(2)_L$ -triplet leptoquark S_3 : only $b \to s\ell\ell$
- \circ Vector $SU(2)_L$ -triplet leptoquark V_3 : ruled out by $B \to K \nu \bar{\nu}$
- \Rightarrow Vector $SU(2)_L$ -singlet leptoquark V_1 : explains both anomalies, heavily constrained from cLFV!

Other approaches rely on more non-minimal field content

V_1 vector leptoquark

Leptoquarks: scalar or vector fields coupling leptons to quarks (typically arise in GUTs)

Leptoquark Lagrangian:
$$\mathcal{L} \supset V_1^{\mu} \left(\bar{d}_L^i \gamma_{\mu} K_L^{ik} \ell_L^k + \bar{u}_L^j V_{ji}^{\dagger} \gamma_{\mu} K_L^{ik} U_{kj}^{\mathsf{P}} \nu_L^j \right)$$

Both $b \to c\ell\nu$ and $b \to s\ell\ell$ at *tree*-level:

- $\circ~K_L^{23}K_L^{33}$ contributes to $b\to c\tau\nu$ and $b\to s\tau\tau$
- $\begin{array}{l} \Rightarrow \text{ (Large) } C_9^{bs\tau\tau} \text{ feeds universally into} \\ C_9^{bs\mu\mu} \text{ and } C_9^{bsee} \text{ (RG running)} \\ \Rightarrow \Delta C_9^{\text{univ.}} \end{array}$

Non-universality from universal gauge interactions

Gauge couplings are strictly universal; how to explain LFU Violation?

- ▶ Add n vector-like (VL) leptons mixing with (left-handed) SM leptons effective LQ-q- ℓ couplings $K_L^{q\ell}$ parametrised via non-unitary matrix (from mixing with heavy states)
- \Rightarrow Induce LFUV structure in $C_{9,10}^{ij;\ell\ell'}$ Wilson coefficients (tree-level)

$$\left(C_{9,10}^{ij;\ell\ell'} = \mprac{\pi}{\sqrt{2}G_F\,lpha\,V_{3j}\,V_{3i}^*}\,rac{1}{m_{V_1}^2}K_L^{i\ell'}\,K_L^{j\ell*}
ight)$$

Non-universality from universal gauge interactions

Gauge couplings are strictly universal; how to explain LFU Violation?

- $ightharpoonup {
 m Add} \ n \ {
 m vector-like} \ ({
 m VL}) \ {
 m leptons} \ {
 m mixing} \ {
 m with} \ ({
 m left-handed}) \ {
 m SM} \ {
 m leptons} \ {
 m effective} \ {
 m LQ-} q \ell \ {
 m couplings} \ K_L^{q\ell} \ {
 m parametrised} \ {
 m via} \ {
 m non-unitary} \ {
 m matrix} \ ({
 m from} \ {
 m mixing} \ {
 m with} \ {
 m heavy} \ {
 m states})$
- \Rightarrow Induce LFUV structure in $C_{9,10}^{ij;\ell\ell'}$ Wilson coefficients (tree-level)

$$\left(C_{9,10}^{ij;\ell\ell'} = \mp rac{\pi}{\sqrt{2}G_F \, lpha \, V_{3j} \, V_{3i}^*} \, rac{1}{m_{V_1}^2} K_L^{i\ell'} \, K_L^{j\ell*}
ight)$$

- \Rightarrow Required mixing pattern could induce non-universal $Z \to \ell\ell^{(\prime)}$ (at tree-level) \rightsquigarrow VL leptons have to be $SU(2)_L$ -doublets!!
- \Rightarrow $R_{K^{(*)}}$ and $R_{D^{(*)}}$ can be explained, tight constraints from cLFV, EWPO, colliders...

Results: V_1 leptoquark & non-unitary mixing from **VL** leptons

Observables taken into account:

cLFV:
$$(\mu - e)$$
-conversion, $\ell \to \ell' \gamma$, $\ell \to \ell' \ell' \ell'$, $\tau \to (\rho, \phi) \ell$

$$\textbf{LFV} \colon B_{d,s} \to \ell^{\pm}\ell'^{\mp}, \; K_L \to \mu^{\pm}e^{\mp}, \; B \to (K,K^*,\pi)\ell^{\pm}\ell'^{\mp}, \; K \to \pi\ell^{\pm}\ell'^{\mp}, \; \left(B \to K\nu\bar{\nu}, \; K \to \pi\nu\bar{\nu}\right)$$

EWPO:
$$g_V^\ell,\ g_A^\ell,\ \Gamma_Z^\ell,\ Z \to \ell \ell^{(\prime)}$$

LFC:
$$B_{d,s} \to \mu\mu$$
, $B_s \to \phi\mu\mu$, $B \to K^{(*)}\mu\mu$, $B \to K^{(*)}ee$, $B \to D^{(*)}\tau\nu$

LFU:
$$R_{K^{(*)}}$$
, $R_{D^{(*)}}$, angular observables and asymmetries in $b \to s \ell \ell$ à la P_5'

Direct searches (colliders): $m_{V_1} \gtrsim 1.5 \text{ TeV}$

Results: V_1 leptoquark & non-unitary mixing from VL leptons

Random scan, taking all $\mathsf{SM}\text{-}(q,\boldsymbol{\ell})\text{-}\mathsf{couplings}$ of V_1 into account, complying with all constraints:

[C. Hati, JK, J. Orloff, A. M. Teixeira JHEP12(2019)006]

Results: V_1 leptoquark & non-unitary mixing from **VL** leptons Confrontation with the most constraining observables (cLFV decays)

Future limits: $CR(\mu - e, Al) \lesssim \mathcal{O}(10^{-17})$ (Mu2E, COMET)

Results: V_1 leptoquark & non-unitary mixing from **VL** leptons Confrontation with the most constraining observables (cLFV decays)

[C. Hati, JK, J. Orloff, A. M. Teixeira JHEP12(2019)006]

Future limits: $CR(\mu - e, Al) \lesssim \mathcal{O}(10^{-17})$ (Mu2E, COMET)

Results: V_1 leptoquark & non-unitary mixing from **VL** leptons Confrontation with the most constraining observables (cLFV decays)

[C. Hati, JK, J. Orloff, A. M. Teixeira JHEP12(2019)006]

Future limits: $CR(\mu - e, Al) \lesssim \mathcal{O}(10^{-17})$ (Mu2E, COMET)

Prospects

BELLE II will improve sensitivities in several b and τ decay channels! Fit of 9 LQ couplings: [C. Hati, JK, J. Orloff, A. M. Teixeira: arXiv:2012.05883]

\boldsymbol{B} anomalies

Although most flavour observables are in excellent agreement with the SM, some show very peculiar deviations hinting on LFUV $(R_{D^{(*)}}, R_{K^{(*)}})$...

- o SM extensions via V_1 -leptoquark offer viable explanations for both \emph{B} -decay anomalies
- Non-unitary coupling matrix needed:
 - ⇒ Add 3 generations of **VL leptons** (amongst other possibilities)
 - ⇒ Strong constraints from LFV meson decays & cLFV observables
- Large region of the parameter space to be probed in the near future!

Flavour (de) light: anomalous magnetic moments

$(g-2)_{\ell}$: anomalous magnetic moments in the SM I

Electromagnetic (lepton) currents can be parametrised via:

$$\mathcal{J}_{\mu} = \bar{\ell}(p') \left[\mathbf{F_1}(k^2) \gamma_{\mu} + \frac{i}{2m_{\ell}} \mathbf{F_2}(k^2) \sigma_{\mu\nu} k^{\nu} - \mathbf{F_3}(k^2) \gamma_5 \sigma_{\mu\nu} k^{\nu} + \mathbf{F_4}(k^2) (k^2 \gamma_{\mu} - 2m_{\ell} k_{\mu}) \gamma_5 \right] \ell(p)$$

Magnetic dipole moment defined as $\mu_\ell = g_\ell \frac{e}{4m_\ell}$

From Dirac equation: Landé factor g_ℓ given by:

$$g_{\ell} = 2(\mathbf{F_1}(0) + \mathbf{F_2}(0))$$

At tree-level:
$$F_1(0) = 1$$
, $F_2(0) = 0$ $\Rightarrow g_\ell = 2 \ (\equiv g_\ell^{\mathsf{Dirac}})$

Contributions to F_2 are generated at *loop*-level

$$\Rightarrow$$
 define anomalous magnetic moment: $\frac{a_{\ell}}{g_{\ell}^{\text{Dirac}}} \equiv \frac{g_{\ell} - g_{\ell}^{\text{Dirac}}}{g_{\ell}^{\text{Dirac}}} (= F_2(0))$

 $(g-2)_{\mu}$: anomalous magnetic moments in the SM II

First leading correction to ${\color{blue}a_{\ell}} = {\color{blue}F_2}(0) = {\color{blue}\frac{\alpha}{2\pi}}$ calculated in 1948

 $(g-2)_{\mu}$: anomalous magnetic moments in the SM II

First leading correction to ${\it a_\ell} = {\it F_2}(0) = {\scriptstyle lpha \over 2\pi}$ calculated in 1948

Since then: $a_\ell = a_\ell^{\sf QED} + a_\ell^{\sf had} + a_\ell^{\sf EW}$

with QED at 5-loop, EW contributions at 2-loop + LQCD for HVP and HLxL

$(g-2)_{\mu}$: anomalous m

First leading correction

Since then: $a_{\ell} = a_{\ell}^{\text{QED}}$ with QED at 5-loop, E

P and HLxL

First leading correction

P and HLxL

$(g-2)_{\mu}$: anomalous m

First leading correction

PRL **109**, 111808 (2012)

PHYSICAL REV

25 / 39

FIG. 2. Self-energy-like diagrams representing 32 gauge-invariant subsets contributing to the lepton g-2 at the tenth order. Solid lines represent lepton lines propagating in a weak magnetic field.

25 / 39

$(g-2)_{\mu}$: anomalous magnetic moments in the SM II

First leading correction to ${\it a_{\ell}} = {\it F_{\rm 2}}(0) = {\scriptstyle \alpha \over 2\pi}$ calculated in 1948

Since then:
$$a_\ell = a_\ell^{\rm QED} + a_\ell^{\rm had} + a_\ell^{\rm EW}$$

For the muon magnetic moment a_{μ} :

- o QED makes up $\gtrsim 99.99\%$ of contributions, mostly m_{ℓ_i} and α_e only input parameters
- o Extremely high precision calculation
- o Extremely high precision measurement
- ⇒ Experimental uncertainties on par with theoretical uncertainties (numerical & Lattice)

Today: $\Delta a_{\mu} \equiv a_{\mu}^{\rm exp} - a_{\mu}^{\rm SM} \sim (2.7 \pm 0.7) \times 10^{-9} \Rightarrow 3.7 \,\sigma$ discrepancy

$$\alpha_e$$
 and $(g-2)_{e,\mu}$

$$\Delta a_\mu \equiv a_\mu^{\rm exp} - a_\mu^{\rm SM} \sim (2.7 \pm 0.7) \times 10^{-9} \ \Rightarrow \textbf{3.7}\, \boldsymbol{\sigma} \ {\rm discrepancy} \ [2006.04822]$$

$$\label{eq:NP_expectation} \text{NP Expectation for } \Delta a_e \left\{ \begin{array}{l} \text{ scaling of eff. dipole ops.: } \frac{\Delta a_e}{\Delta a_\mu} \sim \frac{m_e}{m_\mu} \sim 5 \times 10^{-3} \\ \text{ minimal flavour violation: } \frac{\Delta a_e}{\Delta a_\mu} \sim \frac{m_e^2}{m_\mu^2} \sim 2.5 \times 10^{-5} \end{array} \right.$$

Recently improved measurement of α_e with Cs atoms (at 0.2 ppb):

$$\Rightarrow \Delta a_e \sim (-0.88 \pm 0.36) \times 10^{-12} \text{ vs } \Delta a_\mu \sim (2.7 \pm 0.7) \times 10^{-9} \Rightarrow \frac{\Delta a_e}{\Delta a_\mu} \sim -3 \times 10^{-4}$$

- \circ 2.5 σ tension in electron has "wrong" sign and order of magnitude!
 - ⇒Another strong hint towards LFUV new physics?

Most attempts to explain both $\Delta a_{\mu,e}$ require light new physics à la dark photon, axion, Z'...

Atomki experiment: a new light resonance?

In 2015, the ATOMKI collaboration claimed a $6.8\,\sigma$ excess in

 $^8{\rm Be}^* \to ^8{\rm Be}\gamma (\to e^+e^-)$ transitions, compatible with a <code>resonance</code> [PRL 116 4, 042501]

- \circ Create excited ${}^8\mathrm{Be}^*$ from a p-beam on ${}^7\mathrm{Li}$
- \circ Nucleus de-excites emitting a γ
- \circ Measure angular distribution of e^+e^- form internal pair creation

Figures from [1608.03591]

1" 0" 18.15

Atomki result: a new light resonance $m_{X} \sim 17 \, \mathrm{MeV}$

In 2015, the ATOMKI collaboration claimed to have seen a $6.8\,\sigma$ excess in

 $^8{
m Be}^*
ightarrow ^8{
m Be}\gamma (
ightarrow e^+e^-)$ transitions, compatible with a resonance [PRL 116 4, 042501]

The result in particular:

- Measurement of Internal Pair Creation Correlation
- Open circles "control region": asymmetric energy distribution
- Closed circles "signal region": symmetric energy distribution

Atomki result: a new light resonance $m_{X} \sim 17 \, \mathrm{MeV}$

In 2015, the ATOMKI collaboration claimed to have seen a $6.8\,\sigma$ excess in

 $^8{
m Be}^* o{}^8{
m Be}\gamma(o e^+e^-)$ transitions, compatible with a <code>resonance</code> [PRL 116 4, 042501]

The result in particular:

- Measurement of Internal Pair Creation Correlation
- Open circles "control region": asymmetric energy distribution
- Closed circles "signal region": symmetric energy distribution
- \Rightarrow Signal consistent with the creation and subsequent decay of a bosonic resonance $m\sim 17~{\rm MeV}$

Requirements on X_{17} : nature & couplings to matter (I)

Possible Nuclear transitions in detail:

$${}^{8}\mathrm{Be}^{*\prime}(j^{\pi}=1^{+},T=1^{*})\rightarrow{}^{8}\mathrm{Be}^{0}(j^{\pi}=0^{+},T=0),\ E=17.64\,\mathrm{MeV}$$
 ${}^{8}\mathrm{Be}^{*}\left(j^{\pi}=1^{+},T=0^{*}\right)\rightarrow{}^{8}\mathrm{Be}^{0}(j^{\pi}=0^{+},T=0),\ E=18.15\,\mathrm{MeV}$ \Leftarrow

Resonance observed in iso-spin conserving transition but absent in iso-spin violating one!

Possible candidates for X_{17} :

- \circ Light scalar resonance \Rightarrow would violate angular momentum conservation in $1^+ \to 0^+$ transition $\ref{eq:constraint}$
- Light pseudo-scalar: ok with angular momentum √, but minimal models for ALP already excluded in the required coupling range ✗ [1609.01669]
- \circ **Light vector**: ok with angular momentum \checkmark , severe constraints on couplings (more details on next slides)
- o **Light axial vector**: ok with angular momentum √, explored e.g. in [1612.01525]

Other exotic possibilities have been explored from open string QED mesons to "4 bare quarks" interpretations

Requirements on (vector) X_{17} : nature & couplings to matter (II)

Parametrise Z' neutral currents via effective couplings to fermions (ψ) :

$$J_{Z'}^{\mu} = e\bar{\psi}_i \gamma^{\mu} (\varepsilon_{ij}^V + \gamma^5 \varepsilon_{ij}^A) \psi_j$$

Immediate constraint: on-shell $X_{17} \equiv Z'$ must decay inside detector $\mathcal{O}(cm)$:

$$\Rightarrow |\varepsilon_{ee}^V| \gtrsim 1.3 \times 10^{-5} \sqrt{\text{BR}(Z' \to e^+e^-)}$$

Requirements on (vector) X_{17} : nature & couplings to matter (II)

Parametrise Z' neutral currents via effective couplings to fermions (ψ) :

$$J_{Z'}^{\mu} = e\bar{\psi}_i \gamma^{\mu} (\varepsilon_{ij}^V + \gamma^5 \varepsilon_{ij}^A) \psi_j$$

Immediate constraint: on-shell $X_{17} \equiv Z'$ must decay inside detector $\mathcal{O}(\text{cm})$:

$$\Rightarrow |\varepsilon_{ee}^V| \gtrsim 1.3 \times 10^{-5} \sqrt{\text{BR}(Z' \to e^+e^-)}$$

A fit of the ATOMKI data results in:

$$\frac{\Gamma(^8\text{Be}^* \to ^8\text{Be} + Z')}{\Gamma(^8\text{Be}^* \to ^8\text{Be} + \gamma)} \simeq (6 \pm 1) \times 10^{-6} \text{ for } m_{Z'} \simeq 17.01 \pm 0.16 \,\text{MeV}$$

Conservative range: $|\varepsilon_n^V + \varepsilon_p^V| \simeq (2-15) \times 10^{-3} \sqrt{\text{BR}(Z' \to e^+e^-)}^{-1}$

Only the ATOMKI collaboration published results on such nuclear transitions...

 \circ Original result 2015; since then new detector to re-investigate $^8\mathrm{Be}$ transition

- $\circ~$ Original result 2015; since then new detector to re-investigate $^8{\rm Be}$ transition
- \circ New result 2019: similar resonance at $4.9\,\sigma$

- Original result 2015; since then new detector to re-investigate ⁸Be transition
- $\circ~$ New result 2019: similar resonance at $4.9\,\sigma$
- \circ Similar experiment using $^4{\rm He^*} \to {}^4{\rm He^0}$: similar signal at $7.2\,\sigma$ compatible with $^8{\rm Be}$ (?)

- \circ Original result 2015; since then new detector to re-investigate $^8{\rm Be}$ transition
- \circ New result 2019: similar resonance at $4.9\,\sigma$
- \circ Similar experiment using $^4{\rm He}^* \to {}^4{\rm He}^0$: similar signal at $7.2\,\sigma$ compatible with $^8{\rm Be}$ (?)
- New study by Feng et. al. [2006.01151] suggests both are highly consistent with the same new vector!

Cross-checks of the ⁸Be anomaly

- Original result 2015; since then new detector to re-investigate ⁸Be transition
- New result 2019: similar resonance at 4.9σ
- Similar experiment using ${}^{4}\mathrm{He}^{*} \rightarrow {}^{4}\mathrm{He}^{0}$: similar signal at $7.2\,\sigma$ compatible with ⁸Be (?)
- New study by Feng et. al. [2006.01151] suggests both are highly consistent with the same new vector!
- ⇒ Has a fifth force been discovered?
 - Plans to study similar transitions in ¹²C for conclusive confirmation

Model independent constraints on (vector) $X_{17} \Rightarrow Z'$

New light vector from $\pmb{U(1)}$ extension of the SM with $J^\mu_{Z'}=ear{\psi}_i\gamma^\mu(arepsilon^V_{ij}+\gamma^5arepsilon^A_{ij})\psi_j$

Recall from $^8{\rm Be}$ anomaly: $|\varepsilon^V_n+\varepsilon^V_p|\simeq (2-15)\times 10^{-3}\,,\ |\varepsilon^V_{ee}|\gtrsim 1.3\times 10^{-5}$

Other constraints:

- $\circ~$ KL0E-2 bound for $e^+e^-\to\gamma Z'(\to e^+e^-)$ leads to $\sqrt{\varepsilon_{ee}^{V2}+\varepsilon_{ee}^{A2}}\lesssim 2\times 10^{-3}$
- $\circ\,$ NA48/2 bound for $\pi^0 \to \gamma Z'$ leads to $|\varepsilon_p^V| \lesssim 1.2 \times 10^{-3}$
- \circ NA64 electron beam dump: $\sqrt{|\varepsilon_{ee}^V|^2 + |\varepsilon_{ee}^A|^2} \gtrsim 6.8 \times 10^{-4} \sqrt{\mathrm{BR}(\mathbf{Z'} \to e^+e^-)}^{-1}$
- \circ Neutrino scattering (TEXONO & CHARM-II): $|\varepsilon_{\nu_e\nu_e}^A|\lesssim 1.2\times 10^{-5}$ & $|\varepsilon_{\nu_\mu\nu_\mu}^A|\lesssim 12.2\times 10^{-5}$
- Atomic parity violation (effective weak charge of Cs): $|\varepsilon_{ee}^A| \lesssim 2.6 \times 10^{-9}$

Model independent constraints on (vector) $X_{17} \Rightarrow Z'$

New light vector from
$$\pmb{U(1)}$$
 extension of the SM with $J^\mu_{Z'}=ear{\psi}_i\gamma^\mu(arepsilon^V_{ij}+\gamma^5arepsilon^A_{ij})\psi_j$

Recall from
$$^8{\rm Be}$$
 anomaly: $|\varepsilon^V_n+\varepsilon^V_p|\simeq (2-15)\times 10^{-3}\,,\ |\varepsilon^V_{ee}|\gtrsim 1.3\times 10^{-5}$

Other constraints:

- $42 \lesssim 2 \times 10^{-3}$ o KLOE-2
- o NA48/2 \Rightarrow Can we explain the g-2 anomalies
- (hinting at **LFUV**) with this light Z'? ○ NA64 ele
- Neutrin

$$3R(Z' \to e^+e^-)^{-1}$$

$$|\varepsilon_{\nu_{\mu}\nu_{\mu}}^{A}| \lesssim 12.2 \times 10^{-\circ}$$
• Atomic parity violation (effective weak charge of Cs): $|\varepsilon_{cc}^{A}| \le 2.6 \times 10^{-\circ}$

Atomic parity violation (effective weak charge of Cs): $|\varepsilon_{ee}^A| \lesssim 2.6 \times 10^{-9}$

A $U(1)_{B-L}$ model

- o Extend SM by $U(1)_{B-L}$: Z' coupled to baryons and leptons
- New scalar singlet h_X : spontaneously breaks $U(1)_{B-L}$ below EW-scale

A $U(1)_{B-L}$ model

- Extend SM by $U(1)_{B-L}$: Z' coupled to baryons and leptons
- \circ New scalar singlet h_X : spontaneously breaks $U(1)_{B-L}$ below EW-scale

$$\begin{split} \mathcal{L}_{\text{Yuk.}} &\supseteq -y_{\ell}^{ij}h_{\text{SM}}\bar{\ell}_{L}^{i}e_{R}^{j} + y_{\nu}^{ij}\tilde{h}_{\text{SM}}\bar{\ell}_{L}^{i}\textbf{N}_{R}^{j} - \frac{1}{2}y_{M}^{ij}h_{X}\bar{N}_{R}^{ic}N_{R}^{j} - \lambda_{L}^{ij}h_{X}\bar{\ell}_{L}^{i}L_{R}^{j} - M_{L}^{ij}\bar{L}_{L}^{i}L_{R}^{j} \\ &- \lambda_{E}^{ij}h_{X}\bar{E}_{L}^{i}e_{R}^{j} - M_{E}^{ij}\bar{E}_{L}^{i}E_{R}^{j} - h^{ij}h_{\text{SM}}\bar{L}_{L}^{i}E_{R}^{j} + k^{ij}\tilde{h}_{\text{SM}}\bar{E}_{L}^{i}L_{R}^{j} \end{split}$$

- o Right-handed neutrinos N_R^j for anomaly cancellation \Rightarrow type-I seesaw for free
- $\circ~3$ vector-like doublet leptons $m{L_{L,R}}$ to suppress $m{Z'}
 u
 u$ couplings
- o 3 vector-like singlet leptons $E_{L,R}$ to suppress axial $Z' \ell\ell$ couplings

New physics contributions to g-2

2 types of new contributions:

- o Dominant contributions by Z' and h_X
- $\circ\,$ Since $m_{Z'} \simeq {\bf 17}~{\rm MeV},$ Z' contributions are too large

New physics contributions to g-2

2 types of new contributions:

- o Dominant contributions by Z' and h_X
- Since $m_{Z'} \simeq 17~{
 m MeV}$, Z' contributions are too large
- But loop-functions for scalar/pseudo-scalar and vector/axial couplings have opposite sign!

New physics contributions to g-2

2 types of new contributions:

- Dominant contributions by Z' and h_X
- Since $m_{Z'} \simeq 17~{
 m MeV}$, Z' contributions are too large
- But loop-functions for scalar/pseudo-scalar and vector/axial couplings have opposite sign!
- → Partial cancellation from axial and pseudo-scalar contributions

35 / 39

Cancellation of scalar/vector contributions leading to Δa_e , Δa_{μ}

- $M_E = M_L \simeq 90 \text{ GeV}$, $\lambda_L = \lambda_E = M_L/v_X (\simeq 6.4)$, $m_{h_X} \simeq 70 \text{ GeV}$, $\varepsilon_{B-L} = 2 \times 10^{-3}$, $\varepsilon = -8 \times 10^{-4}$, $k_e = k_\mu = 10^{-7}$
- Dashed lines: change of sign when pseudo-scalar contribution larger than scalar and/or axial larger than vector
- \Rightarrow Accommodate both $\Delta a_e \& \Delta a_{\mu}$!

g-2 and the hungarian fifth force

- Exciting hints towards LFUV new physics in $(g-2)_{\mu, e}$
- Exciting hints of a fifth force discovered by ATOMKI
- ⇒ Parameter space to be probed soon (completely) by NA64
- ⇒ All 4 anomalies are explained in a single and very predictive model

37 / 39

Summary

Flavour physics provides a clear path for data-driven model building:

Flavour physics provides a clear path for data-driven model building:

- Exciting hints of new physics violating LFU in semi-leptonic *B*-meson decays
- $\Rightarrow V_1$ vector-leptoquark offers simple explanation, to be (even more) thorougly probed

Flavour physics provides a clear path for data-driven model building:

- Exciting hints of new physics violating LFU in semi-leptonic B-meson decays
- $\Rightarrow V_1$ vector-leptoquark offers simple explanation, to be (even more) thoroughy probed
 - \circ Longstanding $(g-2)_{\mu}$ (and e) anomalies also hint on <code>LFUV</code>
 - o Atomki anomaly: has a fifth force been discovered?
- \Rightarrow Vector interpretation of Atomki explains $(g-2)_{e,\mu}!$

Lepton flavour observables provide crucial tests of the SM (LFUV) and beyond (cLFV)!

Flavour physics provides a clear path for data-driven model building:

- Exciting hints of new physics violating LFU in semi-leptonic B-meson decays
- $\Rightarrow V_1$ vector-leptoquark offers simple explanation, to be (even more) thorougly probed
 - \circ Longstanding $(g-2)_{\mu}$ (and e) anomalies also hint on LFUV
 - o Atomki anomaly: has a fifth force been discovered?
- \Rightarrow Vector interpretation of Atomki explains $(g-2)_{e,\mu}!$

Lepton flavour observables provide crucial tests of the SM (LFUV) and beyond (cLFV)! A bright and exciting experimental future lies ahead and we will leave no stone unturned: charm physics precision programmes just started!

Thank you!!!

Angular observables

LFV Prospects

Gauge couplings are strictly universal; how to explain LFU Violation?

⇒ Only unitary qℓ mass missalignment is ruled out by LFV

Gauge couplings are strictly universal; how to explain LFU Violation?

⇒ Using unitary quark lepton mass misalignment:

Gauge couplings are strictly universal; how to explain **LFU Violation?** Why are the LFV constraints so severe?

⇒ Contributions are on **tree** level:

Gauge couplings are strictly universal; how to explain LFU Violation?

► Add *n* vector-like (VL) leptons mixing with (left-handed) SM leptons

Gauge couplings are strictly universal; how to explain LFU Violation?

► Add *n* vector-like (VL) leptons mixing with (left-handed) SM leptons

Gauge couplings are strictly universal; how to explain LFU Violation?

- $ightharpoonup {
 m Add}\ n\ {
 m vector-like}\ ({
 m VL})\ {
 m leptons}\ {
 m mixing}\ {
 m with}\ ({
 m left-handed})\ {
 m SM}\ {
 m leptons}$ effective LQ-q- ℓ couplings $K_L^{q\ell}$ parametrised via ${
 m non-unitary}\ {
 m matrix}$ (from mixing with heavy states)
- \Rightarrow Induce LFUV structure in $C_{9,10}^{ij;\ell\ell'}$ Wilson coefficients (tree-level)

$$\left(C_{9,10}^{ij;\ell\ell'} = \mprac{\pi}{\sqrt{2}G_F\,lpha\,V_{3j}\,V_{3i}^*}\,rac{1}{m_{V_1}^2}K_L^{i\ell'}\,K_L^{j\ell*}
ight)$$

Gauge couplings are strictly universal; how to explain LFU Violation?

- ▶ Add n vector-like (VL) leptons mixing with (left-handed) SM leptons effective LQ-q- ℓ couplings $K_L^{q\ell}$ parametrised via non-unitary matrix (from mixing with heavy states)
- \Rightarrow Induce LFUV structure in $C_{9,10}^{ij;\ell\ell'}$ Wilson coefficients (tree-level)

$$\left(C_{9,10}^{ij;\ell\ell'} = \mp rac{\pi}{\sqrt{2}G_F \, lpha \, V_{3j} \, V_{3i}^*} \, rac{1}{m_{V_1}^2} K_L^{i\ell'} \, K_L^{j\ell*}
ight)$$

- \Rightarrow Required mixing pattern could induce non-universal $Z \to \ell\ell^{(\prime)}$ (at tree-level) \rightsquigarrow VL leptons have to be $SU(2)_L$ -doublets!!
- \Rightarrow $R_{K^{(*)}}$ and $R_{D^{(*)}}$ can be explained, tight constraints from cLFV, EWPO, colliders...

Unitary Quark-Lepton mass misalignment

Non-unitary parametrisation

In analogy to neutrino physics, the mixing matrices get enlargened:

$$U_L^\ell = \begin{pmatrix} A & R \\ B & S \end{pmatrix} \begin{pmatrix} V_0 & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$$

In case of n=3 generations:

$$\begin{pmatrix} A & R \\ B & S \end{pmatrix} = \mathcal{R}_{56}\mathcal{R}_{46}\mathcal{R}_{36}\mathcal{R}_{26}\mathcal{R}_{16}\mathcal{R}_{45}\mathcal{R}_{35}\mathcal{R}_{25}\mathcal{R}_{15}\mathcal{R}_{34}\mathcal{R}_{24}\mathcal{R}_{14}$$

$$\begin{pmatrix} V_0 & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix} = \mathcal{R}_{23} \mathcal{R}_{13} \mathcal{R}_{12}$$

Defining semi-unitary rectangular matrix:

$$K_L^{q\ell} = (K_1, K_2) = \frac{\kappa_L}{\sqrt{2}} (A V_0, R)$$

Backup: Requirements on (vector) X_{17} : Nucleus & electron couplings I

Neutral current of fermions ψ_i can be parametrised with effective couplings:

$$J_{Z'}^{\mu} = e\bar{\psi}_i\gamma^{\mu}(\varepsilon_{ij}^V + \gamma^5\varepsilon_{ij}^A)\psi_j$$

Most obvious constraint: on-shell $X_{17} \equiv Z'$ has to decay inside detector $\mathcal{O}(cm)$:

$$\Gamma(Z' \to e^+ e^-) = (|\varepsilon_{ee}^V|^2 + |\varepsilon_{ee}^A|^2) \frac{\lambda^{\frac{1}{2}}(m_{Z'}, m_e, m_e)}{24\pi m_{Z'}}$$

... leading to $|\varepsilon_{ee}^V| \gtrsim 1.3 \times 10^{-5} \sqrt{\mathrm{BR}(Z' \to e^+e^-)}$

A fit of the ATOMKI data results in:

$$\frac{\Gamma(^8 \text{Be}^* \to {}^8 \text{Be} + Z')}{\Gamma(^8 \text{Be}^* \to {}^8 \text{Be} + \gamma)} \simeq (6 \pm 1) \times 10^{-6} \quad \text{for} \quad m_{Z'} \simeq 17.01 \pm 0.16 \, \text{MeV}$$

Backup: Requirements on (vector) X_{17} : Nucleus & electron couplings II

With a vector resonance Z' the nuclear matrix elements cancel:

$$\frac{\Gamma(^8\mathrm{Be}^* \to {}^8\mathrm{Be} + \mathbf{Z'})}{\Gamma(^8\mathrm{Be}^* \to {}^8\mathrm{Be} + \gamma)} \simeq (\varepsilon_p^V + \varepsilon_n^V)^2 \left[1 - \left(\frac{m_{Z'}}{18.15\,\mathrm{MeV}}\right)^2\right]^{\frac{3}{2}}$$

... leading to
$$|\varepsilon_p^V + \varepsilon_n^V| \simeq 1.2 \times 10^{-2} \sqrt{{\rm BR}(Z' \to e^+e^-)}^{-1}$$

Including iso-spin mixing effects:

$$\frac{\Gamma(^8 \text{Be}^* \to ^8 \text{Be} + Z')}{\Gamma(^8 \text{Be}^* \to ^8 \text{Be} + \gamma)} \simeq |0.05(\varepsilon_p^V + \varepsilon_n^V) + 0.95(\varepsilon_p^V - \varepsilon_n^V)|^2 \left[1 - \left(\frac{m_{Z'}}{18.15 \, \text{MeV}} \right)^2 \right]^{\frac{3}{2}}$$

... leads to $\sim15\%$ modification and a heavier Z' leads to smaller width $\frac{\Gamma_{Z'}}{\Gamma_{\gamma}}\sim0.5\times10^{-6}$

Conservative range:
$$|\varepsilon_n^V + \varepsilon_p^V| \simeq (2-15) \times 10^{-3} \sqrt{\mathrm{BR}(Z' \to e^+e^-)}^{-1}$$

Model independent constraints on (vector) $\pmb{X_{17}}$

Backup: Minimal model ingredients

- \circ New vector coming from gauge extension of SM new U(1)-gauge group
- \circ We need a new scalar breaking U(1) and giving a mass around $\sim 17~{
 m MeV}$
- We need couplings to nucleons (hadrons) and electrons
 - \Rightarrow Could be a dark photon A'?

"Pure" A'-couplings due to kinetic mixing with photon: $\varepsilon_n^V=\varepsilon_\nu^V=0\,,\quad \varepsilon_p^V=-\varepsilon_{ee}^V$ Recall from $^8{\rm Be}$ anomaly: $|\varepsilon_n^V+\varepsilon_p^V|\simeq (2-15)\times 10^{-3}\,,\; |\varepsilon_{ee}^V|\gtrsim 1.3\times 10^{-5}$

 \Rightarrow KLOE-2 bound for $e^+e^- \to \gamma A'(\to e^+e^-)$ leads to $\sqrt{\varepsilon_{ee}^{V2} + \varepsilon_{ee}^{A2}} \lesssim 2 \times 10^{-3} \%$ Furthermore NA48/2 bound for $\pi^0 \to \gamma A'$ leads to $|\varepsilon_p^V| \lesssim 1.2 \times 10^{-3} \% \%$

Protophobic scenario: proton couplings smaller than neutron, dark photon excluded!

Backup: Constraints: direct searches

Also NA64 (electron beam dump) is looking for light neutral vectors:

- Very recent result [1912.11389]
- $\circ \ \, \text{Or} \, \sqrt{|\varepsilon_{ee}^V|^2 + |\varepsilon_{ee}^A|^2} \gtrsim \frac{6.8 \times 10^{-4}}{\sqrt{\text{BR}(Z' \to e^+e^-)}}$ (decay inside beam dump)
- \Rightarrow Globally allowed range:

$$\sqrt{|\varepsilon_{ee}^V|^2 + |\varepsilon_{ee}^A|^2} \sim \frac{(0.68-2)\times 10^{-3}}{\sqrt{\text{BR}(Z'\to e^+e^-)}}$$

(NA48/2 does not directly apply in *protophobic* case)

10 / 21

Backup: Constraints: (atomic) parity violation

Search for parity violating Møller scattering at SLAC E158 yields a bound

$$|\varepsilon_{ee}^{V}\varepsilon_{ee}^{A}| \lesssim 1.1 \times 10^{-7}$$

Much more severe is *atomic* parity violation (effective weak charge) in Cs:

$$|\Delta Q_w| = \left|\frac{2\sqrt{2}}{G_F} 4\pi \alpha \varepsilon_{ee}^A \left[\varepsilon_{uu}^V(2Z+N) + \varepsilon_{dd}^V(Z+2N)\right] \frac{\mathcal{K}(m_{Z'})}{m_{Z'}^2}\right| \lesssim 0.71$$

At low energy, the nucleon couplings are $\varepsilon_p^V \simeq 2\, \varepsilon_{uu}^V + \varepsilon_{dd}^V$ and $\varepsilon_n^V \simeq \varepsilon_{uu}^V + 2\, \varepsilon_{dd}^V$

 \Rightarrow For $^8{\rm Be}$ nucleon couplings and $m_{Z'} \simeq 17~{\rm MeV}\colon$ upper bound $|\varepsilon_{ee}^A| \lesssim 2.6 \times 10^{-9}$

Backup: Constraints: neutrino-electron scattering

Neutrino-electron scattering provides very stringent constraints:

For LFU couplings and Dirac ν : $\sqrt{|\varepsilon_{ee}^V \varepsilon_{\nu_\ell \nu_\ell}^V|} < 7 \times 10^{-5}~$ c.f. [1608.03591] and TEXONO data

For Majorana ν the vector coupling vanishes! \Rightarrow new (LFUV) fit with Majorana ν :

- \circ CHARM-II: SPS experiment $u_{\mu}-e$ scattering
- \circ TEXONO: Reactor experiment $u_e e$ scattering
- $\begin{array}{l} \Rightarrow \text{ Bound for lowest allowed} \\ \varepsilon_{ee}^{V} \simeq 6.8 \times 10^{-4} \colon \\ |\varepsilon_{\nu_{e}\nu_{e}}^{A}| \lesssim 1.2 \times 10^{-5} \; \& \\ |\varepsilon_{\nu_{\mu}\nu_{\mu}}^{A}| \lesssim 12.2 \times 10^{-5} \end{array}$

Model recipe

- Extend SM by $U(1)_{B-L}$: Z' coupled to baryons and leptons
- New scalar singlet h_X : spontaneously breaks $U(1)_{B-L}$ somewhere below EW-scale
- ⇒ triangular gauge anomalies

$$\mathcal{A}\left[U(1)_{B-L}(SU(2)_L)^2\right], \mathcal{A}\left[\left(U(1)_{B-L}\right)^3\right], \mathcal{A}\left[U(1)_{B-L}(U(1)_Y)^2\right], \mathcal{A}\left[G.^2 \times U(1)_{B-L}\right]$$

... remaining $B-L=3\Rightarrow$ add 3 gens of sterile Majorana N_R with $Q^{B-L}=-1$

 \Rightarrow with $Q^{B-L}=+2$ for h_X : dynamical type-I seesaw neutrino masses "for free"!

$$\mathcal{L}_{\mathsf{Yuk.}} \supseteq -y_\ell^{ij} h_{\mathsf{SM}} \bar{\ell}_L^i e_R^j + y_\nu^{ij} \tilde{h}_{\mathsf{SM}} \bar{\ell}_L^i \pmb{N_R^j} - \frac{1}{2} y_M^{ij} h_{\pmb{X}} \bar{N_R^i} {}^i {}^c N_{\pmb{R}}^j$$

Coupling to nucleons now determined by photon kinetic mixing and B-L-current:

$$\varepsilon_n^V \propto g_{B-L} \,, \; m_{Z'}^2 \propto g_{B-L}^2 v_X^2 \Rightarrow \text{fixing vev of } h_X \text{ to } v_X \simeq 14 \, \text{GeV}$$

14 / 21

Gauge boson mixing

 $U(1)_{B-L}$ is kinetically mixed with the $U(1)_Y$:

$$\mathcal{L}_{\rm kin}^{\rm gauge} \supseteq -\frac{1}{4} \tilde{F}_{\mu\nu} \tilde{F}^{\mu\nu} - \frac{1}{4} \tilde{F}'_{\mu\nu} \tilde{F}'^{\mu\nu} + \frac{\epsilon_k}{2} \tilde{F}_{\mu\nu} \tilde{F}'^{\mu\nu}$$

ightharpoonup consequently mass mixing between $U(1)_{B-L}$ -boson and W^3 with $\tan 2\theta' \simeq -2 \frac{\epsilon_k}{\sqrt{1-\epsilon_k^2}} \sin \theta_w$

Diagonalising kinetic and mass mixing gives physical (gauge) couplings (at leading order):

$$\begin{split} D_{\mu} &\simeq \partial_{\mu} + \ldots + i \frac{g}{\cos \theta_{w}} (T_{3\,f} - \sin^{2} \theta_{w} \mathbf{Q_{f}}) Z_{\mu} + i e \mathbf{Q_{f}} A_{\mu} + i e (\varepsilon \mathbf{Q_{f}} + \varepsilon_{B-L} \mathbf{Q_{f}^{B-L}}) Z_{\mu}' \\ & \text{with } \varepsilon = \frac{\epsilon_{k} \cos \theta_{w}}{\sqrt{1 - \epsilon_{k}^{2}}} \text{ and } \varepsilon_{B-L} = \frac{g_{B-L}}{e \sqrt{1 - \epsilon_{k}^{2}}} \end{split}$$

- $\Rightarrow \text{ Nucleon couplings and mass: } \varepsilon^V_p = \varepsilon_{B-L} \varepsilon \,, \ \ \varepsilon^V_n = \varepsilon_{B-L} \,, \ \ m_{Z'}^2 \simeq 4\varepsilon_{B-L}^2 v_X^2$
- \Rightarrow But also: $\varepsilon_{\nu\nu}^A=-\varepsilon_n^V$ neutrino coupling 10^2 too large!

Vector-like leptons: Neutrino cancellation

Solution: Add 3 gens. of vector-like lepton doublets
$$L_{L,R} = \begin{pmatrix} L^0 \\ L^- \end{pmatrix}$$
 with $Q^{B-L} = +1$

- VL-fermions do not add further gauge anomalies
- Choice of charge to not spoil LFU SM-boson couplings
- \Rightarrow Mass mixing of L^0_L with SM ν_ℓ will modify Z'-couplings

$$\mathcal{L}_{\text{Yuk.}} \supseteq -y_{\ell}^{ij} h_{\text{SM}} \bar{\ell}_L^i e_R^j + y_{\nu}^{ij} \tilde{h}_{\text{SM}} \bar{\ell}_L^i \textbf{N}_{R}^j - \frac{1}{2} y_M^{ij} h_X \bar{N}_{R}^{ic} N_{R}^j - \lambda_L^{ij} h_X \bar{\ell}_L^i L^j_{R} - M_L^{ij} \bar{L}^i_{L} L^j_{R}$$

- \circ λ_L^{ij} needs to be (almost) diagonal to comply with <code>LFV</code> bounds: $\lambda_L^{ij} o \lambda_{L\,lpha}$
- o $\emph{M}_{\emph{L}}^{ij}$ can be chosen to be diagonal; collider bounds: mass scale $\sim 100~{
 m GeV}$
 - \Rightarrow Z'- $\nu\nu$ -couplings get modified: $\varepsilon_{\nu_{\alpha}\nu_{\alpha}} \simeq \varepsilon_{B-L} \left(1 \frac{\lambda_{L\alpha}^2 v_X^2}{M_{L\alpha}^2}\right)$ $\Rightarrow \lambda_{L\alpha}^2 v_X^2 \simeq M_{L\alpha}^2$ is fixed for each lepton generation α !

Vector-like leptons: atomic parity violation

The $\it charged$ component of $\it L_L$ mixes with the $\it left$ -handed SM leptons

$$\Rightarrow g_{Z',L}^{\ell_{\alpha}\ell_{\alpha}} \simeq -\varepsilon + \left(\frac{\lambda_{L\alpha}^2 v_X^2}{M_{L\alpha}^2} - 1\right) \varepsilon_{B-L}$$
, but right-handed couplings unmodified

Solution: Add 3 gens. of charged vector-like lepton singlets $E_{L,R}$ with $Q^{B-L}=+1$

$$\mathcal{L}_{\mathsf{Yuk.}} \supseteq -y_{\ell}^{ij} h_{\mathsf{SM}} \bar{\ell}_{L}^{i} e_{R}^{j} + y_{\nu}^{ij} \tilde{h}_{\mathsf{SM}} \bar{\ell}_{L}^{i} N_{R}^{j} - \frac{1}{2} y_{M}^{ij} h_{X} \bar{N}_{R}^{ic} N_{R}^{j} - \lambda_{L}^{ij} h_{X} \bar{\ell}_{L}^{i} L^{j}_{R} - M_{L}^{ij} \bar{L}^{i}_{L} L^{j}_{R} \\ -\lambda_{E}^{ij} h_{X} \bar{E}^{i}_{L} e_{R}^{j} - M_{E}^{ij} \bar{E}^{i}_{L} E^{j}_{R} - h^{ij} h_{\mathsf{SM}} \bar{L}^{i}_{L} E^{j}_{R} + k^{ij} \tilde{h}_{\mathsf{SM}} \bar{E}^{i}_{L} L^{j}_{R}$$

$$\Rightarrow \varepsilon_{\ell_{\alpha}\ell_{\alpha}}^{A} \simeq \frac{1}{2} \left(\frac{\lambda_{E_{\alpha}}^{2} v_{X}^{2}}{M_{E_{\alpha}}^{2}} - \frac{\lambda_{L_{\alpha}}^{2} v_{X}^{2}}{M_{L_{\alpha}}^{2}} \right) \varepsilon_{B-L} \Rightarrow \lambda_{E_{\alpha}} \text{ is fixed for the 1. gen!}$$

$$\Rightarrow \varepsilon^V_{\ell_{\alpha}\ell_{\alpha}} \simeq -\varepsilon + \tfrac{1}{2} \left(\frac{\lambda^2_{L\alpha} v^2_X}{M^2_{L\alpha}} + \tfrac{\lambda^2_{E\alpha} v^2_X}{M^2_{E\alpha}} - 2 \right) \varepsilon_{B-L} \Rightarrow \text{fixes } \varepsilon \simeq -(8-20) \times 10^{-4}$$

 \Rightarrow 2 new Yuk. matrices h^{ij} and k^{ij} (assumed to be diagonal): if different, their asymmetry will generate axial and pseudo-scalar couplings in $Z'-\ell L$ and $h_X-\ell L$ interactions

Remaining parameter space: impact from Δa_e , Δa_{μ}

- Black line: $(g-2)_e$ explained $\sqrt{\ }$ coloured region: $(g-2)_{\mu}$ explained $\sqrt{\ }$
- $\circ \lambda_E^{\mu}$ is still mostly free
- Curious hierarchy between $h_{\ell} \& k_{\ell}$ (\Rightarrow could hint on residual Z_n -symmetry?)

Backup: Gauge boson mixing

$$\begin{pmatrix} A^{\mu} \\ Z^{\mu} \\ Z'^{\mu} \end{pmatrix} = \begin{pmatrix} \cos\theta_w & \sin\theta_w & 0 \\ -\sin\theta_w \cos\theta' & \cos\theta_w \cos\theta' & \sin\theta' \\ \sin\theta_w \sin\theta' & -\cos\theta_w \sin\theta' & \cos\theta' \end{pmatrix} \begin{pmatrix} B^{\mu} \\ W_3^{\mu} \\ B'^{\mu} \end{pmatrix}$$

$$\tan 2\theta' = \frac{2\varepsilon' g' \sqrt{g^2 + g'^2}}{\varepsilon'^2 g'^2 + 4 m_{B'}^2 / v^2 - g^2 - g'^2}$$

$$M_A = 0, \qquad M_{Z, Z'} = \frac{g}{\cos\theta_w} \frac{v}{2} \left[\frac{1}{2} \left(\frac{\varepsilon'^2 + 4 m_{B'}^2 / v^2}{g^2 + g'^2} + 1 \right) \mp \frac{g' \cos\theta_w \varepsilon'}{g \sin 2\theta'} \right]^{\frac{1}{2}}$$

Backup: Charged lepton masses

$$\mathcal{L}_{\mathsf{mass}}^{\ell} = \left(\bar{e}_{L} \quad \bar{L}_{L}^{-} \quad \bar{E}_{L}\right) \begin{pmatrix} y \frac{v}{\sqrt{2}} & \lambda_{L} \frac{v_{X}}{\sqrt{2}} & 0 \\ 0 & M_{L} & h \frac{v}{\sqrt{2}} \\ \lambda_{E} \frac{v_{X}}{\sqrt{2}} & k \frac{v}{\sqrt{2}} & M_{E} \end{pmatrix} \begin{pmatrix} e_{R} \\ L_{R}^{-} \\ E_{R} \end{pmatrix}$$

$$U_{L} = \begin{pmatrix} 1 - \frac{\lambda_{L}^{2} v_{X}^{2}}{4M_{L}^{2}} & \frac{\lambda_{L} v_{X}}{\sqrt{2}M_{L}} - \frac{\lambda_{L}^{2} v_{X}^{2}}{4\sqrt{2}M_{L}^{2}} & \frac{(k\lambda_{L}M_{E} + h\lambda_{L}M_{L} + \lambda_{E}M_{E}y)vv_{X}}{2M_{E}^{2}} \\ \frac{\lambda_{L}^{3} v_{X}^{3}}{4\sqrt{2}M_{L}^{3}} - \frac{\lambda_{L}v_{X}}{\sqrt{2}M_{L}} & 1 - \frac{\lambda_{L}^{2} v_{X}^{2}}{4M_{E}^{2}} & \frac{(kM_{E}M_{L} + h\lambda_{L}M_{L} + \lambda_{E}M_{E}y)vv_{X}}{\sqrt{2}M_{E}^{3}} \\ \frac{(h\lambda_{L}M_{E} - \lambda_{E}M_{L}y)vv_{X}}{4M_{E}^{3}} - \frac{(kM_{E}M_{L} + h(M_{E}^{2} + M_{L}^{2}))v}{\sqrt{2}M_{E}^{3}} & 1 \end{pmatrix}$$

$$R = \begin{pmatrix} 1 - \frac{\lambda_{E}^{2} v_{X}^{2}}{4M_{E}^{2}} & \frac{\lambda_{L}vv_{X}}{2M_{L}^{2}} - \frac{\lambda_{E}(kM_{E}M_{L} + h(M_{E}^{2} + M_{L}^{2}))vv_{X}}{2M_{E}^{3}M_{L}} & \frac{\lambda_{E}v_{X}}{\sqrt{2}M_{E}} - \frac{\lambda_{E}^{3} v_{X}^{3}}{4\sqrt{2}M_{E}^{3}} \\ \frac{(h\lambda_{E}M_{L} - \lambda_{L}M_{E}y)vv_{X}}{2M_{E}^{2}} & 1 & \frac{(hM_{E}M_{L} + k(M_{E}^{2} + M_{L}^{2}))v}{\sqrt{2}M_{E}^{3}} \\ \frac{\lambda_{E}^{3} v_{X}^{3}}{4\sqrt{2}M_{E}^{3}} - \frac{\lambda_{E}v_{X}}{\sqrt{2}M_{E}} & - \frac{(hM_{E}M_{L} + k(M_{E}^{2} + M_{L}^{2}))v}{\sqrt{2}M_{E}^{3}} & 1 - \frac{\lambda_{E}^{2} v_{X}^{3}}{4M_{E}^{2}} \end{pmatrix}$$

19 / 21

20 / 21

Backup: Neutrino masses

$$\begin{split} \mathcal{L}_{\mathsf{mass}}^{\nu} &= \left(\nu^T - N^{c\,T} - L^{0\,c\,T} \right)_L C^{-1} \begin{pmatrix} 0 & y_{\nu} \frac{v}{\sqrt{2}} & 0 & \lambda_L \frac{v_X}{\sqrt{2}} \\ y_{\nu} \frac{v}{\sqrt{2}} & y_M \frac{v_X}{\sqrt{2}} & 0 & 0 \\ 0 & 0 & 0 & M_L \\ \lambda_L \frac{v_X}{\sqrt{2}} & 0 & M_L & 0 \end{pmatrix} \begin{pmatrix} \nu \\ N^c \\ L^0 \\ L^{0c} \end{pmatrix}_I \\ \tilde{U}_{\nu} &= \begin{pmatrix} 1 - \frac{\lambda_L^2 v_X^2}{4M_L^2} - \frac{v^2 y_{\nu}^2}{2v_X^2 y_M^2} & \frac{vy_{\nu}}{v_X y_M} & \frac{\lambda_L v_X}{2M_L} & \frac{\lambda_L v_X}{2M_L} \\ - \frac{vy_{\nu}}{v_X y_M} & 1 - \frac{v^2 y_{\nu}^2}{2v_X^2 y_M^2} & 0 & 0 \\ - \frac{\lambda_L v_X}{\sqrt{2}M_L} & - \frac{\lambda_L vy_{\nu}}{\sqrt{2}M_L y_M} & \frac{1}{\sqrt{2}} - \frac{\lambda_L^2 v_X^2}{4\sqrt{2}M_L^2} & \frac{1}{\sqrt{2}} - \frac{\lambda_L^2 v_X^2}{4\sqrt{2}M_L^2} \\ 0 & 0 & - \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \\ m_{\nu} &\simeq - \frac{y_{\nu}^2 v^2}{v_X y_M} , \quad U_{\nu} &= \tilde{U}_{\nu} \operatorname{diag}(U_P, 1, 1, 1) \\ \mathcal{L}_{W^{\pm}} &= -\frac{g}{\sqrt{2}} W_{\mu}^- & \sum & \sum_{i=1}^{9} \sum_{l=1}^{12} \bar{\ell}_i \left(U_L^{\dagger} \right)_{i \, \alpha} \gamma^{\mu} P_L \left(U_{\nu} \right)_{\alpha \, j} \nu_j + \mathrm{H.c.} \,, \end{split}$$

Jonathan Kriewald LPC LPC Seminar 26 February 2021

21 / 21

Backup: Collider bounds

Recast searches for slepton/neutralino pair production: ${\it h_X} \to {\tilde \chi}^0 \,, \quad {\it E,L} \to {\tilde l}$ $\Rightarrow m_{h_X} \gtrsim 50 \,{\rm GeV}$ and physical vector-like lepton mass $\gtrsim 120 \,{\rm GeV}$