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Overview

» Searching for new physics during gravitational waves (GW) propagation

o Constraints from GW + electromagnetic signal

o Constraints from the modified GW signal

» Designing accurate GW signals

o Predicting the black holes parameters with increased prediction

o Using non-parametric method to generate GW templates
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Searching for new physics during GW propagation

» In presence of new fields, GW
can be dispersed during their
propagation.

o The dispersion can impact
the apparent distance of the
GW source.

o Constraining the dispersion
enable to constrain new
theories of gravitation, such
as massive gravity.

Propagating gravitational wave (yellow rings) that deforms the Lorentz-
violating background field a p (red arrows). Source: Schreck, Marco (2016).
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https://www.researchgate.net/publication/301855565_Looking_for_Lorentz_violation_with_gravitational_waves

Constraints from GW + electromagnetic signal

» The analysis of two types of signals enable to constraint the distance of the source:

o GW170817 (BNS merger, z=0.01) and
GW190521 (BBH merger in potential AGN disk, z=0.44)

o Measurement of cosmological parameters (Hubble constant) and alternative

theories of gravitation parameters (friction) atthe same time
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o DGP gravity (4+1 dimensions),
quantum gravity models of


https://arxiv.org/abs/2010.04047

Constraints from GW + electromagnetic signal

» Parameterisation:
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» Compatible theories:

\ S o Scalar-tensor theories of gravitation (Brans-

” M Dicke, Horndeski, beyond-Horndeski, DHOST)
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dLGW(z) = d,’fM (z) exp

» Compatible theories:

Cm

o Modified gravity models where a.(z) is linked to the
evolution of the dark energy content of the Universe HolkmMpcis Qo an
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https://arxiv.org/abs/2010.04047

Constraints from the modified GWV signal

» Dispersion impacts the GW signal detected by the LVC interferometers:

o hME = f(A,) KSR + g(A,) hSR

o The analysis of the GW signal enable to constraint the modified gravity parameters.

» Current constraints on polarisation
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https://arxiv.org/pdf/2010.14529.pdf

Constraints from the modified GWV signal

» Implementation of polarisation dependent dispersion:

o Work in progress (Haegel, Ault-O’Neal, Tasson, Bailey)

LIV d=5, kv5_00 = 1e-12, kv5_00 > 0 LIV d=5, kv5_00 = 1e-12, kv5_00 > 0

o The modified GW signal is derived in the context of the Standard Model Extension
effective field theory.

o Spacetime would be a birefringent medium for GW propagating through it
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https://www.snowmass21.org/docs/files/summaries/CF/SNOWMASS21-CF7_CF0_Tasson-046.pdf

Designing accurate GWV signals

» Necessity of a template bank of GW signals: matched filtering algorithms and

modelled search need to compare the data stream to templates

» GW modelling: approximate templates of GW signals as numerical relativity

simulations are too computationally intensive

inspiral, weak field

can be modelled with post-
Newtonian formalism or
effective one-body approach
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ringdown, strong
to weak field
can be modelled as

a sum of damped
sin waves


https://arxiv.org/pdf/2010.14529.pdf

Predicting the remnant black holes parameters

» Training a neural network to predict the remnant black holes properties:

o Final black holes properties (mass, spin) are important for GW modelling

o Current predictions approximate the black hole spin effects (precession)

o Neural networks are powerful to predict the final properties for large-dimension
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https://arxiv.org/pdf/2010.14529.pdf
https://arxiv.org/pdf/1809.09125.pdf
https://arxiv.org/pdf/1809.09125.pdf
https://arxiv.org/abs/1911.01496

Generating GW templates with non-parametric methods

» Novel methods present accurate generation of GW template signals:

o Use non-parametric methods such as Gaussian Processes to interpolate numerical

relativity simulations

o Current applications offer precise templates for precessing binary systems, models

to be developed further
o Important for a large range of GW astrophysics analyses
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https://arxiv.org/pdf/2010.14529.pdf
https://arxiv.org/pdf/1809.09125
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