

#### **Outline**

```
Statistical Modeling
```

Computing statistical results

**Discovery** 

Confidence intervals

**Upper limits** 

Reparameterization and presentation of results

**Expected results** 

#### Today

**Profiling** 

**Bayesian methods** 

Look elsewhere effect

### **Highlights: Discovery**

Given a statistical model P(data;  $\mu$ ), define likelihood  $L(\mu) = P(data; \mu)$ 

To estimate a parameter, use the value  $\hat{\mathbf{p}}$  that maximizes  $L(\mu) \rightarrow$  best-fit value

To decide between hypotheses  $H_0$  and  $H_1$ , use the likelihood ratio  $\frac{L(H_0)}{L(H_1)}$ 

To test for **discovery**, use 
$$q_0 = -2\log\frac{L(S=0)}{L(\hat{S})}$$
  $\hat{S} \ge 0$ 

For large enough datasets (n >~ 5),  $Z = \sqrt{q_0}$ 

For a Gaussian measurement, 
$$Z = \frac{\hat{S}}{\sqrt{B}}$$

For a Poisson measurement, 
$$Z = \sqrt{2\left[ (\hat{S} + B) \log \left( 1 + \frac{\hat{S}}{B} \right) - \hat{S} \right]}$$

## **Highlights: Confidence intervals**

 $\mu^{+\delta\mu^{+}}_{-\delta\mu^{-}}$   $\mu^{*}$ 

Contain the true value with given probability

To obtain, compute the log-likelihood ratio as a function of  $\mu_0$ .

Interval endpoints =  $\mu^{\pm}$  for which  $t_{\mu^{\pm}} = 1$ 

Gaussian case :  $\hat{\mu} \pm \sigma$ 

Works also to obtain **contours in 2D**:









## **Highlights: Upper Limits**

Confidence intervals: use 
$$t_{\mu_0} = -2\log\frac{L(\mu = \mu_0)}{L(\hat{\mu})}$$

 $\rightarrow$  Crossings with  $t_{\mu 0} = Z^2$  for  $\pm Z\sigma$  intervals (in 1D)

**Gaussian regime**:  $\mu = \hat{\mu} \pm \sigma_{\mu}$  (1 $\sigma$  interval)



**Limits**: use LR-based test statistic:  $q_{S_0} = -2\log\frac{L(S-S_0)}{L(\hat{S})}$   $S_0 \geq \hat{S}$ 

→ Use CL<sub>s</sub> procedure to avoid negative limits

Poisson regime, n=0:  $S_{up} = 3$  events



### **Outline**

**Profiling** 

**Bayesian methods** 

Look elsewhere effect

## **Systematic Errors**

The statistical model (PDF) is a way to express **uncertainty** on the outcome of an experiment. e.g. 2D Gaussian:



These uncertainties are also called **Statistical Uncertainties** – they are the ones encoded in the model.

## **Systematic Errors**

The statistical model (PDF) is a way to express **uncertainty** on the outcome of an experiment. e.g. 2D Gaussian:



These uncertainties are also called **Statistical Uncertainties** – they are the ones encoded in the model.

However the model itself may be wrong: this is a systematic error

- → To account for them, need a set of **Systematic uncertainties**
- → Can often add them "by hand", but how to treat this in a general way?

## **Systematic Uncertainties**

#### Likelihood typically includes

- Parameters of interest (POIs): S, σ×B, m<sub>w</sub>, ...
- Nuisance parameters (NPs): other parameters needed to define the model
  - → Ideally, **constrained by data** like the POI

#### What about systematics?

- = what we don't know about the random processs
- ⇒ Parameterize using additional NPs
- ⇒ Add constraints in the likelihood

$$L(\mu, \theta; \text{data}) = L_{\text{measurement}}(\mu, \theta; \text{data}) C(\theta)$$

$$\downarrow \text{Systematics} \text{Measurement} \text{NP Constraint} \text{term}$$

Phys. Rev. Lett. 119 (2017) 051802



"Systematic uncertainty is, in any statistical inference procedure, the uncertainty due to the incomplete knowledge of the probability distribution of the observables.

G. Punzi, What is systematics?

 $C(\theta)$  represents extra knowledge about the NP

### Frequentist Systematics

**Prototype**: NP measured in a separate *auxiliary* experiment e.g. luminosity measurement

→ Build the combined likelihood of the main+auxiliary measurements

$$L(\mu, \theta; \text{data}) = L_{\text{main}}(\mu, \theta; \text{main data}) \quad L_{\text{aux}}(\theta; \text{aux. data}) \quad \text{independent measurements:} \\ \Rightarrow \text{ just a product}$$

Gaussian form often used by default:  $L_{\text{aux}}(\theta; \text{aux. data}) = G(\theta^{\text{obs}}; \theta, \sigma_{\text{syst}})$ 

In the combined likelihood, systematic NPs are constrained

- → now same as e.g. NPs constrained in sidebands.
- → Often no clear setup for auxiliary measurements
   e.g. theory uncertainties on missing HO terms from scale variations
  - → Implemented in the same way nevertheless ("pseudo-measurement")

## Likelihood, the full version (binned case)



#### Reminder: Wilks' Theorem

Cowan, Cranmer, Gross & Vitells Eur. Phys. J. C71:1554,2011

Consider 
$$t_{S_0} = -2 \log \frac{L(S=S_0)}{L(\hat{S})}$$

→ Assume **Gaussian regime** (e.g. large n<sub>evts</sub>, Central-limit theorem) : then:

Wilk's Theorem:  $t_{s0}$  is distributed as a  $\chi^2$ 

under  $H_{SO}(S=S_0)$ :

$$f(t_{S_0} | S = S_0) = f_{\chi^2(n_{dof} = 1)}(t_{S_0})$$

→ The significance is:

$$Z = \sqrt{q_0}$$





## **Profiling**

How to deal with nuisance parameters in likelihood ratios?

 $\rightarrow$  Let the data choose  $\Rightarrow$  use the best-fit values (*Profiling*)

$$\textbf{Profile Likelihood Ratio} \text{ (PLR)} \\ t_{S_0} = -2\log \frac{L(S=S_0, \hat{\hat{\theta}}(S_0))}{L(\hat{S}, \hat{\theta})} \\ \hat{\theta}(S_0) \text{ best-fit value for } S=S_0 \\ \text{ (conditional MLE)} \\ \hat{\theta} \text{ overall best-fit value} \\ \text{ (unconditional MLE)}$$

Wilks' Theorem: same properties as plain likelihood ratio

$$f(t_{S_0} | S = S_0) = f_{\chi^2(n_{dof} = 1)}(t_{S_0})$$
 also with NPs present

- → Profiling "builds in" the effect of the NPs
- $\Rightarrow$  Can use  $t_{sn}$  to compute limits, significance, etc. in the same way as before

### **Homework 7: Gaussian Profiling**

Counting experiment with background uncertainty: n = S + B:

$$\hat{\hat{B}}(S) = B_{\text{obs}} + \frac{\sigma_{\text{bkg}}^2}{\sigma_{\text{stat}}^2 + \sigma_{\text{bkg}}^2} (\hat{S} - S)$$

- Recall: Signal region only (fixed B):  $t_S = \left(\frac{S n_{\rm obs}}{\sigma_{\rm stat}}\right)^2$   $S = (n_{\rm obs} B) \pm \sigma_{\rm stat}$   $\rightarrow$  Compute the best-fit (MLEs) for S and B  $\rightarrow$  Show that the conditional MLE for B is  $\hat{B}(S) = B_{\rm obs} + \frac{\sigma_{\rm bkg}^2}{\sigma_{\rm stat}^2 + \sigma_{\rm bkg}^2}(\hat{S} S)$
- → Compute the profile likelihood t<sub>s</sub>
- → Compute the 1σ confidence interval on S

$$S = (n_{\text{obs}} - B_{\text{obs}}) \pm \sqrt{\sigma_{\text{stat}}^2 + \sigma_{\text{bkg}}^2}$$

$$\sigma_{S} = \sqrt{\sigma_{\text{stat}}^{2} + \sigma_{\text{bkg}}^{2}}$$

Stat uncertainty (on n) and systematic (on B) add in quadrature

## **Uncertainty decomposition**



14

### Pull/Impact plots

Systematics are described by NPs included in the fit. Define **pull** as

$$(\hat{\theta} - \theta_0) / \sigma_{\theta}$$

#### Nominally:

- pull = 0 : i.e. the pre-fit expectation
- pull uncertainty = 1: from the Gaussian

However fit results may be different:

- Central value ≠ 0: some data feature differs from MC expectation
   ⇒ Need investigation if large
- Uncertainty < 1 : effect is constrained by the data ⇒ Needs checking if this legitimate or a modeling issue

 $\rightarrow$  Impact on result of  $\pm 1\sigma$  shift of NP allows to gauge which NPs matter most .



### **Pull/Impact plots**

Systematics are described by NPs included in the fit. Define **pull** as

$$(\hat{\theta} - \theta_0) / \sigma_{\theta}$$

#### Nominally:

- **pull = 0**: i.e. the pre-fit expectation
- pull uncertainty = 1: from the Gaussian

However fit results may be different:

- Central value ≠ 0: some data feature differs from MC expectation
   ⇒ Need investigation if large
- Uncertainty < 1 : effect is constrained by the data ⇒ Needs checking if this legitimate or a modeling issue
- $\rightarrow$  Impact on result of  $\pm 1\sigma$  shift of NP allows to gauge which NPs matter most .

13 TeV single-t XS (arXiv:1612.07231)



## **Profiling Takeaways**

When testing a hypothesis, use the best-fit values of the nuisance parameters: *Profile Likelihood Ratio*.

$$\frac{L(\mu = \mu_{0}, \hat{\hat{\theta}}_{\mu_{0}})}{L(\hat{\mu}, \hat{\theta})}$$

Allows to include systematics as uncertainties on nuisance parameters.

Profiling systematics includes their effect into the total uncertainty. Gaussian:

$$\sigma_{\text{total}} = \sqrt{\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2}$$

Guaranteed to work well as long as everything is Gaussian, but typically also robust against non-Gaussian behavior.

Profiling can have unintended effects – need to carefully check behavior

### **Outline**

**Profiling** 

**Bayesian methods** 

Look elsewhere effect

### **Bayesian methods**

#### **Probability distribution** (= likelihood):

- → Same as frequentist case, but treat systematics by marginalization, i.e. integrating over priors, instead of profiling:
  - ightarrow Integrate out  $\theta$  to get  $P(\mu)$ :  $P(\mu) = \int P(\mu, \theta) C(\theta) d\theta$
  - $\rightarrow$  Use probability distribution P( $\mu$ ) directly for limits & intervals

e.g. 68% CL ("Credibility Level") interval [A, B] is: 
$$\int\limits_A^B P(\mu)\pi(\mu)d\mu = 68\,\%$$

where  $\pi(\mu)$  is the prior on  $\mu$ . Uses **Bayes' Theorem**:  $P(\mu \mid n) = P(n \mid \mu) \frac{P(\mu)}{P(n)}$ 

- No simple way to test for discovery
- Integration over NPs can be CPU-intensive (but can use MCMC methods)

**Priors**: most analyses use flat priors in the analysis variable(s)

- $\Rightarrow$  **Parameterization-dependent**: if flat in  $\sigma \times B$ , them not flat in couplings....
- → Can use the Jeffreys' or reference priors, but difficult in practice

## Homework 8: Bayesian methods and CL<sub>2</sub>

Gaussian counting problem with systematic on background:  $n = S + B + \sigma_{syst}\theta$ 

$$P(n;S,\theta) = G(n;S+B+\sigma_{\text{syst}}\theta,\sigma_{\text{stat}}) G(\theta_{\text{obs}}=0;\theta,1)$$

→ What is the 95% CL upper limit on S, given a measurement n<sub>obs</sub>?

#### 1. CLs computation:

- Use the result of Homework 7 to compute the PLR for S
- Use the result of Homework 6 to compute the CLs upper limit

#### 2. Bayesian computation:

- Integrate  $P(n; S, \theta)$  over  $\theta$  to get the marginalized P(n|S)
- S>0.
- Find the 95% CL limit by solving  $\int_{S}^{\infty} P(S|n)dS = 5\%$

Solution: In both cases 
$$S_{\rm up}^{\rm CL_s} = n - B + \left[ \Phi^{-1} \left( 1 - 0.05 \ \Phi \left( \frac{n - B}{\sqrt{\sigma_{\rm stat}^2 + \sigma_{\rm syst}^2}} \right) \right) \right] \sqrt{\sigma_{\rm stat}^2 + \sigma_{\rm syst}^2}$$

#### Example: W'→Iv Search

- POI: W'  $\sigma \times B \rightarrow \text{use flat prior over } [0, +\infty[$ .
- NPs: syst on signal ε (6 NPs), bkg (6), lumi (1) → integrate over Gaussian priors



### **Outline**

**Profiling** 

**Bayesian methods** 

Look elsewhere effect

#### **Look-Elsewhere effect**

Sometimes, unknown parameters in signal model e.g. p-values as a function of m<sub>v</sub>

- ⇒ Effectively: multiple, simultaneous searches
- → If e.g. small resolution and large scan range, many independent experiments





- → More likely to find an excess anywhere in the range, rather than in a predefined location
- **→ Look-elsewhere effect** (LEE)

## Global Significance

Probability for a fluctuation *anywhere* in the range  $\rightarrow$  **Global** p-value. at a given location  $\rightarrow$  **Local** p-value



ightarrow  $\mathbf{p}_{\mathsf{global}}$   $\mathbf{p}_{\mathsf{local}}$   $\Rightarrow$   $\mathbf{Z}_{\mathsf{global}}$  <  $\mathbf{Z}_{\mathsf{local}}$  : global fluctuation more likely  $\Rightarrow$  less significant

 $\triangle$ 

*Trials factor*: naively = # of independent intervals:

$$N_{\text{trials}} = N_{\text{indep}} = \frac{\text{scan range}}{\text{peak width}}$$

However this is usually **wrong** – more on this later



## Global Significance

Probability for a fluctuation *anywhere* in the range  $\rightarrow$  **Global** p-value. at a given location  $\rightarrow$  **Local** p-value

For searches over a parameter range, the global p-value is the relevant one

→ Accounts for the actual search procedure: look for an excess anywhere in

the scanned range

→ Depends on the scanned parameter ranges

e.g.  $X \rightarrow \gamma \gamma$ :

- $200 < m_x < 2000 GeV$
- $0 < \Gamma_x < 10\% \, \text{m}_x$ .



 $\rightarrow p_{local}$  is what comes out of the usual formulas

How to compute  $p_{global}$  (or  $N_{trials}$ )?

### **Trials Factor**

**Trials factor** N = # of independent searches:



Naively, one could expect

$$N_{\text{trials}} = N_{\text{indep}} = \frac{\text{scan range}}{\text{peak width}}$$

However this is only correct for a discrete Number of experiments (i.e. 10 different regions)



Asymptotic limit: trials factor (1 POI) is

$$m{N_{ ext{trials}}} = 1 + \sqrt{rac{\pi}{2}} \; m{N_{ ext{indep}}} \; m{Z_{ ext{local}}}$$
 and son  $m{Z_{ ext{local}}}$ !

 $\rightarrow$  Trials factor is **not just N**<sub>indep</sub>, also depends on  $Z_{local}$ !

Why? Slicing range into  $N_{indep}$  regions misses peaks sitting on edges between regions true  $N_{trials}$  is  $> N_{indep}$ !





Asymptotic limit: trials factor (1 POI) is

$$N_{\text{trials}} = 1 + \sqrt{\frac{\pi}{2}} N_{\text{indep}} Z_{\text{local}}$$

 $\rightarrow$  Trials factor is **not just N**<sub>indep</sub>, also depends on  $Z_{local}$ !

 $N_{indep} = \frac{scan range}{peak width}$ 

Why? Slicing range into  $N_{indep}$  regions misses peaks sitting on edges between regions true  $N_{trials}$  is  $> N_{indep}$ !





## Global Significance from Toys

ATLAS

Data

Background-only fit

Spin-0 Selection

Vs = 13 TeV, 3.2 fb<sup>-1</sup>

1000 1200 1400 1600

m<sub>yy</sub> [GeV]

**Principle**: repeat the analysis in toy data:

- → generate pseudo-dataset
- → perform the search, scanning over parameters as in the data
- → report the largest significance found
- → repeat many times
- $\Rightarrow$  The frequency at which a given  $Z_0$  is found is the global p-value

e.g. 
$$X \rightarrow \gamma \gamma$$
 Search:  $Z_{local} = 3.9\sigma \ (\Rightarrow p_{local} \sim 5 \ 10^{-5})$ ,

- $\rightarrow$  However we are scanning 200 < m<sub>x</sub> < 2000 GeV and 0 <  $\Gamma_{\rm x}$  < 10% m<sub>x</sub>!
- → Toys : find such an excess 2% of the time somewhere in the range
- $\Rightarrow$  p<sub>global</sub> ~ 2 10<sup>-2</sup>,  $\mathbf{Z}_{global} = 2.1\sigma$  Less exciting, and better indication of true Z!
- **Exact treatment**
- CPU-intensive especially for large Z (need ~O(100)/p<sub>alobal</sub> toys)

#### Conclusion

- Significant evolution in the statistical methods used in HEP
- Variety of methods, adapted to various situations and target results
- Allow to
  - model the statistical process with high precision in difficult situations (large systematics, small signals)
  - make optimal use of available information
- Implemented in standard RooFit/RooStat toolkits within the ROOT framework, as well as other tools (BAT)

- Still many open questions and areas that could use improvement
  - → e.g. how to present results with all available information

## Homework solutions for Lecture 3

### **Homework 1: Gaussian Counting**

#### Count number of events n in data

- → assume n large enough so process is Gaussian
- → assume B is known, measure S

$$L(S;n) = e^{-\frac{1}{2}\left(\frac{n-(S+B)}{\sqrt{S+B}}\right)^{2}}$$

Likelihood:

$$L(S;n) = e^{-\frac{1}{2} \left(\frac{n - (S+B)}{\sqrt{S+B}}\right)^{2}}$$
$$\lambda(S;n) = \left(\frac{n - (S+B)}{\sqrt{S+B}}\right)^{2}$$

MLE for  $S: \hat{S} = n - B$ 

**Test statistic**: assume  $\hat{S} > 0$ ,

$$q_0 = -2\log\frac{L(S=0)}{L(\hat{S})} = \lambda(S=0) - \lambda(\hat{S}) = \left|\frac{n-B}{\sqrt{B}}\right|^2 = \left|\frac{\hat{S}}{\sqrt{B}}\right|^2$$

$$Z = \sqrt{q_0} = \frac{\hat{S}}{\sqrt{B}}$$

Known formula! → Strictly speaking only valid in Gaussian regime



### **Homework 2: Poisson Counting**

Same problem but now **not** assuming Gaussian behavior:

$$L(S;n) = e^{-(S+B)}(S+B)^n$$
  $\lambda(S;n) = 2(S+B)-2n\log(S+B)$ 

MLE:  $\hat{S} = n - B$ , same as Gaussian

**Test statistic** (for  $\hat{S} > 0$ ):

$$q_0 = \lambda(S=0) - \lambda(\hat{S}) = -2\hat{S} - 2(\hat{S}+B) \log \frac{B}{\hat{S}+B}$$

Assuming asymptotic distribution for  $q_0$ ,

$$Z = \sqrt{2\left[\left(\hat{S} + B\right)\log\left(1 + \frac{\hat{S}}{B}\right) - \hat{S}\right]}$$

## Homework solutions for Lecture 4

# Homework 3: Gaussian CL<sub>s+b</sub>

Usual Gaussian counting example with known B:

$$\lambda(S) = \left| \frac{n - (S + B)}{\sigma_S} \right|^2$$

#### Reminder:

Best fit signal :  $\hat{S} = n - B$ 

Significance:  $Z = \hat{S} / \sqrt{B}$ 



Compute the 95% CL upper limit on S:

$$q_{S_0} = -2\log\frac{L(S=S_0)}{L(\hat{S})} = \lambda(S_0) - \lambda(\hat{S}) = \left(\frac{n - (S_0 + B)}{\sigma_S}\right)^2 = \left(\frac{S_0 - \hat{S}}{\sigma_S}\right)^2 \qquad \stackrel{\text{for }}{S_0 > \hat{S}}$$

so 
$$q_{S_0} = 2.70$$
 for  $S_0 = \hat{S} + \sqrt{2.70} \sigma_S$ 

And finally 
$$S_{up} = \hat{S} + 1.64 \sigma_S$$
 at 95 % CL

## Homework 4: Gaussian CL

Usual Gaussian counting example with known B:

$$\lambda(S) = \left(\frac{n - (S + B)}{\sigma_S}\right)^2$$

#### Reminder

Best fit signal :  $\hat{S} = n - B$ 

$$S_{up} = \hat{S} + 1.64 \sigma_s$$
 at 95 % CL

CL<sub>s+b</sub> limit:  $S_{up} = \hat{S} + 1.64 \sigma_S \text{ at } 95 \% \text{ CL}$ CL<sub>s</sub> upper limit: still have  $q_{S_0} = \left(\frac{S_0 - \hat{S}}{\sigma_S}\right)^2 \text{ (for } S_0 > \hat{S}\text{)}$ 

so need to solve

$$p_{CL_s} = \frac{p_{S_0}}{1 - p_B} = \frac{1 - \Phi(\sqrt{q_{S_0}})}{1 - \Phi(\sqrt{q_{S_0}} - S_0/\sigma_S)} = 5\%$$

for 
$$\hat{S} = 0$$
,

$$S_{up} = \hat{S} + \left[\Phi^{-1}\left(1 - 0.05 \Phi(\hat{S}/\sigma_s)\right)\right] \sigma_s$$
 at 95% CL



$$\hat{S} \sim G(S, \sigma_s)$$
 so

#### Under $H_0(S = S_0)$ :

$$\sqrt{q_{S_0}} \sim G(0,1)$$

$$p_{S_0} = 1 - \Phi(\sqrt{q_{S_0}})$$

#### Under $H_0(S = 0)$ :

$$\sqrt{q_{S_0}} \sim G(S_0/\sigma_S, 1)$$

$$p_B = \Phi(\sqrt{q_{S_0}} - S_0/\sigma_S)$$

## Homework 5: Poisson CL<sub>s</sub>

Same exercise, for the Poisson case

Exact computation: sum probabilities of cases "at least as extreme as data" (n)

$$p_{S_0}(n) = \sum_{0}^{n} e^{-(S_0 + B)} \frac{(S_0 + B)^k}{k!}$$
 and one should solve  $p_{CL_s} = \frac{p_{S_{up}}(n)}{p_0(n)} = 5\%$  for  $S_{up}$ 

For n = 0: 
$$p_{CL_s} = \frac{p_{S_{up}}(0)}{p_0(0)} = e^{-S_{up}} = 5\% \Rightarrow S_{up} = \log(20) = 2.996 \approx 3$$

 $\Rightarrow$  Rule of thumb: when  $n_{obs}=0$ , the 95% CL<sub>s</sub> limit is 3 events (for any B)

Asymptotics: as before, 
$$q_{S_0} = \lambda(S_0) - \lambda(\hat{S}) = 2(S_0 + B - n) - 2n \log \frac{S_0 + B}{n}$$

For n = 0, 
$$q_{S_0}(n=0) = 2(S_0 + B)$$
 
$$p_{CL_s} = \frac{p_{S_0}}{p_0} = \frac{1 - \Phi(\sqrt{q_{S_0}(n=0)})}{1 - \Phi(\sqrt{q_{S_0}(n=0)} - \sqrt{q_{S_0}(n=B)})} = 5\%$$

- $\Rightarrow$  S<sub>up</sub> ~ 2, exact value depends on B
- $\Rightarrow$  Asymptotics not valid in this case (n=0) need to use exact results, or toys

### Homework 6: Gaussian Intervals

Consider a parameter m (e.g. Higgs boson mass) whose measurement is Gaussian with known width  $\sigma_{\rm m}$ , and we measure  $m_{\rm obs}$ :

$$\lambda(m; m_{\text{obs}}) = \left(\frac{m - m_{\text{obs}}}{\sigma_m}\right)^2$$



→ Test statistic: 
$$t_m = \left(\frac{m - m_{\text{obs}}}{\sigma_m}\right)^2$$

$$\rightarrow$$
 1 $\sigma$  Interval  $m = m_{\rm obs} \pm \sigma_{\rm m}$ 





## Homework solutions for Lecture 5

### Homework 7: Gaussian Profiling

Counting experiment with background uncertainty:  $\mathbf{n} = \mathbf{S} + \mathbf{\theta}$ :

→ Signal region: 
$$\mathbf{n} \sim \mathbf{G}(\mathbf{S} + \mathbf{\theta}, \sigma_{\text{stat}})$$

→ Control region:  $\mathbf{\theta}^{\text{obs}} \sim \mathbf{G}(\mathbf{\theta}, \sigma_{\text{syst}})$ 

$$L(S, \theta) = G(n; S + \theta, \sigma_{\text{stat}}) \ G(\theta^{\text{obs}}; \theta, \sigma_{\text{syst}})$$

Then: 
$$\lambda(S, \theta) = \left(\frac{n - (S + \theta)}{\sigma_{\text{stat}}}\right)^2 + \left(\frac{\theta^{\text{obs}} - \theta}{\sigma_{\text{syst}}}\right)^2$$

For S = Ŝ, matches MLE as it should

MLEs: 
$$\hat{S} = n - \theta^{\text{obs}}$$
 Conditional MLE:  $\hat{\hat{\theta}}(S) = \theta^{\text{obs}} + \frac{\sigma_{\text{syst}}^2}{\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2} (\hat{S} - S)$ 

PLR: 
$$t_S = -2\log\frac{L(S,\hat{\theta}(S))}{L(\hat{S},\hat{\theta})} = \lambda(S,\hat{\theta}(S)) - \lambda(\hat{S},\hat{\theta}) = \frac{(S-\hat{S})^2}{\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2}$$

1
$$\sigma$$
 interval  $S = \hat{S} \pm \sqrt{\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2}$   $\sigma_S = \sqrt{\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2}$ 

Stat uncertainty (on n) and systematic (on  $\theta$ ) add in quadrature

## Homework 8: CL<sub>s</sub> computation

Gaussian counting with systematic on background:  $n = S + B + \sigma_{syst}\theta$ 

$$L(n;S,\theta) = G(n;S+B+\sigma_{\text{syst}}\theta,\sigma_{\text{stat}}) G(\theta_{\text{obs}}=0;\theta,1)$$

MLE: 
$$\hat{S} = n - B$$

Conditional MLE:  $\hat{\hat{\theta}}(\mu) = \frac{\sigma_{\text{syst}}}{\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2} (n - S - B)$ 

PLR:  $\lambda(\mu) = \left(\frac{S + B - n}{\sqrt{\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2}}\right)^2$ 

This boils down to the Gaussian case of HW 6, so the CL<sub>s</sub> limit is

CL<sub>s</sub>: 
$$S_{up}^{CL_s} = n - B + \left[ \Phi^{-1} \left( 1 - 0.05 \Phi \left( \frac{n - B}{\sqrt{\sigma_{stat}^2 + \sigma_{syst}^2}} \right) \right) \right] \sqrt{\sigma_{stat}^2 + \sigma_{syst}^2}$$

## **Homework 8: Bayesian computation**

Gaussian counting with systematic on background:  $n = S + B + \sigma_{syst}\theta$ 

$$P(n \mid S, \theta) = G(n; S+B+\sigma_{\text{syst}}\theta, \sigma_{\text{stat}}) G(\theta \mid 0, 1)$$

**Bayesian**:  $G(\theta)$  is actually a **prior** on  $\theta \Rightarrow$  perform integral (**marginalization**)

$$P(n|S) = G(S; n-B, \sqrt{\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2})$$

same effect as profiling!

0.4

0.35

0.3

0.25

0.15

0.1

Need P(S|n)  $\Rightarrow$  a prior for S – take flat PDF over S > 0  $\Rightarrow$  Truncate Gaussian at S=0:  $P(S \mid n) = P(n \mid S) P(S)$ 

$$P(S \mid n) = P(n \mid S) P(S)$$

$$P(S \mid n) = G(S; n-B, \sqrt{\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2}) \left[ \Phi \left( \frac{n-B}{\sqrt{\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2}} \right) \right]^{-1}$$

**Bayesian Limit:** 

$$\int_{S_{up}}^{\infty} P(S \mid n) dS = 5\% = \left[1 - \Phi\left(\frac{S_{up} - (n - B)}{\sqrt{\sigma_{stat}^2 + \sigma_{syst}^2}}\right)\right] \left[\Phi\left(\frac{n - B}{\sqrt{\sigma_{stat}^2 + \sigma_{syst}^2}}\right)\right]^{-1}$$

$$\int_{S_{up}}^{\infty} P(S|n) dS = 5\% = \left[1 - \Phi\left(\frac{S_{up} - (n-B)}{\sqrt{\sigma_{stat}^2 + \sigma_{syst}^2}}\right)\right] \left[\Phi\left(\frac{n-B}{\sqrt{\sigma_{stat}^2 + \sigma_{syst}^2}}\right)\right]^{-1}$$

$$S_{\text{up}}^{\text{Bayes}} = n - B + \left[ \Phi^{-1} \left[ 1 - 0.05 \, \Phi \left( \frac{n - B}{\sqrt{\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2}} \right) \right] \right] \sqrt{\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2}$$

same result as CL,!