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Highlights : Discovery
Given a statistical model P(data; μ), define likelihood L(μ) = P(data; μ)
To estimate a parameter, use the value μ̂ that maximizes L(μ) → best-fit value

To decide between hypotheses H0 and H1, use the likelihood ratio

To test for discovery, use

For large enough datasets (n >~ 5), 

For a Gaussian measurement,

For a Poisson measurement,

L(H 0)

L(H 1)

q0 =−2 log
L(S=0)

L( Ŝ)
Ŝ ≥ 0

Z = √ q0

Z =
Ŝ

√B

Z = √ 2 [ ( Ŝ+B) log ( 1 +
Ŝ
B ) − Ŝ ]
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Highlights: Confidence intervals

tμ 0
=−2 log

L(μ=μ0)

L(μ̂ )

ATLAS-CONF-2017-047 

Contain the true value with given probability

To obtain, compute the log-likelihood ratio
as a function of μ0.
Interval endpoints =  μ± for which 

Gaussian case : μ̂ ± σ

Works also to obtain contours in 2D:

t
μ

± = 1

t =−2 log
L(X0,Y 0)

L( X̂ , Ŷ )

μ -δμ -

+δμ +

μ
*
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-047/


Highlights: Upper Limits

Confidence intervals: use

→ Crossings with tμ0 = Z2 for ±Zσ intervals (in 1D)

Gaussian regime: μ = μ̂ ± σμ (1σ interval)

Limits : use LR-based test statistic:

→ Use CLs procedure to avoid negative limits

Poisson regime, n=0 : Sup = 3 events

qS0
= −2 log

L(S=S0)

L( Ŝ)
S0 ≥ Ŝ

tμ 0
=−2 log

L(μ=μ0)

L(μ̂ )
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Outline

Profiling

Bayesian methods
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Systematic Errors
The statistical model (PDF) is a way to express uncertainty on the 
outcome of an experiment. e.g. 2D Gaussian :

These uncertainties are also called Statistical Uncertainties – they are 
the ones encoded in the model. 
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Systematic Errors
The statistical model (PDF) is a way to express uncertainty on the 
outcome of an experiment. e.g. 2D Gaussian :

These uncertainties are also called Statistical Uncertainties – they are 
the ones encoded in the model. 

However the model itself may be wrong : this is a systematic error
→ To account for them, need a set of Systematic uncertainties
→ Can often add them “by hand”, but how to treat this in a general way ?
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Systematic Uncertainties
Likelihood typically includes
• Parameters of interest (POIs) : S, σ×B, mW, …
• Nuisance parameters (NPs) : other parameters 

needed to define the model
→ Ideally, constrained by data like the POI

What about systematics ?
= what we don’t know about the random processs
Þ Parameterize using additional NPs
Þ Add constraints in the likelihood

L(μ ,θ ;data) = Lmeasurement(μ ,θ ;data) C (θ)

Phys. Rev. Lett. 119 (2017) 051802

POI
Systematics 

NP
Measurement

Likelihood
NP Constraint 

term 

e−αmμ μ

"Systematic uncertainty is, in any 
statistical inference procedure, 
the uncertainty due to the 
incomplete knowledge of the 
probability distribution of the 
observables.
G. Punzi, What is systematics ?

C(θ) represents extra knowledge about the NP
8 / 
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http://inspirehep.net/record/1599399
https://www-cdf.fnal.gov/physics/statistics/notes/punzi-systdef.ps


Frequentist Systematics
Prototype: NP measured in a separate auxiliary experiment 
e.g. luminosity measurement

→ Build the combined likelihood of the main+auxiliary measurements

Gaussian form often used by default:

In the combined likelihood, systematic NPs are constrained
→ now same as e.g. NPs constrained in sidebands.

→ Often no clear setup for auxiliary measurements
e.g. theory uncertainties on missing HO terms from scale variations
→ Implemented in the same way nevertheless (“pseudo-measurement”)

L(μ ,θ ;data) = Lmain(μ ,θ ;main data) Laux(θ ;aux. data )

Laux(θ ;aux. data) = G (θ
obs ;θ ,σ syst)

Independent 
measurements: 
Þ just a product
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Likelihood, the full version (binned case)

Bin Yields or
Observable 

values
Sig/Bkg Shapes,

efficiencies

Systematics

L(μ , {θ j } j=1. ..nNP
;{ni

(k )
}
i=1. .. ndata

( k)

k=1. ..ncat , {θ j
obs
} j=1. . nNP

)=

∏
k=1

ncat

P [ ni ;μ ϵi , k( θ⃗ ) N S , i , k ( θ⃗ ) + Bi ,k( θ⃗ ) ] ∏
j=1

nsyst

G(θ j
obs ;θ j ;1)

DataPseudo-
experiments

MC
Auxiliary 

Data

Expected 
bin yield

POI NPs

× number of categories! 10 / 
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Reminder: Wilks’ Theorem

Consider

→ Assume Gaussian regime (e.g. large nevts, 
    Central-limit theorem) : then:

Wilk’s Theorem:  tS0 is distributed as a χ2 

under HS0(S=S0):

Cowan, Cranmer, Gross & Vitells
Eur.Phys.J.C71:1554,2011

Z = √q0

f ( tS0
∣ S=S0 ) = f

χ
2
(ndof=1) ( t S0 )

⇒ The significance is:

S ≤ 0

q0

Observed 
value q0

obs

χ2(ndof=1) 

large S
p-value

√q0

tS0
=−2 log

L(S=S0)

L( Ŝ)
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https://arxiv.org/abs/1007.1727


Profiling
How to deal with nuisance parameters in likelihood ratios ?
→ Let the data choose  Þ use the best-fit values (Profiling)

Þ Profile Likelihood Ratio (PLR)

t S0
=−2 log

L(S=S0,

^̂
θ (S0))

L( Ŝ , θ̂ )
θ̂ overall best-fit value

^̂
θ (S0) best-fit value for S=S0

Wilks’ Theorem: same properties as plain likelihood ratio

→ Profiling “builds in” the effect of the NPs
⇒ Can use tS0 to compute limits, significance, etc. in the same way as before

f ( t S0
∣ S=S0 ) = f

χ
2
(ndof=1) ( tS0 )

also with NPs present

(conditional MLE)

(unconditional MLE)
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Homework 7: Gaussian Profiling
Counting experiment with background uncertainty: n =  S + B :
→ Signal region (SR): nobs ~ G(S + B, σstat)
→ Control region (CR): Bobs ~ G(B, σbkg)

Recall: Signal region only (fixed B): 

→ Compute the best-fit (MLEs) for S and B
→ Show that the conditional MLE for B is
 

→ Compute the profile likelihood tS

→ Compute the 1σ confidence interval on S

σ S = √ σ stat
2
+ σ bkg

2

L (S , B) = G (nobs ;S + B ,σ stat) G (Bobs ;B ,σ bkg)

S = (nobs−Bobs) ± √ σ stat
2
+ σ bkg

2

Stat uncertainty (on n) and systematic (on B) add in quadrature

t S = (
S− nobs

σ stat )
2

S= (nobs − B) ± σ stat

SR CR

nobs

Signal

Bkg Bkg^̂
B(S) = Bobs +

σ bkg
2

σ stat
2

+σ bkg
2

( Ŝ− S)

Bobs
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Uncertainty decomposition
No systematics NPs included : statistical uncertainty only

1σ intervals

All systematics NPs included: stat+syst uncertaintes

σ syst,tot = √σ total
2

− σ stat
2

Subtraction in quadrature

μ = 0.99 ± 0.12 (stat) ± 0.06 (syst) ± 0.06 ( theo) 14 / 
40



Pull/Impact plots
Systematics are described by NPs 
included in the fit. Define pull as

Nominally:
• pull  = 0 : i.e. the pre-fit expectation
• pull uncertainty = 1 : from the Gaussian

ATLAS-CONF-2016-058

However fit results may be different:
● Central value ¹ 0: some data feature 

differs from MC expectation
Þ Need investigation if large

● Uncertainty < 1 : effect is constrained 
by the data Þ Needs checking if this 
legitimate or a modeling issue

●

→ Impact on result of ±1σ shift of NP 
allows to gauge which NPs matter most .

(θ̂−θ0) / σθ
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40

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-058/


Pull/Impact plots
Systematics are described by NPs 
included in the fit. Define pull as

Nominally:
• pull  = 0 : i.e. the pre-fit expectation
• pull uncertainty = 1 : from the Gaussian

ATLAS-CONF-2016-05813 TeV single-t XS (arXiv:1612.07231)

However fit results may be different:
● Central value ¹ 0: some data feature 

differs from MC expectation
Þ Need investigation if large

● Uncertainty < 1 : effect is constrained 
by the data Þ Needs checking if this 
legitimate or a modeling issue

●

→ Impact on result of ±1σ shift of NP 
allows to gauge which NPs matter most .

(θ̂−θ0) / σθ
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-058/
https://arxiv.org/abs/1612.07231


Profiling Takeaways

When testing a hypothesis, use the best-fit values
of the nuisance parameters: Profile Likelihood Ratio.

Allows to include systematics as uncertainties on nuisance parameters.

Profiling systematics includes their effect into the total uncertainty. 
Gaussian:

Guaranteed to work well as long as everything is Gaussian, but typically
also robust against non-Gaussian behavior.

L(μ=μ0,

^̂
θμ 0

)

L(μ̂ , θ̂)

σ total = √σ stat
2

+ σ syst
2

Profiling can have unintended effects – need to carefully check behavior 

16 / 
40



Outline

Profiling

Bayesian methods

Look elsewhere effect

17 / 
40



Bayesian methods
Probability distribution (= likelihood) :
→ Same as frequentist case, but treat systematics by marginalization, i.e. 
integrating over priors, instead of profiling:

→ Integrate out θ to get P(μ) : 

→ Use probability distribution P(μ) directly for limits & intervals

e.g. 68% CL (“Credibility Level”) interval [A, B] is: 

where π(μ) is the prior on μ. Uses  Bayes’ Theorem:

⊖ No simple way to test for discovery
⊖ Integration over NPs can be CPU-intensive (but can use MCMC methods)

Priors : most analyses use flat priors in the analysis variable(s)
Þ Parameterization-dependent: if flat in σ´B , them not flat in couplings….
→ Can use the Jeffreys’ or reference priors, but difficult in practice

P (μ) =∫ P (μ ,θ)C (θ ) d θ

∫
A

B

P (μ) π (μ ) dμ = 68 %

P (μ | n) = P (n |μ )
P (μ )

P (n)

→ → 
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Homework 8: Bayesian methods and CLs

P (n ;S ,θ) = G(n ;S+B+σ syst θ ,σ stat) G (θobs=0 ;θ ,1)

Sup
CL s = n−B + [ Φ−1

( 1 − 0.05 Φ (
n−B

√σ stat
2
+σ syst

2 ) ) ] √σ stat
2
+σ syst

2

Gaussian counting problem with systematic on background: n = S + B + σsystθ

→ What is the 95% CL upper limit on S, given a measurement nobs ?

1. CLs computation:
● Use the result of Homework 7 to compute the PLR for S
● Use the result of Homework 6 to compute the CLs upper limit
2. Bayesian computation:
● Integrate P(n; S, θ) over θ to get the marginalized P(n| S)
● Use Bayes’ theorem to compute P(S|n) ∝ P(n|S) P(S), with P(S) a flat prior over 

S>0.
● Find the 95% CL limit by solving 

 

∫
Sup

∞

P (S∣ n) dS = 5 %

Solution:
In both cases

19 / 
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Example: W’→lν Search
• POI: W’ σ´B → use flat prior over [0, +¥[.
• NPs: syst on signal ε (6 NPs), bkg (6), lumi (1) → integrate over Gaussian priors

arXiv:1706.04786 
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Look-Elsewhere effect
Sometimes, unknown parameters in signal model
e.g. p-values as a function of mX

Þ Effectively: multiple, simultaneous searches
→ If e.g. small resolution and large scan range, 
many independent experiments

→ More likely to find an excess 
anywhere in the range, rather 
than in a predefined location
⇒ Look-elsewhere effect (LEE)

22 / 
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Global Significance
Probability for a fluctuation anywhere in the range → Global p-value.

 at a given location       → Local p-value

→ pglobal > plocal  Þ  Zglobal < Zlocal : global fluctuation
more likely ⇒ less significant

Trials factor : naively = # of independent intervals:

However this is usually wrong – more on this later

pglobal = 1 − (1−plocal)
N
≈ N plocal

Trials factor 

Global 
p-value

Local 
p-value

N trials

??
= N indep =

scan range
peak width

23 / 
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Global Significance
Probability for a fluctuation anywhere in the range → Global p-value.

 at a given location       → Local p-value

For searches over a parameter range, the global p-value is the relevant one
→ Accounts for the actual search procedure: look for an excess anywhere in 
the scanned range

→ Depends on the scanned 
     parameter ranges

e.g. X→γγ :
• 200 < mX< 2000 GeV
• 0 < ΓX < 10% mX.

→ plocal is what comes out of the usual formulas
How to compute pglobal (or Ntrials) ? 

24 / 
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Trials Factor
Trials factor N = # of independent searches:

Naively, one could expect

However this is only correct for a discrete
Number of experiments (i.e. 10 different regions)

pglobal = 1 − (1−plocal)
N
≈ N plocal

Trials factor 

Global 
p-value

Local 
p-value

N trials

??
= N indep =

scan range
peak width

25 / 
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Trials Factor for continuous variables

Asymptotic limit : trials factor (1 POI) is

→ Trials factor is not just Nindep, also depends on Zlocal ! 

Why ? Slicing range into Nindep regions misses
peaks sitting on edges between regions 
⇒ true Ntrials is > Nindep!

N trials = 1 + √
π
2

N indep Zlocal

N indep =
scan range
peak width

Gross & Vitells, 
EPJ.C70:525-
530,2010

Search in 10 fixed 
bins: Ntrials = 10

Se
arch

 
ev

ery
whe

re:

Toy data
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Trials Factor for continuous variables

Asymptotic limit : trials factor (1 POI) is

→ Trials factor is not just Nindep, also depends on Zlocal ! 

Why ? Slicing range into Nindep regions misses
peaks sitting on edges between regions 
⇒ true Ntrials is > Nindep!

N trials = 1 + √
π
2

N indep Zlocal

N indep =
scan range
peak width

Gross & Vitells, 
EPJ.C70:525-
530,2010

Search in 10 fixed 
bins: Ntrials = 10

Se
arch

 
ev

ery
whe

re:

Toy data
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Global Significance from Toys

Principle: repeat the analysis in toy data:
→ generate pseudo-dataset
→ perform the search, scanning over parameters
     as in the data
→ report the largest significance found
→ repeat many times 

⇒ The frequency at which a given Z0 is found is the global p-value

e.g. X→γγ Search: Zlocal = 3.9σ (⇒ plocal ~ 5 10-5), 
→ However we are scanning 200 < mX< 2000 GeV and  0 < ΓX < 10% mX !
→ Toys : find such an excess 2% of the time somewhere in the range 
⇒ pglobal ~ 2 10-2, Zglobal = 2.1σ Less exciting, and better indication of true Z!

⊕ Exact treatment
⊖ CPU-intensive especially for large Z (need ~O(100)/pglobal toys)

Local 3.9σ
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Conclusion
• Significant evolution in the statistical methods used in HEP

• Variety of methods, adapted to various situations and target results

• Allow to
– model the statistical process with high precision in difficult situations 

(large systematics, small signals)
– make optimal use of available information

• Implemented in standard RooFit/RooStat toolkits within the ROOT 
framework, as well as other tools (BAT)

• Still many open questions and areas that could use improvement
→ e.g. how to present results with all available information

28 / 
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Homework solutions for Lecture 3
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Homework 1: Gaussian Counting
Count number of events n in data
→ assume n large enough so process is Gaussian
→ assume B is known, measure S

Likelihood :

MLE for S : Ŝ = n – B

Test statistic: assume Ŝ > 0,

Finally: 

L(S ;n) = e
−

1
2 (

n−(S+B)

√S+B )
2

S+B

√(S+B
)

n

q0 =−2 log
L(S=0)

L( Ŝ)
= λ(S=0) − λ(Ŝ) = (

n−B

√B )
2

= ( Ŝ√B )
2

Z = √ q0 =
Ŝ

√B

λ (S ;n) = (
n−(S+B)

√S+B )
2

Known formula!
→ Strictly speaking only 
valid in Gaussian regime
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Homework 2: Poisson Counting
Same problem but now not assuming Gaussian behavior:

MLE: Ŝ = n – B, same as Gaussian

Test statistic (for Ŝ > 0):

Assuming asymptotic distribution for q0,

L(S ;n) = e−(S+ B)
(S+B)n λ (S ;n) = 2(S+B)−2n log (S+B)

q0 = λ(S=0) − λ ( Ŝ) = −2 Ŝ−2( Ŝ+B)  log
B

Ŝ+B

Z = √ 2 [ ( Ŝ+B) log ( 1 +
Ŝ
B ) − Ŝ ]

See G. Cowan’s slides for case with B uncertainty
31 / 
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Homework solutions for Lecture 4
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Homework 3: Gaussian CLs+b

Usual Gaussian counting example with known B:

Reminder:
Best fit signal : Ŝ = n - B
Significance: Z = Ŝ/√B

Compute the 95% CL upper limit on S:

so

And finally

S+B

σ 
n

λ (S) = ( n−(S+B)
σ S )

2

qS0
=−2 log

L(S=S0)

L( Ŝ)
= λ (S0) − λ ( Ŝ) = ( n−(S0+B)

σ S )
2

= ( S0− Ŝ
σS )

2 for 
S0 > Ŝ 

qS0
= 2.70  for  S0 = Ŝ + √2.70 σ S

Sup = Ŝ + 1.64σ S  at 95 % CL

33 / 
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Usual Gaussian counting example with known B:

Reminder 
Best fit signal : Ŝ = n - B
CLs+b limit:  

CLs upper limit : still have 
so need to solve

for Ŝ = 0,  

S+B

ÖB
n

λ (S) = ( n−(S+B)
σ S )

2

qS0
= ( S0− Ŝ

σ S )
2 (for S0 > Ŝ) 

Sup = Ŝ + 1.64σ S  at 95 % CL Ŝ ~ G(S, σS) so
Under H0(S = S0) :

Under H0(S = 0) :
pCLs

=
pS0

1 − pB

=
1−Φ(√ qS0

)

1−Φ(√ qS0
− S0/ σ S)

= 5%

Sup = Ŝ + [ Φ−1

(1 − 0.05 Φ ( Ŝ / σ S) ) ] σ S  at 95 %  CL

pS0
= 1−Φ(√qS0

)

pB = Φ(√ qS0
−S0 / σ S)

√ qS0
∼ G (S0 / σ S ,1)

√ qS0
∼ G (0, 1)

Homework 4 : Gaussian CLs
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Homework 5: Poisson CLS

Same exercise, for the Poisson case
Exact computation : sum probabilities of cases “at least as extreme as data” (n)

For n = 0: 

⇒ Rule of thumb: when nobs=0, the 95% CLs limit is 3 events (for any B)

Asymptotics: as before, 

For n = 0,

⇒ Sup ~ 2, exact value depends on B 
⇒ Asymptotics not valid in this case (n=0) – need to use exact results, or toys

qS0
= λ (S0) − λ ( Ŝ) = 2(S0 + B− n)−2n  log

S0+B

n

pS0
(n) =∑

0

n

e−(S0+B)
(S0+B)

k

k !

pCLs
=

pSup
(0)

p0(0)
= e−Sup = 5% ⇒ Sup = log (20) = 2.996 ≈ 3

and one should solve pCLs
=

pSup
(n)

p0(n)
= 5 %  for Sup

pCLs
=

pS0

p0

=
1−Φ(√ qS0

(n=0))

1−Φ(√ qS0
(n=0)−√qS0

(n=B))
= 5%

qS0
(n=0) = 2(S0+B)
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Consider a parameter m (e.g. Higgs boson mass)
whose measurement is Gaussian with known
width σm, and we measure mobs:

→ Best-fit value (MLE): m̂ = mobs. 

→ Test statistic : 

→ 1σ Interval

m

σm

mobs

m = mobs ± σm

λ (m;mobs) = (
m−mobs

σm )
2

Homework 6: Gaussian Intervals

λ (m;mobs) = (
m−mobs

σm )
2

tm= (m−mobs
σm )

2

JHEP 1 1 (201 7) 047
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Homework solutions for Lecture 5
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Homework 7: Gaussian Profiling
Counting experiment with background uncertainty: n =  S + θ :
→ Signal region: n ~ G(S + θ, σstat)
→ Control region: θobs ~ G(θ, σsyst)

Then: 

PLR: 

1σ interval σ S = √ σ stat
2
+ σ syst

2

L (S ,θ) = G (n ;S + θ ,σ stat) G (θ
obs ;θ ,σ syst)

Ŝ= n− θ
obs

θ̂ = θ
obs

^̂
θ (S) = θ

obs
+

σ syst
2

σ stat
2
+σ syst

2
( Ŝ− S)

λ (S ,θ) = ( n− (S + θ)
σ stat )

2

+ ( θ
obs

− θ
σ syst )

2

Conditional MLE:

t S=−2 log
L(S ,

^̂
θ (S))

L( Ŝ , θ̂ )
= λ (S ,

^̂
θ (S)) − λ ( Ŝ , θ̂ ) =

(S− Ŝ)2

σ stat
2

+ σ syst
2

MLEs:

For S = Ŝ, matches 
MLE as it should 

S = Ŝ ± √ σ stat
2
+ σ syst

2

Stat uncertainty (on n) and systematic (on θ) add in quadrature
38 / 
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Homework 8: CLs computation

L(n ;S ,θ) = G (n ;S+B+σ systθ ,σ stat) G(θobs=0 ;θ ,1)

Conditional MLE: ^̂θ(μ) =
σ syst

σ stat
2

+σ syst
2

(n− S−B)
PLR : λ(μ) = (

S+B − n

√ σ stat
2

+σ syst
2 )

2

This boils down to the Gaussian case of HW 6, so the CLs limit is

CLs :    Sup
CLs = n−B + [ Φ−1

( 1 − 0.05 Φ (
n−B

√σ stat
2
+σ syst

2 ) ) ] √σ stat
2

+σ syst
2

MLE: Ŝ= n−B

Gaussian counting with systematic on background: n = S + B + σsystθ
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Homework 8: Bayesian computation

P (n ∣ S ,θ) = G (n ;S+B+σ syst θ ,σ stat) G (θ ∣ 0, 1)

Gaussian counting with systematic on background: n = S + B + σsystθ

Bayesian: G(θ) is actually a prior on θ ⇒ perform integral (marginalization)

P (n ∣ S) = G (S ; n−B , √σ stat
2

+σ syst
2

)

∫
Sup

∞

P (S∣ n) dS= 5 % = [ 1−Φ (
Sup−(n−B)

√σ stat
2

+σ syst
2 ) ] [ Φ (

n−B

√σ stat
2

+σ syst
2 ) ]

−1

P (S ∣ n) = G (S ;n−B ,√σ stat
2

+σ syst
2

) [ Φ (
n−B

√σ stat
2

+σ syst
2 ) ]

−1

same result as CLs!

same effect as profiling!

Need P(S|n) ⇒ a prior for S – take flat PDF over S > 0
⇒ Truncate Gaussian at S=0: 

P (S ∣ n) = P (n ∣ S) P (S)

Bayesian Limit:

Sup
Bayes

= n−B + [ Φ−1

( 1 − 0.05 Φ (
n−B

√σ stat
2

+σ syst
2 ) ) ] √σ stat

2
+σ syst

2
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