

Outline

Previously in these lectures

Statistical modeling

Estimating parameters

Testing for discovery

Confidence intervals

Today

Upper limits

Expected results

Reparameterization and presentation of results

Profiling

Highlights: Discovery

Given a statistical model P(data; μ), define likelihood $L(\mu) = P(data; \mu)$

To estimate a parameter, use the value $\hat{\mathbf{p}}$ that maximizes $L(\mu) \rightarrow$ best-fit value

To decide between hypotheses H_0 and H_1 , use the likelihood ratio $\frac{L(H_0)}{L(H_1)}$

To test for **discovery**, use
$$q_0 = -2\log\frac{L(S=0)}{L(\hat{S})}$$
 $\hat{S} \ge 0$

For large enough datasets (n >~ 5), $Z = \sqrt{q_0}$

For a Gaussian measurement,
$$Z = \frac{\hat{S}}{\sqrt{B}}$$

For a Poisson measurement,
$$Z = \sqrt{2\left[(\hat{S} + B) \log \left(1 + \frac{\hat{S}}{B} \right) - \hat{S} \right]}$$

Highlights: Confidence intervals

 $\mu^{+\delta\mu^{+}}_{-\delta\mu^{-}} \quad \mu^{*}$

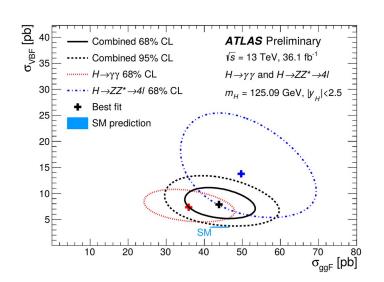
Contain the true value with given probability

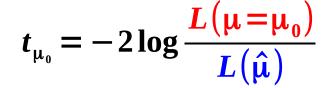
To obtain, compute the log-likelihood ratio as a function of μ_0 .

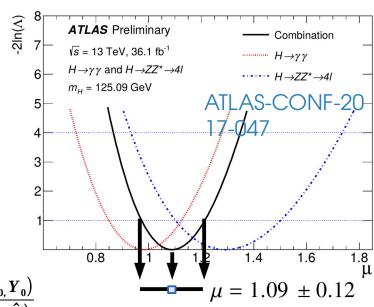
Interval endpoints = μ^{\pm} for which $t_{\mu^{\pm}} = 1$

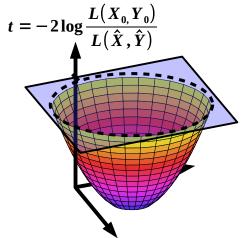
Gaussian case : $\hat{\mu} \pm \sigma$

Works also to obtain **contours in 2D**:









Outline

Computing statistical results

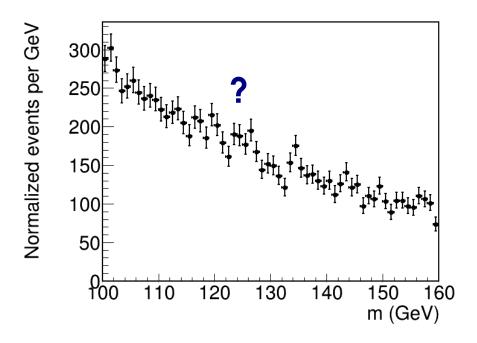
Confidence intervals

Upper limits on signal yields

Expected Limits

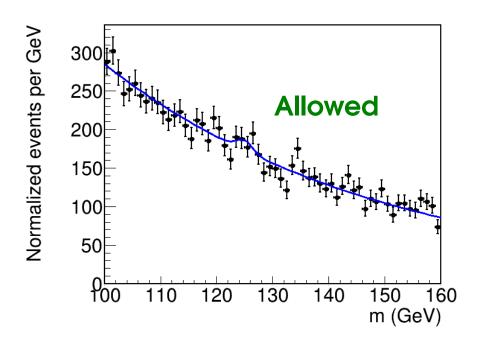
If no signal in data, testing for discovery not very relevant (report 0.2 σ excess?)

- → More interesting to exclude large signals
- → Upper limits on signal yield



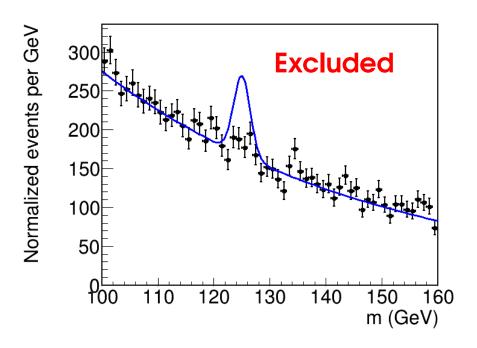
If no signal in data, testing for discovery not very relevant (report 0.2 σ excess?)

- → More interesting to exclude large signals
- → Upper limits on signal yield



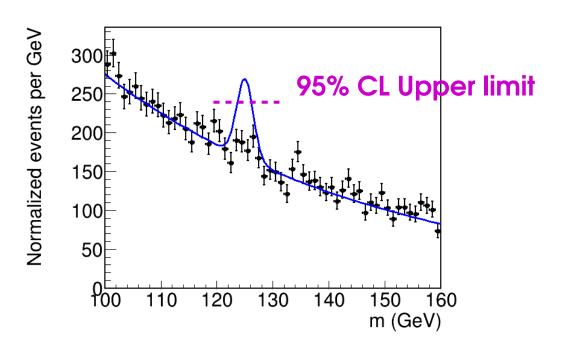
If no signal in data, testing for discovery not very relevant (report 0.2 σ excess?)

- → More interesting to exclude large signals
- → Upper limits on signal yield



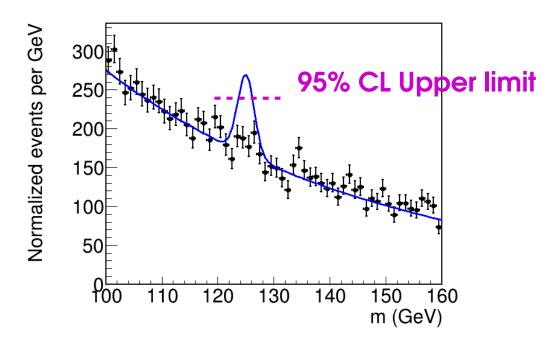
If no signal in data, testing for discovery not very relevant (report 0.2 σ excess?)

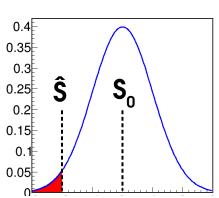
- → More interesting to exclude large signals
- → Upper limits on signal yield



If no signal in data, testing for discovery not very relevant (report 0.2 σ excess?)

- → More interesting to exclude large signals
- → Upper limits on signal yield





Test Statistic for Limit-Setting

Discovery:

- $H_0: S = 0$
- H₁: S > 0

Compare

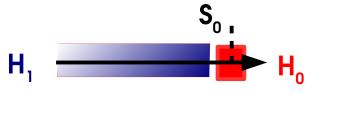
 $q_0 = -2\log \frac{L(S=0)}{L(\hat{S})}$ Likelihood of H₀ Likelihood of H₁

 $(\hat{S} > 0)$

Compare

Limit-setting

- $H_0 : S = S_0$
- H₁: S < S₀



$$q_{S_0} = -2\log \frac{L(S=S_0)}{L(\hat{S})} \leftarrow \text{Likelihood of H}_0$$

$$L(\hat{S}) \leftarrow \text{Likelihood of H}_1$$

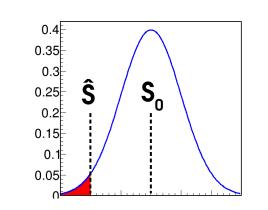
 $(\hat{S} < S_0)$

Same as q_0 :

 \rightarrow large values \Rightarrow good rejection of H₀.

Asymptotic case: p-value $p_{S_a} = 1 - \Phi(\sqrt{q_{S_a}})$

$$p_{S_0} = 1 - \Phi(\sqrt{q_{S_0}})$$



Inversion: Getting the limit for a given CL

Procedure:

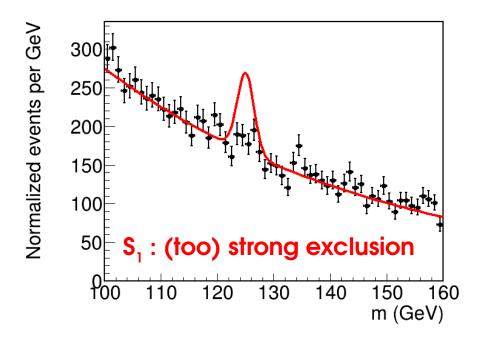
→ Compute q_{s0} for some S_0 , get the **exclusion p-value p**_{s0}.

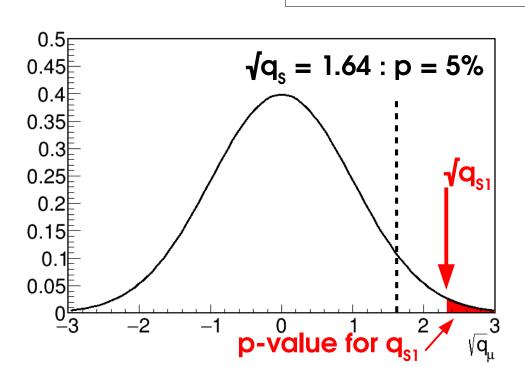
→ Adjust S₀ until 95% CL exclusion ($p_{s0} = 5\%$) is reached Asymptotic case: need $\sqrt{q_{s0}} = 1.64$

Asymptotics

$$\sqrt{q_{S_0}} = \Phi^{-1}(1-p_0)$$

CL	Region
90%	√q _s > 1.28
95%	√q _s > 1.64
99%	$\sqrt{q_{s}} > 2.33$





Inversion: Getting the limit for a given CL

Procedure:

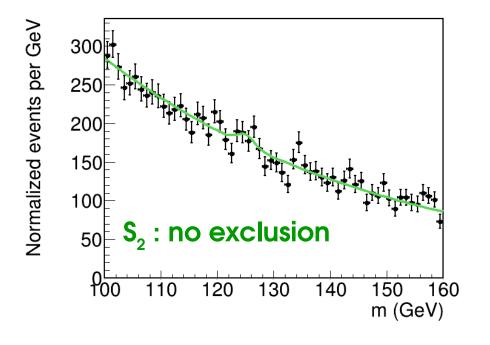
→ Compute q_{S0} for some S_0 , get the exclusion p-value p_{S0} .

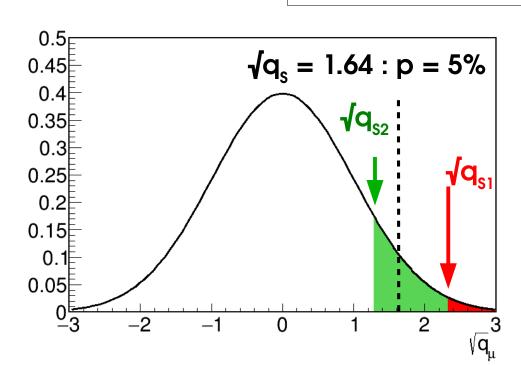
→ Adjust S₀ until 95% CL exclusion ($p_{s0} = 5\%$) is reached Asymptotic case: need $\sqrt{q_{s0}} = 1.64$

Asymptotics

$$\sqrt{q_{S_0}} = \Phi^{-1}(1-p_0)$$

CL	Region
90%	√q _s > 1.28
95%	$\sqrt{q_{s}} > 1.64$
99%	$\sqrt{q_{_{\rm S}}} > 2.33$





Inversion: Getting the limit for a given CL

Procedure:

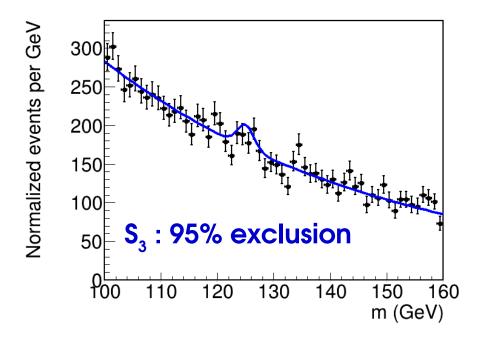
→ Compute q_{S0} for some S_0 , get the exclusion p-value p_{S0} .

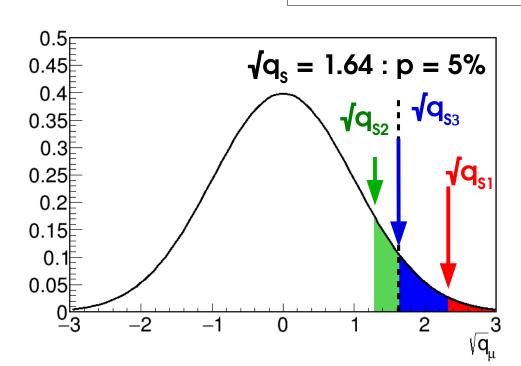
→ Adjust S₀ until 95% CL exclusion ($p_{s0} = 5\%$) is reached Asymptotic case: need $\sqrt{q_{s0}} = 1.64$

Asymptotics

$$\sqrt{q_{S_0}} = \Phi^{-1}(1-p_0)$$

CL	Region
90%	√q _s > 1.28
95%	$\sqrt{q_{s}} > 1.64$
99%	$\sqrt{q_{_{\rm S}}} > 2.33$

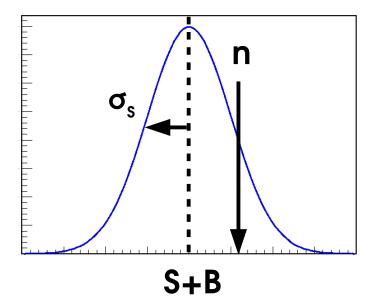




Homework 4: Gaussian Example

Usual Gaussian counting example with known B:

$$L(S;n) = e^{-\frac{1}{2}\left(\frac{n-(S+B)}{\sigma_S}\right)^2}$$
 $\sigma_S \sim \sqrt{B}$ for small S



Reminder: Significance: $Z = \hat{S}/\sigma_s$

- → Compute q_{s0}
- → Compute the 95% CL upper limit on S, S_{up} , by solving $\sqrt{q_{S0}} = 1.64$.

Solution:
$$S_{up} = \hat{S} + 1.64 \sigma_S$$
 at 95 % CL

Upper Limit Pathologies

Upper limit: $S_{up} \sim \hat{S} + 1.64 \sigma_{s}$.

Problem: for negative \$, get **very** good observed limit.

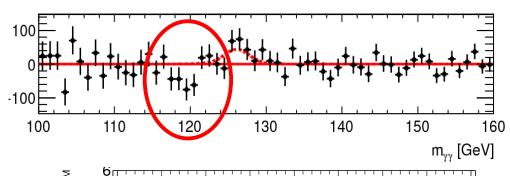
 \rightarrow For \hat{S} sufficiently negative, even $S_{up} < 0$!

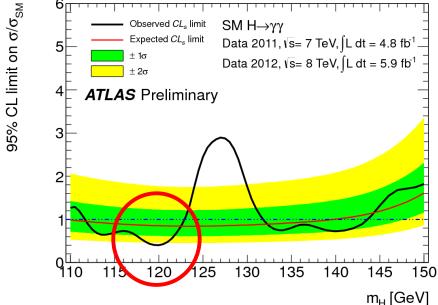
How can this be?

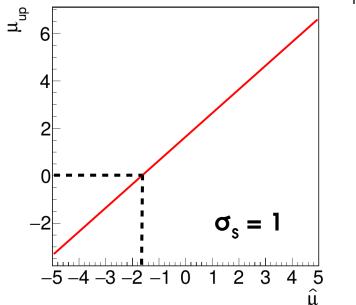
- → Background modeling issue ?... Or:
- → This is a 95% limit \Rightarrow 5% of the time, the limit wrongly excludes the true value, e.g. $S^*=0$.

Options

- \rightarrow live with it: sometimes report limit < 0
- → Special procedure to avoid these cases, since if we assume S must be >0, we know a priori this is just a fluctuation.







Usual solution in HEP: CL_s.

→ Compute modified p-value

$$p_{CL_s} = \frac{p_{S_0}}{\left(1 - p_B\right)}$$

- \Rightarrow **Rescale** exclusion at S₀ by exclusion at S=0.
- → Somewhat ad-hoc, but good properties...

\$ compatible with 0: $p_B \sim O(1)$ $p_{CLs} \sim p_{so} \sim 5\%$, no change.

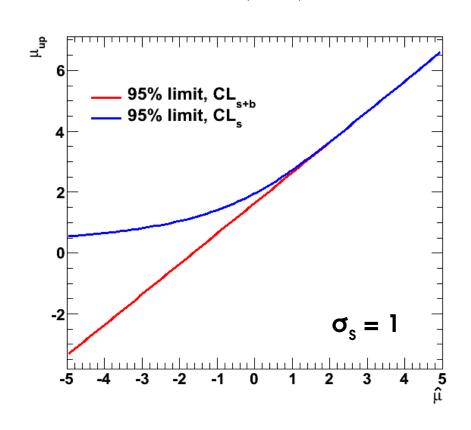
Far-negative $\hat{\mathbf{S}}$: $1 - p_R \ll 1$

$$p_{CLs} \sim p_{SO}/(1-p_B) \gg 5\%$$

→ lower exclusion ⇒ higher limit, usually >0 as desired

The usual p-value under p_{S_0} H(S=S₀) (=5%)

The p-value computed under H(S=0)



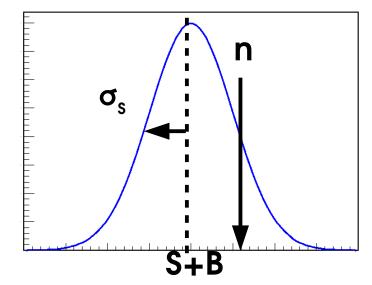
Drawback: overcoverage

 \rightarrow limit is claimed to be 95% CL, but actually >95% CL for small 1-p_R.

Homework 5: CL_s: Gaussian Case

Usual Gaussian counting example with known B:

$$L(S;n) = e^{-\frac{1}{2}\left(\frac{n-(S+B)}{\sigma_S}\right)^2}$$
 $\sigma_S \sim \sqrt{B}$ for small S



Reminder

$$CL_{s+b}$$
 limit: $S_{up} = \hat{S} + 1.64 \sigma_S$ at 95 % CL

CL_s upper limit :

- \rightarrow Compute p_{so} (same as for CLs+b)
- → Compute 1-p_B (hard!)

Solution:
$$S_{up} = \hat{S} + \left[\Phi^{-1}\left(1 - 0.05 \Phi(\hat{S}/\sigma_s)\right)\right]\sigma_s$$
 at 95% CL for $\hat{S} \sim 0$, $S_{up} = \hat{S} + 1.96 \sigma_s$ at 95% CL

Homework 6: CL_s Rule of Thumb for n_{obs}=0

Same exercise, for the Poisson case with $n_{obs} = 0$. Perform an exact computation of the 95% CLs upper limit based on the definition of the p-value:

p-value: sum probabilities of cases at least as extreme as the data

Hint: for $n_{obs}=0$, there are no "more extreme" cases (cannot have n<0!), so

$$p_{s0} = Poisson(n=0 \mid S_0 + B)$$
 and $1 - p_B = Poisson(n=0 \mid B)$

$$S_{up}(n_{obs}=0) = log(20) = 2.996 \approx 3$$

Solution:

 \Rightarrow Rule of thumb: when $n_{obs} = 0$, the 95% CL_s limit is 3 events (for any B)

Outline

Computing statistical results

Discovery

Confidence intervals

Upper limits

Reparameterization and presentation of results

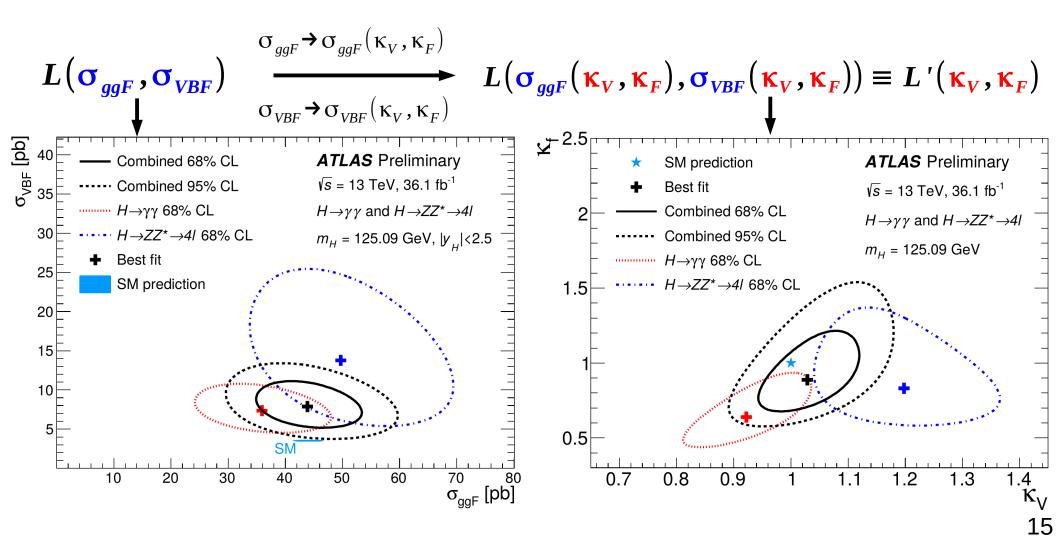
Expected results

Profiling

Reparameterization

Start with basic measurement in terms of e.g. $\sigma \times B$

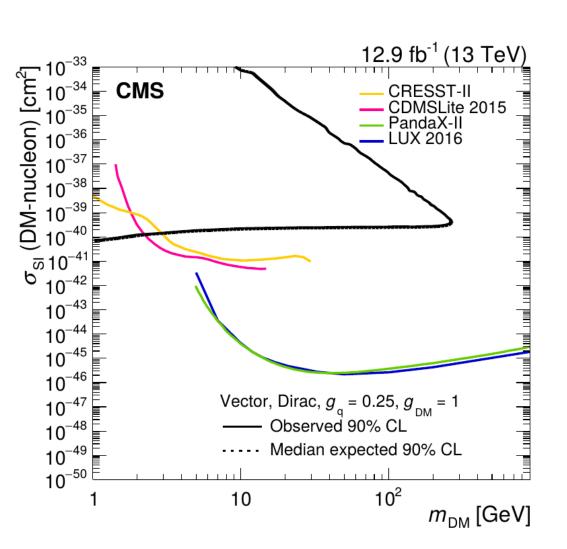
- → How to measure derived quantities (couplings, parameters in some theory model, etc.) ? → just reparameterize the likelihood:
- e.g. Higgs couplings: $\sigma_{\rm ggF}$, $\sigma_{\rm VBF}$ sensitive to Higgs coupling modifiers $\kappa_{\rm V}$, $\kappa_{\rm F}$.

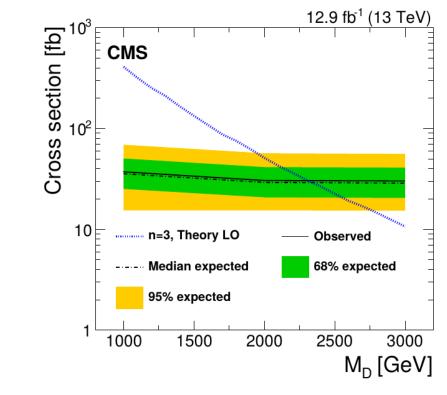


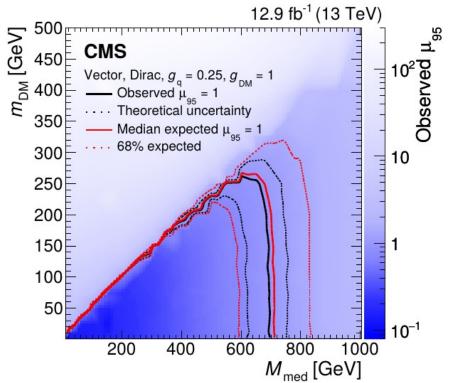
Reparameterization: Limits

CMS Run 2 Monophoton Search: measured

 $\mathbf{N_s}$ in a counting experiment reparameterized according to various DM models

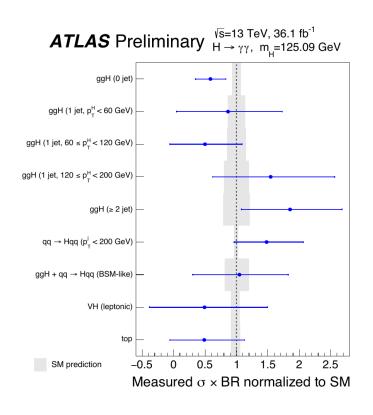


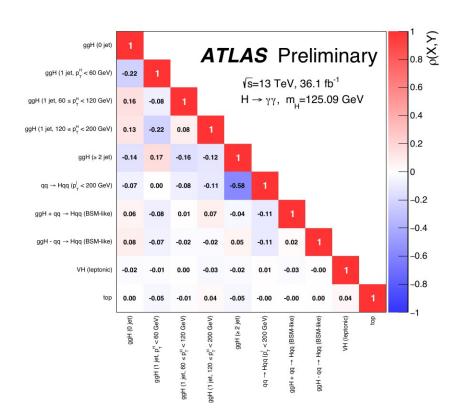




Presentation of Results

- → Cannot test every model : need to make enough information public so that others (theorists) are able to do it independently
- → Gaussian case: sufficient to provide measurements + covariance matrix
- → For example using the HEPData repository.





Non-Gaussian case: not so simple, but can publish full likelihood (e.g. here)

Outline

Computing statistical results

Discovery

Confidence intervals

Upper limits

Reparameterization and presentation of results

Expected results

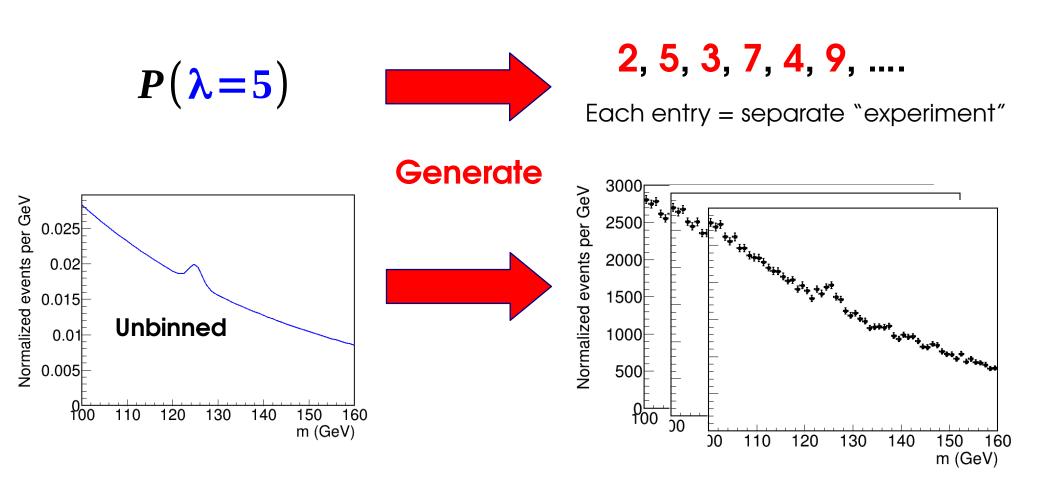
Profiling

Generating Pseudo-data

Model describes the distribution of the observable: P(data; parameters)

⇒ Possible outcomes of the experiment, for given parameter values

Can draw random events according to PDF: generate pseudo-data



Expected Limits: Toys

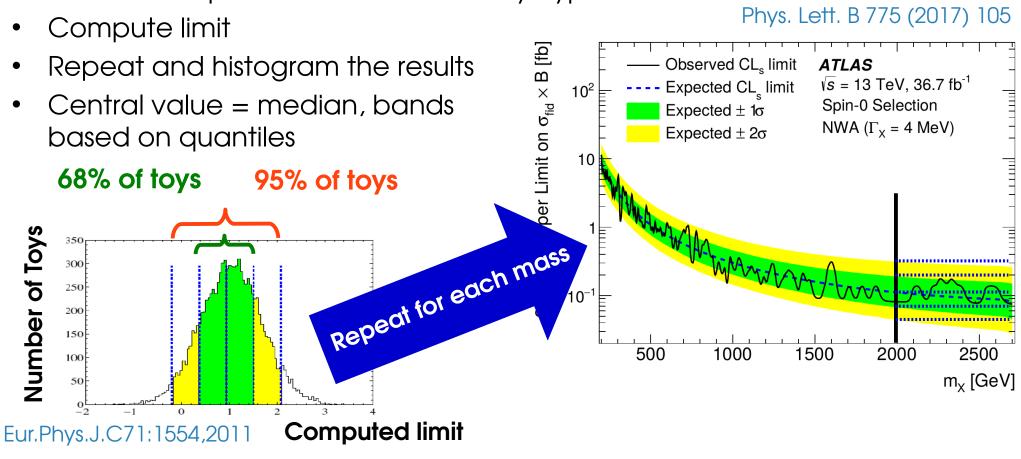
Expected results: median outcome under a given hypothesis

→ usually B-only for searches, but other choices possible.

Two main ways to compute:

→ Pseudo-experiments (toys):

Generate a pseudo-dataset in B-only hypothesis



Expected Limits: Asimov Datasets

Expected results: median outcome under a given hypothesis

→ usually B-only for searches, but other choices possible.

Two main ways to compute:

Strictly speaking, Asimov dataset if

$$X = X_0$$
 for all parameters X ,

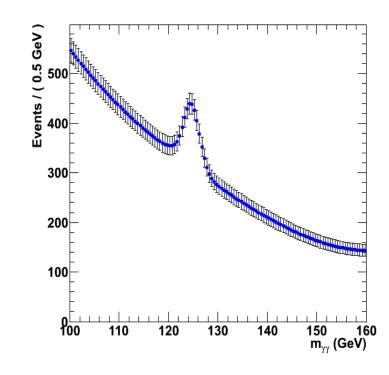
where X_0 is the generation value

→ Asimov Datasets

- Generate a "perfect dataset" e.g. for binned data, set bin contents carefully, no fluctuations.
- Gives the median result immediately:
 median(toy results) ↔ result(median dataset)
- Get bands from asymptotic formulas: Band width

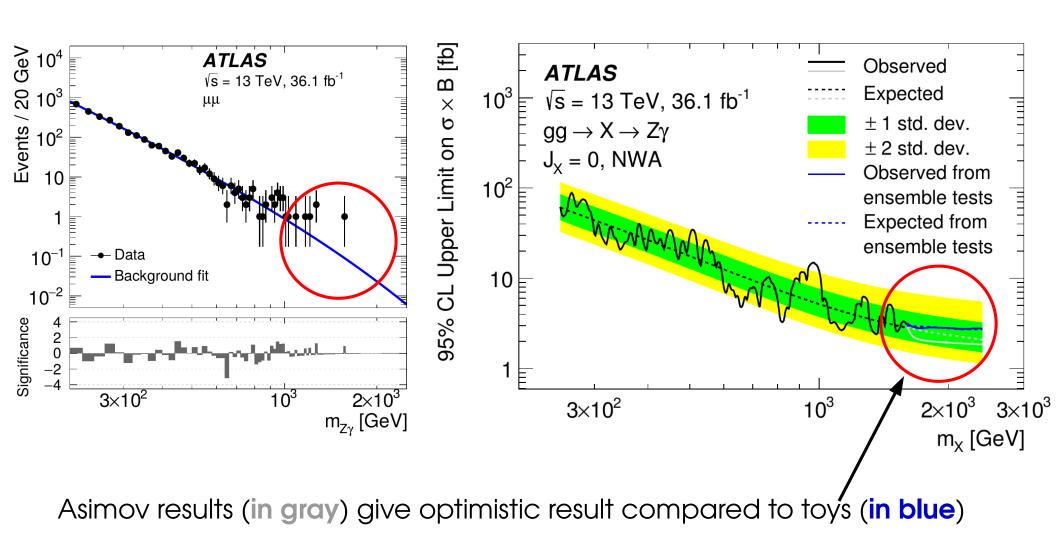
$$\sigma_{S_0,A}^2 = \frac{S_0^2}{q_{S_0}(\text{Asimov})}$$

- Much faster (1 "toy")
- e Relies on Gaussian approximation



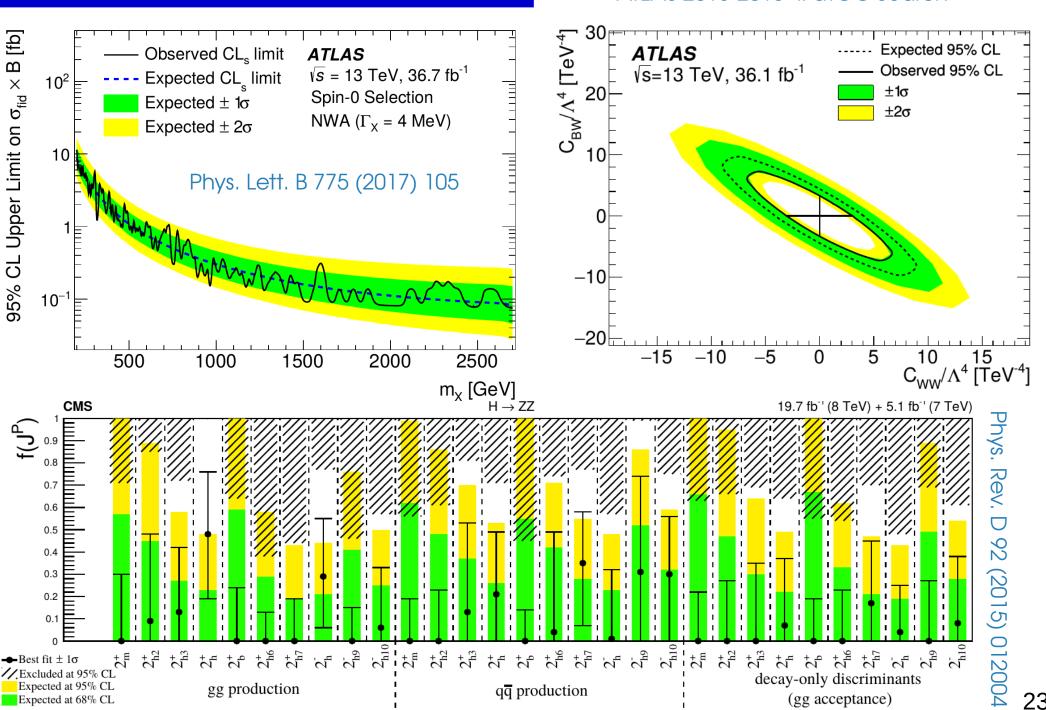
Toys: Example

ATLAS X \rightarrow Z γ Search: covers 200 GeV < m_{χ} < 2.5 TeV \rightarrow for m_{χ} > 1.6 TeV, low event counts \Rightarrow derive results from toys



Upper Limit Examples

ATLAS 2015-2016 4I aTGC Search

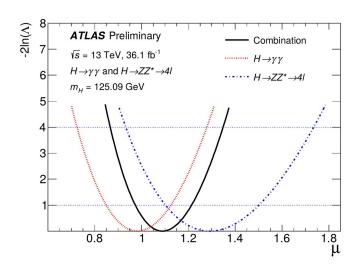


Takeaways

Confidence intervals: use
$$t_{\mu_0} = -2\log\frac{L(\mu = \mu_0)}{L(\hat{\mu})}$$

 \rightarrow Crossings with $t_{\mu 0} = Z^2$ for $\pm Z\sigma$ intervals (in 1D)

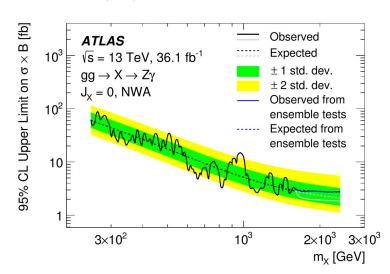
Gaussian regime: $\mu = \hat{\mu} \pm \sigma_{\mu}$ (1 σ interval)



Limits: use LR-based test statistic: $q_{S_0} = -2\log\frac{L(S-S_0)}{L(\hat{S})}$ $S_0 \ge \hat{S}_0$

→ Use CL, procedure to avoid negative limits

Poisson regime, n=0: $S_{up} = 3$ events



Outline

Computing statistical results

Discovery

Confidence intervals

Upper limits

Reparameterization and presentation of results

Expected results

Profiling

Nuisances and Systematics

Likelihood typically includes

- Parameters of interest (POIs): S, σ×B, m_w, ...
- Nuisance parameters (NPs): other parameters needed to define the model
 - → Ideally, **constrained by data** like the POI

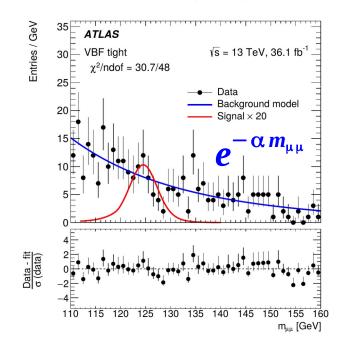
What about systematics?

- = what we don't know about the random processs
- ⇒ Parameterize using additional NPs
- ⇒ Add constraints in the likelihood

$$L(\mu, \theta; \text{data}) = L_{\text{measurement}}(\mu, \theta; \text{data}) C(\theta)$$

$$\downarrow \text{Systematics} \text{Measurement} \text{NP Constraint} \text{term}$$

Phys. Rev. Lett. 119 (2017) 051802



"Systematic uncertainty is, in any statistical inference procedure, the uncertainty due to the incomplete knowledge of the probability distribution of the observables.

G. Punzi, What is systematics?

 $C(\theta)$ represents extra knowledge about the NP

Frequentist Systematics

Prototype: NP measured in a separate *auxiliary* experiment e.g. luminosity measurement

→ Build the combined likelihood of the main+auxiliary measurements

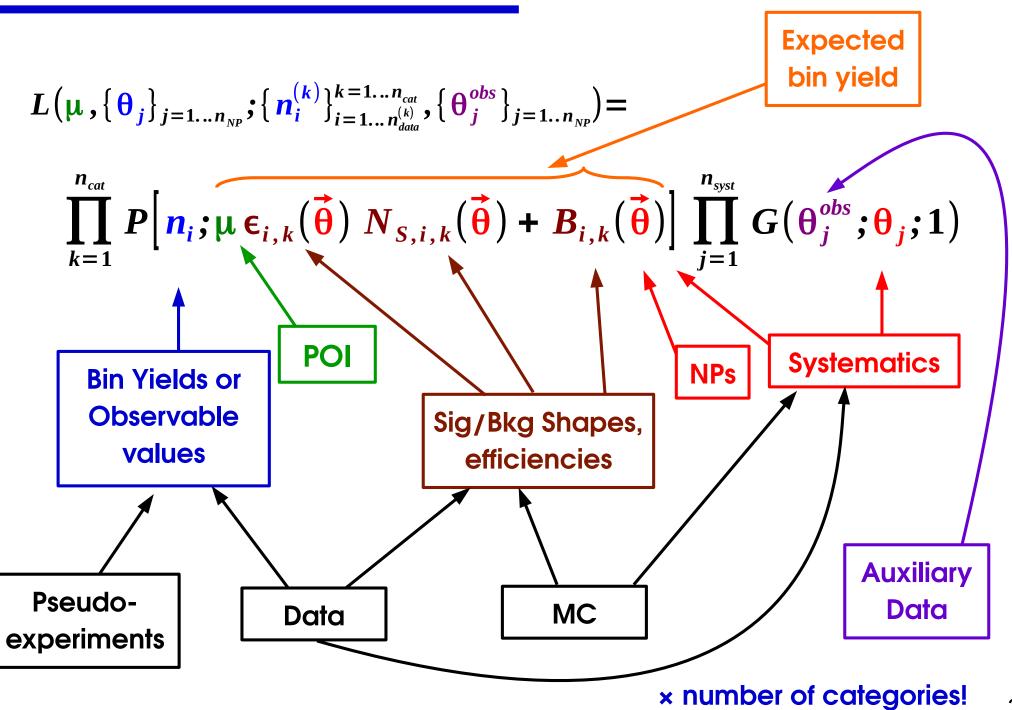
$$L(\mu, \theta; \text{data}) = L_{\text{main}}(\mu, \theta; \text{main data}) \quad L_{\text{aux}}(\theta; \text{aux. data}) \quad \text{independent measurements:} \\ \Rightarrow \text{ just a product}$$

Gaussian form often used by default: $L_{\text{aux}}(\theta; \text{aux. data}) = G(\theta^{\text{obs}}; \theta, \sigma_{\text{syst}})$

In the combined likelihood, systematic NPs are constrained

- → now same as e.g. NPs constrained in sidebands.
- → Often no clear setup for auxiliary measurements
 e.g. theory uncertainties on missing HO terms from scale variations
 - → Implemented in the same way nevertheless ("pseudo-measurement")

Likelihood, the full version (binned case)



Consider
$$t_{S_0} = -2 \log \frac{L(S=S_0)}{L(\hat{S})}$$

→ Assume **Gaussian regime** (e.g. large n_{evts}, Central-limit theorem) : then:

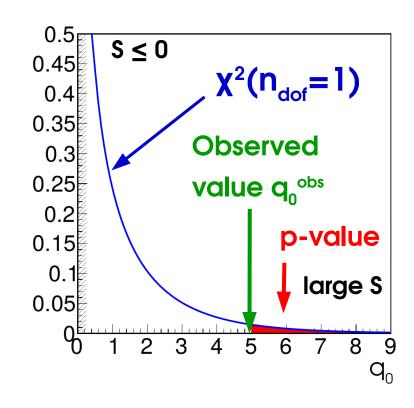
Wilk's Theorem: t_{so} is distributed as a χ^2

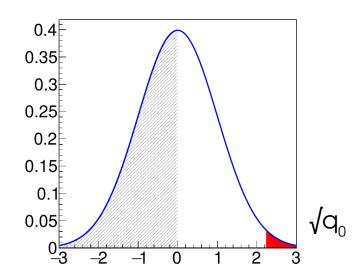
under $H_{SO}(S=S_0)$:

$$f(t_{S_0} | S = S_0) = f_{\chi^2(n_{dof} = 1)}(t_{S_0})$$

→ The significance is:

$$Z = \sqrt{q_0}$$





Profiling

How to deal with nuisance parameters in likelihood ratios?

 \rightarrow Let the data choose \Rightarrow use the best-fit values (*Profiling*)

$$\textbf{Profile Likelihood Ratio} \text{ (PLR)} \\ t_{S_0} = -2\log \frac{L(S=S_0, \hat{\hat{\theta}}(S_0))}{L(\hat{S}, \hat{\theta})} \\ \hat{\theta}(S_0) \text{ best-fit value for } S=S_0 \\ \text{ (conditional MLE)} \\ \hat{\theta} \text{ overall best-fit value} \\ \text{ (unconditional MLE)}$$

Wilks' Theorem: same properties as plain likelihood ratio

$$f(t_{S_0} | S = S_0) = f_{\chi^2(n_{dof} = 1)}(t_{S_0})$$
 also with NPs present

- → Profiling "builds in" the effect of the NPs
- \Rightarrow Can use t_{sn} to compute limits, significance, etc. in the same way as before

Homework 7: Gaussian Profiling

Counting experiment with background uncertainty: n = S + B:

- Recall: Signal region only (fixed B): $t_S = \left(\frac{S n_{\rm obs}}{\sigma_{\rm stat}}\right)^2$ $S = (n_{\rm obs} B) \pm \sigma_{\rm stat}$ \rightarrow Compute the best-fit (MLEs) for S and B \rightarrow Show that the conditional MLE for B is $\hat{B}(S) = B_{\rm obs} + \frac{\sigma_{\rm bkg}^2}{\sigma_{\rm stat}^2 + \sigma_{\rm bkg}^2}(\hat{S} S)$

$$\hat{\hat{B}}(S) = B_{\text{obs}} + \frac{\sigma_{\text{bkg}}^2}{\sigma_{\text{stat}}^2 + \sigma_{\text{bkg}}^2} (\hat{S} - S)$$

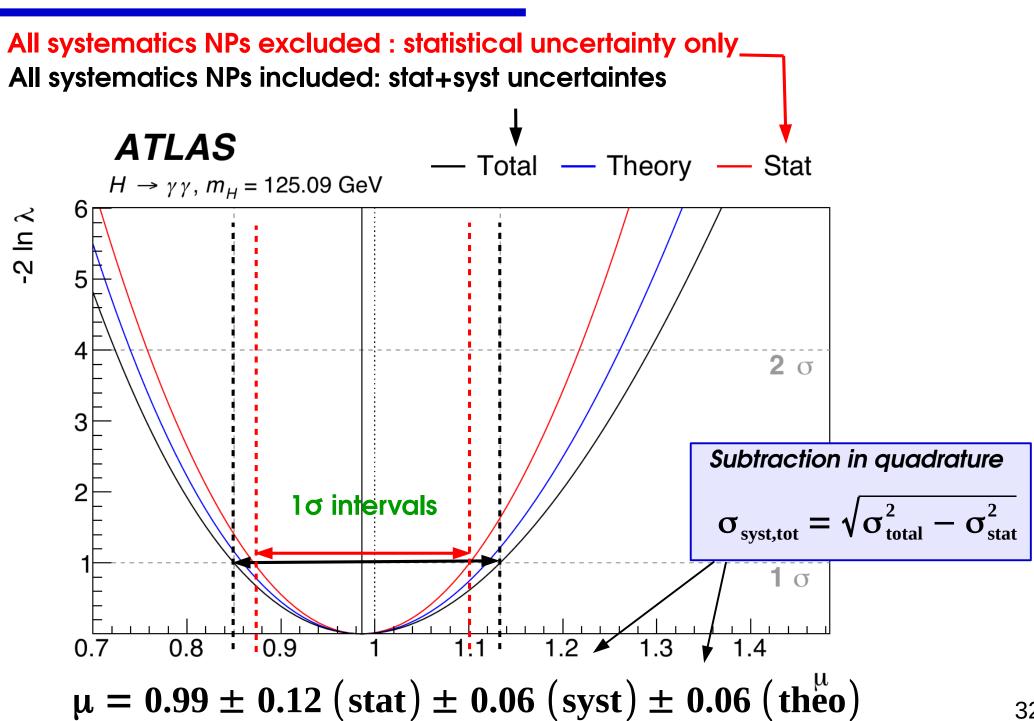
- → Compute the profile likelihood t_s
- → Compute the 1σ confidence interval on S

$$S = (n_{\text{obs}} - B_{\text{obs}}) \pm \sqrt{\sigma_{\text{stat}}^2 + \sigma_{\text{bkg}}^2}$$

$$\sigma_{S} = \sqrt{\sigma_{\text{stat}}^{2} + \sigma_{\text{bkg}}^{2}}$$

Stat uncertainty (on n) and systematic (on B) add in quadrature

Uncertainty decomposition



Pull/Impact plots

Systematics are described by NPs included in the fit. Define **pull** as

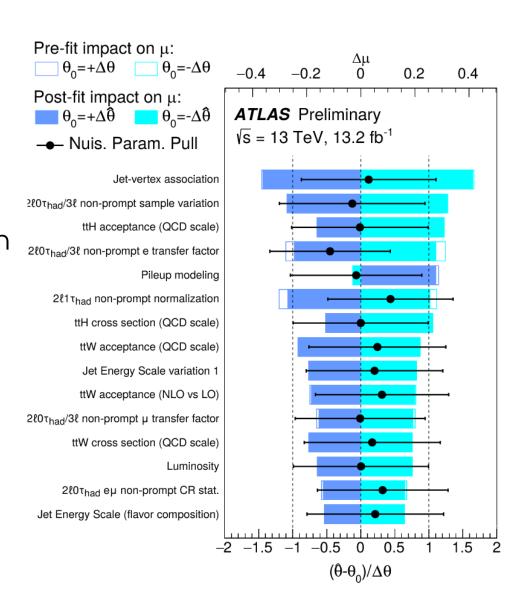
$$(\hat{\theta} - \theta_0) / \sigma_{\theta}$$

Nominally:

- **pull = 0**: i.e. the pre-fit expectation
- pull uncertainty = 1: from the Gaussian

However fit results may be different:

- Central value ≠ 0: some data feature differs from MC expectation
 ⇒ Need investigation if large
- Uncertainty < 1 : effect is constrained by the data ⇒ Needs checking if this legitimate or a modeling issue
- \rightarrow Impact on result of $\pm 1\sigma$ shift of NP allows to gauge which NPs matter most .



Pull/Impact plots

Systematics are described by NPs included in the fit. Define **pull** as

$$(\hat{\theta} - \theta_0) / \sigma_{\theta}$$

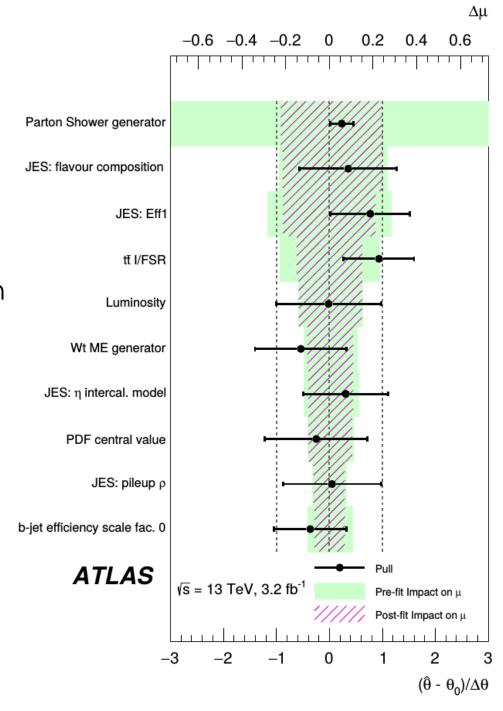
Nominally:

- **pull = 0**: i.e. the pre-fit expectation
- **pull uncertainty = 1**: from the Gaussian

However fit results may be different:

- Central value ≠ 0: some data feature differs from MC expectation
 ⇒ Need investigation if large
- Uncertainty < 1 : effect is constrained by the data ⇒ Needs checking if this legitimate or a modeling issue
- \rightarrow Impact on result of $\pm 1\sigma$ shift of NP allows to gauge which NPs matter most .

13 TeV single-t XS (arXiv:1612.07231)



Profiling Takeaways

When testing a hypothesis, use the best-fit values of the nuisance parameters: *Profile Likelihood Ratio*.

$$\frac{L(\mu = \mu_{0}, \hat{\hat{\theta}}_{\mu_{0}})}{L(\hat{\mu}, \hat{\theta})}$$

Allows to include systematics as uncertainties on nuisance parameters.

Profiling systematics includes their effect into the total uncertainty. Gaussian:

$$\sigma_{\text{total}} = \sqrt{\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2}$$

Guaranteed to work well as long as everything is Gaussian, but typically also robust against non-Gaussian behavior.

Profiling can have unintended effects – need to carefully check behavior

Extra Slides

CL: Gaussian Bands

Usual Gaussian counting example with known B: 95% CL_s upper limit on S:

$$S_{up} = \hat{S} + \left[\Phi^{-1} \left(1 - 0.05 \, \Phi \left(\hat{S} / \sigma_S \right) \right) \right] \sigma_S \qquad \sigma_S = \sqrt{B}$$
Compute expected bands for S=0:

- \rightarrow Asimov dataset $\Leftrightarrow \hat{S} = 0$:
- → ± no bands:

$S_{\text{up,exp}}^{\text{u}} = 1$	1	· · · · · · · · · · · · · · · · · · ·	
$S_{\text{up,exp}}^{\pm n} =$	$\pm n + $	$\left[1 - \Phi^{-1}(0.05 \Phi(\mp n))\right]$	σ_{s}

n	S _{exp} ±n /√B
+2	3.66
+1	2.72
0	1.96
-1	1.41
-2	1.05

CLs:

 Positive bands somewhat reduced,

300

250

150

100

Exents 150

Negative ones more so

Band width from $\sigma_{S,A}^2 = \frac{S^2}{q_s(Asimov)}$ non-Gaussian cases, different values for each band...

Eur.Phys.J.C71:1554,2011

Comparison with LEP/TeVatron definitions

Likelihood ratios are not a new idea:

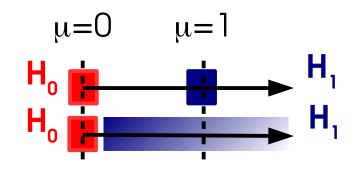
- **LEP**: Simple LR with NPs from MC
 - Compare μ =0 and μ =1
- **Tevatron**: PLR with profiled NPs

$$q_{LEP} = -2\log \frac{L(\mu=0,\widetilde{\theta})}{L(\mu=1,\widetilde{\theta})}$$

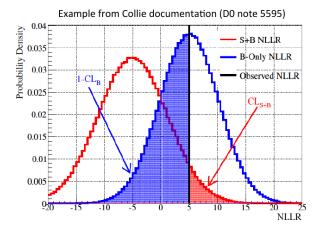
$$q_{Tevatron} = -2\log \frac{L(\mu=0, \hat{\theta_0})}{L(\mu=1, \hat{\theta_1})}$$

Both compare to $\mu=1$ instead of best-fit $\hat{\mu}$

LEP/Tevatron LHC



- → Asymptotically:
- **LEP/Tevaton**: q linear in $\mu \Rightarrow \sim Gaussian$
- **LHC**: a quadratic in $\mu \Rightarrow \sim \chi 2$
- → Still use TeVatron-style for discrete cases

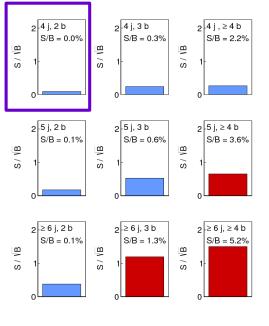


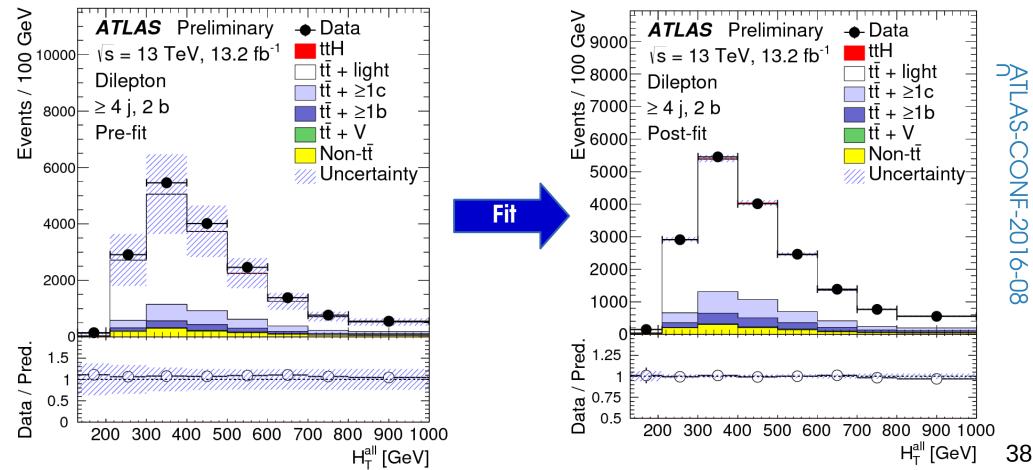


Profiling Example: ttH→bb

Analysis uses low-S/B categories to constrain backgrounds.

- → Reduction in large uncertainties on tt bkg
- → Propagates to the high-S/B categories through the statistical modeling
- ⇒ Care needed in the propagation (e.g. different kinematic regimes)

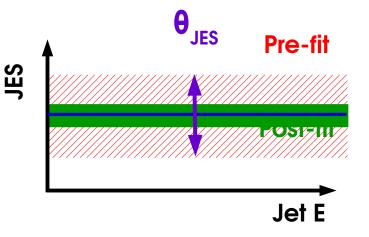




Profiling Issues

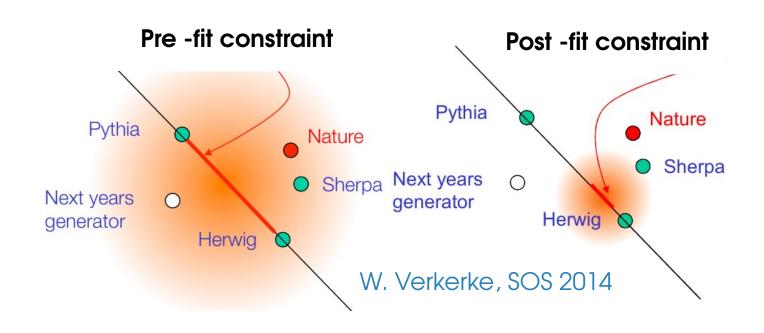
Too simple modeling can have unintended effects

- → e.g. single Jet E scale parameter:
- ⇒ Low-E jets calibrate high-E jets intended ?



Two-point uncertainties:

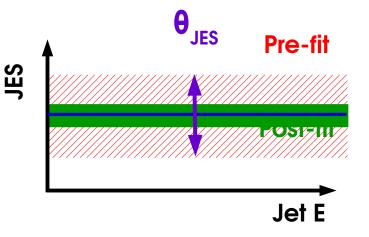
→ Interpolation may not cover full configuration space, can lead to too-strong constraints



Profiling Issues

Too simple modeling can have unintended effects

- → e.g. single Jet E scale parameter:
- ⇒ Low-E jets calibrate high-E jets intended?



Two-point uncertainties:

→ Interpolation may not cover full configuration space, can lead to too-strong constraints

