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Highlights : Discovery
Given a statistical model P(data; μ), define likelihood L(μ) = P(data; μ)
To estimate a parameter, use the value μ̂ that maximizes L(μ) → best-fit value

To decide between hypotheses H0 and H1, use the likelihood ratio

To test for discovery, use

For large enough datasets (n >~ 5), 

For a Gaussian measurement,

For a Poisson measurement,

L(H 0)

L(H 1)

q0 = −2 log
L(S=0)

L( Ŝ)
Ŝ ≥ 0

Z = √ q0

Z =
Ŝ

√B

Z = √ 2 [ ( Ŝ+B) log ( 1 +
Ŝ
B ) − Ŝ ]
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Highlights: Confidence intervals

tμ 0
=−2 log

L(μ=μ0)

L(μ̂ )

ATLAS-CONF-20
17-047 

Contain the true value with given probability

To obtain, compute the log-likelihood ratio
as a function of μ0.
Interval endpoints =  μ± for which 

Gaussian case : μ̂ ± σ

Works also to obtain contours in 2D:

t
μ

± = 1

t =−2 log
L(X0,Y 0)

L( X̂ , Ŷ )

μ -δμ
-

+δμ
+

μ
*
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Outline

Computing statistical results

Confidence intervals

Upper limits on signal yields

Expected Limits
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Hypothesis tests for Limits

If no signal in data, testing for discovery not very relevant (report 0.2σ excess ?)
→ More interesting to exclude large signals 
⇒  Upper limits on signal yield

→ Typically report 95% CL upper limit (p-value = 5%) : “S < S0 @ 95% CL”

?
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Test Statistic for Limit-Setting

Discovery :
• H0 : S = 0
• H1 : S > 0

Limit-setting
• H0 : S = S0

• H1 : S < S0

q0=−2 log
L(S=0)

L( Ŝ)

Compare
Likelihood of H0

Likelihood of H1

S0

H0H1

qS0
=−2 log

L(S=S0)

L( Ŝ)

Compare
Likelihood of H0

Likelihood of H1

S=0
H0 H1

Same as q0 : 
→ large values Þ good rejection of H0.

Asymptotic case: p-value 

(Ŝ > 0)

(Ŝ < S0)

pS0
= 1 − Φ(√ qS0

)

S0Ŝ
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Inversion : Getting the limit for a given CL
Procedure:

→ Compute qS0 for some S0, get 
     the exclusion p-value pS0.

→ Adjust S0 until 95% CL exclusion (pS0 = 5%) is reached
Asymptotic case: need √qS0 = 1.64

S1 : (too) strong exclusion 

CL Region

90% √qS > 1.28

95% √qS > 1.64

99% √qS > 2.33

Asymptotics

√ qS0
= Φ

−1
(1− p0 )

√qS1

p-value for qS1

√qS = 1.64 : p = 5% 
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     the exclusion p-value pS0.

→ Adjust S0 until 95% CL exclusion (pS0 = 5%) is reached
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S1 : (too) strong exclusion S2 : no exclusion 

CL Region

90% √qS > 1.28
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Asymptotics
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Inversion : Getting the limit for a given CL
Procedure:

→ Compute qS0 for some S0, get 
     the exclusion p-value pS0.

→ Adjust S0 until 95% CL exclusion (pS0 = 5%) is reached
Asymptotic case: need √qS0 = 1.64

S1 : (too) strong exclusion S2 : no exclusion S3 : 95% exclusion 

CL Region

90% √qS > 1.28

95% √qS > 1.64

99% √qS > 2.33

Asymptotics

√ qS0
= Φ

−1
(1− p0 )

√qS2

√qS1

√qS = 1.64 : p = 5% 
√qS3
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Homework 4: Gaussian Example
Usual Gaussian counting example with known B:

Reminder: Significance: Z = Ŝ/σS

→ Compute qS0

→ Compute the 95% CL upper limit on S, Sup, by solving √qS0 = 1.64.

Solution:

S+B

σS 
n

Sup = Ŝ + 1.64σ S  at 95 %  CL

L(S ;n) = e
−

1
2 ( n−(S+ B)

σS )
2

σS ~ √B for small S
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Upper Limit Pathologies
Upper limit:   Sup ~ Ŝ + 1.64 σS.

Problem: for negative Ŝ, get very good 
observed limit. 
→ For Ŝ sufficiently negative, even Sup < 0 ! 

How can this be ?
→ Background modeling issue ?… Or:
→ This is a 95% limit ⇒ 5% of the time, the 
limit wrongly excludes the true value,
e.g. S*=0.

Options
→ live with it: sometimes report limit < 0
→ Special procedure to avoid these cases,
since if we assume S must be >0, we know 
a priori this is just a fluctuation.

σS = 1

10 / 
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CLs

Usual solution in HEP : CLs.
→ Compute modified p-value 

⇒ Rescale exclusion at S0 by exclusion at S=0.
→ Somewhat ad-hoc, but good properties…

Ŝ compatible with 0 : pB ~ O(1)
pCLs ~ pS0 ~ 5%, no change.

Far-negative Ŝ : 1 - pB ≪ 1
pCLs~ pS0/(1-pB) ≫ 5%
→ lower exclusion ⇒ higher limit, 
    usually >0 as desired

pCLs
=

pS0

(1 − pB)

A. Read, J.Phys. G28 (2002) 2693-2704

σS = 1

The usual p-value under 
H(S=S0) (=5%)

The p-value computed 
under H(S=0)

Drawback: overcoverage 
→ limit is claimed to be 95% CL, but actually >95% CL for small 1-pB.
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http://inspirehep.net/record/599622?ln=en


Usual Gaussian counting example with known B:

Reminder 
CLs+b limit:  

CLs upper limit :
→ Compute pS0 (same as for CLs+b)
→ Compute 1-pB (hard!)

Solution: 

                      for Ŝ ~ 0,  

S+B

n
σS 

Sup = Ŝ + 1.64 σ S  at 95 % CL

Sup = Ŝ + [ Φ−1 ( 1 − 0.05 Φ ( Ŝ / σ S ) ) ] σ S  at 95 %  CL

L(S ;n) = e
−

1
2 ( n−(S+B)

σS )
2

σS ~ √B for small S

Homework 5: CLs : Gaussian Case

Sup = Ŝ + 1.96 σ S  at 95 %  CL
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Homework 6: CLS Rule of Thumb for nobs=0

Same exercise, for the Poisson case with nobs = 0. Perform an exact 
computation of the 95% CLs upper limit based on the definition of the p-value: 
p-value : sum probabilities of cases at least as extreme as the data

Hint: for nobs=0, there are no “more extreme” cases (cannot have n<0 !), so

pS0 = Poisson(n=0 | S0+B) and 1 - pB = Poisson(n=0 | B)

Solution:

⇒ Rule of thumb: when nobs = 0, the 95% CLs limit is 3 events (for any B)

Sup(nobs=0) = log(20) = 2.996 ≈ 3

13 / 
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Reparameterization and presentation of results

Expected results
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Reparameterization
Start with basic measurement in terms of e.g. σ´B
→ How to measure derived quantities (couplings, parameters in some theory 
model, etc.) ?  → just reparameterize the likelihood:
e.g. Higgs couplings: σggF, σVBF sensitive to Higgs coupling modifiers κV, κF. 

L(σ ggF ,σVBF) L(σ ggF( κV ,κF) ,σVBF ( κV ,κF)) ≡ L'( κV ,κF)

σ ggF→σ ggF (κV , κF)

σVBF→σVBF (κV , κF)
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Reparameterization: Limits
CMS Run 2 Monophoton Search: measured 
NS in a counting experiment reparameterized  
according to various DM models

16 / 
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http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO-16-039/


Presentation of Results
→ Cannot test every model : need to make enough information public so that 
others (theorists) are able to do it independently

⇒  Gaussian case: sufficient to provide measurements + covariance matrix
→ For example using the HEPData repository.

Non-Gaussian case: not so simple, but can publish full likelihood (e.g. here)
17 / 
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https://hepdata.net/
https://www.hepdata.net/record/ins1748602?version=1
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Computing statistical results
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Confidence intervals
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Reparameterization and presentation of results

Expected results

Profiling
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Generating Pseudo-data
Model describes the distribution of the observable: P(data; parameters)
Þ Possible outcomes of the experiment, for given parameter values
Can draw random events according to PDF : generate pseudo-data

Generate 

P ( λ=5)
2, 5, 3, 7, 4, 9, ….

Each entry = separate “experiment”

Unbinned
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Expected Limits: Toys
Expected results: median outcome under a given hypothesis
→ usually B-only for searches, but other choices possible.

Two main ways to compute:
→ Pseudo-experiments (toys):
• Generate a pseudo-dataset in B-only hypothesis
• Compute limit
• Repeat and histogram the results
• Central value = median, bands 

based on quantiles

Computed limit

95% of toys68% of toys

    Repeat for each mass

Nu
m

be
r o

f T
oy

s

Eur.Phys.J.C71:1554,2011

Phys. Lett. B 775 (2017) 105
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https://arxiv.org/abs/1007.1727
http://www.sciencedirect.com/science/article/pii/S0370269317308511?via=ihub


Expected Limits: Asimov Datasets
Expected results: median outcome under a given hypothesis
→ usually B-only for searches, but other choices possible.

Two main ways to compute:

→ Asimov Datasets
• Generate a “perfect dataset” – e.g. for binned

data, set bin contents carefully, no fluctuations.
• Gives the median result immediately:

median(toy results) ↔ result(median dataset) 
• Get bands from asymptotic formulas:

Band width

⊕ Much faster (1 “toy”)
⊖ Relies on Gaussian approximation

σ S0 , A
2

=
S0

2

qS0
(Asimov)

Strictly speaking, Asimov dataset if
X ̂= X0 for all parameters X, 

where X0 is the generation value
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Toys: Example  JHEP 10 (2017) 112

ATLAS X→Zγ Search: covers 200 GeV < mX < 2.5 TeV
→ for mX > 1.6 TeV, low event counts Þ derive results from toys

Asimov results (in gray) give optimistic result compared to toys (in blue) 

22 / 
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2016-14/


Upper Limit Examples
ATLAS 2015-2016 4l aTGC Search

Phys. Lett. B 775 (2017) 105

Phys. Re v. D 92 (2015) 0 12004 23 / 
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http://inspirehep.net/record/1625109
http://www.sciencedirect.com/science/article/pii/S0370269317308511?via=ihub
http://dx.doi.org/10.1103/PhysRevD.92.012004


Takeaways

Confidence intervals: use

→ Crossings with tμ0 = Z2 for ±Zσ intervals (in 1D)

Gaussian regime: μ = μ̂ ± σμ (1σ interval)

Limits : use LR-based test statistic:

→ Use CLs procedure to avoid negative limits

Poisson regime, n=0 : Sup = 3 events

qS0
= −2 log

L(S=S0)

L( Ŝ)
S0 ≥ Ŝ

tμ 0
=−2 log

L(μ=μ0)

L(μ̂ )
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Nuisances and Systematics
Likelihood typically includes
• Parameters of interest (POIs) : S, σ×B, mW, …
• Nuisance parameters (NPs) : other parameters 

needed to define the model
→ Ideally, constrained by data like the POI

What about systematics ?
= what we don’t know about the random processs
Þ Parameterize using additional NPs
Þ Add constraints in the likelihood

L(μ ,θ ;data) = Lmeasurement(μ ,θ ;data) C (θ)

Phys. Rev. Lett. 119 (2017) 051802

POI
Systematics 

NP
Measurement

Likelihood
NP Constraint 

term 

e−αmμ μ

"Systematic uncertainty is, in any 
statistical inference procedure, 
the uncertainty due to the 
incomplete knowledge of the 
probability distribution of the 
observables.
G. Punzi, What is systematics ?

C(θ) represents extra knowledge about the NP
26 / 
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http://inspirehep.net/record/1599399
https://www-cdf.fnal.gov/physics/statistics/notes/punzi-systdef.ps


Frequentist Systematics
Prototype: NP measured in a separate auxiliary experiment 
e.g. luminosity measurement

→ Build the combined likelihood of the main+auxiliary measurements

Gaussian form often used by default:

In the combined likelihood, systematic NPs are constrained
→ now same as e.g. NPs constrained in sidebands.

→ Often no clear setup for auxiliary measurements
e.g. theory uncertainties on missing HO terms from scale variations
→ Implemented in the same way nevertheless (“pseudo-measurement”)

L(μ ,θ ;data) = Lmain(μ ,θ ;main data) Laux(θ ;aux. data )

Laux(θ ;aux. data) = G (θ
obs ;θ ,σ syst)

Independent 
measurements: 
Þ just a product
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Likelihood, the full version (binned case)

Bin Yields or
Observable 

values
Sig/Bkg Shapes,

efficiencies

Systematics

L(μ , {θ j } j=1. ..nNP
;{ni

(k )
}
i=1. .. ndata

( k)

k=1. ..ncat , {θ j
obs

} j=1. . nNP
)=

∏
k=1

ncat

P [ ni ;μ ϵi , k( θ⃗ ) N S , i , k ( θ⃗ ) + Bi ,k( θ⃗ ) ] ∏
j=1

nsyst

G(θ j
obs ;θ j ;1)

DataPseudo-
experiments

MC
Auxiliary 

Data

Expected 
bin yield

POI NPs

× number of categories! 28 / 
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Reminder: Wilks’ Theorem

Consider

→ Assume Gaussian regime (e.g. large nevts, 
    Central-limit theorem) : then:

Wilk’s Theorem:  tS0 is distributed as a χ2 

under HS0(S=S0):

Cowan, Cranmer, Gross & Vitells
Eur.Phys.J.C71:1554,2011

Z = √q0

f ( tS0
∣ S=S0 ) = f

χ
2
(ndof=1) ( t S0 )

⇒ The significance is:

S ≤ 0

q0

Observed 
value q0

obs

χ2(ndof=1) 

large S
p-value

√q0

tS0
=−2 log

L(S=S0)

L( Ŝ)

29 / 
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https://arxiv.org/abs/1007.1727


Profiling
How to deal with nuisance parameters in likelihood ratios ?
→ Let the data choose  Þ use the best-fit values (Profiling)

Þ Profile Likelihood Ratio (PLR)

t S0
=−2 log

L(S=S0,

^̂
θ (S0))

L( Ŝ , θ̂ )
θ̂ overall best-fit value

^̂
θ (S0) best-fit value for S=S0

Wilks’ Theorem: same properties as plain likelihood ratio

→ Profiling “builds in” the effect of the NPs

⇒ Can use tS0 to compute limits, significance, etc. in the same way as before

f ( t S0
∣ S=S0 ) = f

χ
2
(ndof=1) ( tS0 ) also with NPs present

(conditional MLE)

(unconditional MLE)
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Homework 7: Gaussian Profiling
Counting experiment with background uncertainty: n =  S + B :
→ Signal region (SR): nobs ~ G(S + B, σstat)
→ Control region (CR): Bobs ~ G(B, σbkg)

Recall: Signal region only (fixed B): 

→ Compute the best-fit (MLEs) for S and B
→ Show that the conditional MLE for B is
 

→ Compute the profile likelihood tS

→ Compute the 1σ confidence interval on S

σ S = √ σ stat
2
+ σ bkg

2

L (S , B) = G (nobs ;S + B ,σ stat) G (Bobs ;B ,σ bkg)

S = (nobs−Bobs) ± √ σ stat
2
+ σ bkg

2

Stat uncertainty (on n) and systematic (on B) add in quadrature

t S = (
S − nobs

σ stat )
2

S = (nobs − B) ± σ stat

SR CR

nobs

Signal

Bkg Bkg^̂
B(S) = Bobs +

σ bkg
2

σ stat
2

+σ bkg
2

( Ŝ − S)

Bobs
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Uncertainty decomposition
All systematics NPs excluded : statistical uncertainty only

1σ intervals

All systematics NPs included: stat+syst uncertaintes

σ syst,tot = √σ total
2

− σ stat
2

Subtraction in quadrature

μ = 0.99 ± 0.12 (stat) ± 0.06 (syst) ± 0.06 ( theo) 32 / 
39



Pull/Impact plots
Systematics are described by NPs 
included in the fit. Define pull as

Nominally:
• pull  = 0 : i.e. the pre-fit expectation
• pull uncertainty = 1 : from the Gaussian

ATLAS-CONF-2016-058

However fit results may be different:
● Central value ¹ 0: some data feature 

differs from MC expectation
Þ Need investigation if large

● Uncertainty < 1 : effect is constrained 
by the data Þ Needs checking if this 
legitimate or a modeling issue

●

→ Impact on result of ±1σ shift of NP 
allows to gauge which NPs matter most .

(θ̂−θ0) / σθ

33 / 
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Pull/Impact plots
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• pull  = 0 : i.e. the pre-fit expectation
• pull uncertainty = 1 : from the Gaussian

ATLAS-CONF-2016-05813 TeV single-t XS (arXiv:1612.07231)

However fit results may be different:
● Central value ¹ 0: some data feature 

differs from MC expectation
Þ Need investigation if large

● Uncertainty < 1 : effect is constrained 
by the data Þ Needs checking if this 
legitimate or a modeling issue

●

→ Impact on result of ±1σ shift of NP 
allows to gauge which NPs matter most .

(θ̂−θ0) / σθ

33 / 
39
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https://arxiv.org/abs/1612.07231


Profiling Takeaways

When testing a hypothesis, use the best-fit values
of the nuisance parameters: Profile Likelihood Ratio.

Allows to include systematics as uncertainties on nuisance parameters.

Profiling systematics includes their effect into the total uncertainty. 
Gaussian:

Guaranteed to work well as long as everything is Gaussian, but typically
also robust against non-Gaussian behavior.

L(μ=μ0,

^̂
θμ 0

)

L(μ̂ , θ̂)

σ total = √σ stat
2

+ σ syst
2

Profiling can have unintended effects – need to carefully check behavior 

34 / 
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Extra Slides
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CLs : Gaussian Bands
Usual Gaussian counting example with known B:
95% CLs upper limit on S:

Compute expected bands for S=0:
→ Asimov dataset ⇔ Ŝ = 0 : 
→ ± nσ bands:  

Sup,exp
0

= 1.96 σ S

Sup = Ŝ + [ Φ−1

(1 − 0.05 Φ ( Ŝ / σ S) ) ] σ S

Sup,exp
±n

= (±n + [ 1 − Φ
−1

( 0.05 Φ(∓n) ) ] ) σ S

Ŝ 

n Sexp
±n

  /√B

+2 3.66

+1 2.72

  0 1.96

-1 1.41

-2 1.05

CLs : 
● Positive bands 

somewhat reduced,
● Negative ones more so

σS = √B

with

Band width from
depends on S, for
non-Gaussian cases,different
values for each band...

σ S , A
2

=
S2

qS(Asimov)

Eur.Phys.J.C71:1554,2011
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https://arxiv.org/abs/1007.1727


Comparison with LEP/TeVatron definitions
Likelihood ratios are not a new idea:
• LEP: Simple LR with NPs from MC

– Compare μ=0 and μ=1
• Tevatron: PLR with profiled NPs

Both compare to μ=1 instead of best-fit μ̂ 

→ Asymptotically:
• LEP/Tevaton: q linear in μ Þ ~Gaussian
• LHC: q quadratic in μ Þ  ~χ2 

→ Still use TeVatron-style for discrete cases

H0
H1

μ=1
H1

H0

qLEP=−2 log
L(μ=0,~θ)

L (μ=1,~θ)

qTevatron=−2 log
L(μ=0, ^̂

θ0)

L(μ=1, ^̂
θ1)

LEP/Tevatron
LHC

μ=0 Andrey Korytov , EPS 20 11
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Profiling Example: ttH→bb
Analysis uses low-S/B categories to constrain backgrounds.
→ Reduction in large uncertainties on tt bkg
→ Propagates to the high-S/B categories through the
statistical modeling 
Þ Care needed in the propagation (e.g. different 
kinematic regimes)

ATLAS- CO
NF- 2016-08

0

Fit

38 / 
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-080/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2016-080/


Profiling Issues
Too simple modeling can have unintended effects
→ e.g. single Jet E scale parameter:  
Þ Low-E jets calibrate high-E jets – intended ?

Two-point uncertainties: 
→ Interpolation may not cover full configuration
space, can lead to too-strong constraints

Jet E

JE
S

θJES Pre-fit

Post-fit

Pre -fit constraint Post -fit constraint

W. Verkerke, SOS 2014
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