

Nicolas Berger (LAPP Annecy)

Course Outline

Previously in this course:

Statistics basics

Describing measurements
Determining the value of a parameter

Today:
Computing statistical results:
Discovery testing
Confidence intervals
Limits
Expected limits

Hypothesis Testing

Hypothesis: assumption on model parameters, say value of $S\left(e . g \cdot \mathbf{H}_{0}: \mathbf{S}=\mathbf{0}\right)$

	Data disfavors H_{0} (Discovery claim)	Data favors H_{0} (Nothing found)
H_{0} is false (New physics!)	Discovery!	Type-II error (Missed discovery)
H_{0} is true (Nothing new)	Type-I error (False discovery)	No new physics, none found

Lower Type-I errors \Leftrightarrow Higher Type-II errors and vice versa: cannot have everything!
\rightarrow Goal: test that minimizes Type-II errors for given level of Type-I error.

ROC Curves

\rightarrow Goal: test that minimizes Type-II errors for given level of Type-I error.
\rightarrow Usually set predefined level of acceptable Type-I error (e.g. " $5 \sigma^{\prime \prime}$)

ROC Curves

\rightarrow Goal: test that minimizes Type-II errors for given level of Type-I error.
\rightarrow Usually set predefined level of acceptable Type-I error (e.g. " $5 \sigma^{\prime \prime}$)

ROC Curves

\rightarrow Goal: test that minimizes Type-II errors for given level of Type-I error.
\rightarrow Usually set predefined level of acceptable Type-I error (e.g. " $5 \sigma^{\prime \prime}$)

Hypothesis Testing with Likelihoods

Neyman-Pearson Lemma

When comparing two hypotheses \boldsymbol{H}_{0} and $\boldsymbol{H}_{1^{\prime}}$ the
optimal discriminator is the Likelihood ratio (LR)
$\frac{L\left(H_{1} ; \text { data }\right)}{L\left(H_{0} ; \text { data }\right)}$
e.g. $\frac{L(S=5 ; \text { data })}{L(S=0 ; \text { data })}$

Caveat: Strictly true only for simple hypotheses (no free parameters)

As for MLE, choose the hypothesis that is more likely given the data we have.
\rightarrow Minimizes Type-II uncertainties for given level of Type-I uncertainties
\rightarrow Always need an alternate hypothesis to test against.
\rightarrow In the following: all tests based on LR, will focus on p-values (Type-l errors), trusting that Type-II errors are anyway as small as they can be...

Discovery: Test Statistic

Discovery :

- H_{0} : background only $(\mathrm{S}=\mathbf{0})$ against
- \mathbf{H}_{1} : presence of a signal $(\mathbf{S}>\mathbf{0})$
\rightarrow For H_{1}, any $\mathrm{S}>0$ is possible, which to use ? The one preferred by the data, $\hat{\mathbf{s}}$.
\Rightarrow Use Likelihood ratio: $\frac{L(S=0)}{L(\hat{S})}$
\rightarrow In fact use the test statistic

$$
q_{0}=-2 \log \frac{L(S=0)}{L(\hat{S})}
$$

Note: for $\hat{\mathrm{S}}<0$, set $\mathrm{a}_{0}=0$ to reject negative signals ("one-sided test statistic")

Discovery p-value

Large values of $-2 \log \frac{L(S=0)}{L(\hat{S})}$ if:
data
data prefer $\mathrm{S}=0$ prefer $\mathrm{S}>0$ \Rightarrow observed $\hat{\mathrm{S}}$ is far from 0
$\Rightarrow \mathrm{H}_{0}(\mathrm{~S}=0)$ disfavored compared to $\mathrm{H}_{1}(\mathrm{~S} \neq 0)$.

How large q_{0} before we can exclude H_{0} ? (and claim a discovery!)
\rightarrow Need small Type-I rate (falsely rejecting H_{0})

\rightarrow Type-I rate, a.k.a. the p-value : $p_{0}=\int_{q_{0}^{\text {abs }}}^{\infty} f\left(q_{0} \mid S=0\right) d q_{0}$
= Fraction of outcomes that are
at least as extreme (signal-like) as data, when \boldsymbol{H}_{0} is true (no signal).

Asymptotic distribution of a_{0}

Gaussian regime for $\hat{\mathbf{S}}$ (e.g. large $\mathrm{n}_{\text {evts }}$ Central-limit theorem) :
Wilk's Theorem (${ }^{*}$) : for $\mathrm{S}=0$
q_{0} is distributed as $\mathrm{X}^{2}\left(\mathrm{n}_{\text {par }}\right)$
$\Rightarrow n_{\text {par }}=1: \sqrt{q_{0}}$ is distributed as a Gaussian
\Rightarrow Can compute p-values from Gaussian quantiles

$$
p_{0}=1-\Phi\left(\sqrt{q_{0}}\right)
$$

\Rightarrow Even more simply, the significance is:

$$
Z=\sqrt{q_{0}}
$$

Typically works well already for for event counts of $O(5)$ and above \Rightarrow Widely applicable
(*) 1 -line "proof" : asymptotically L and S are Gaussian, so
$L(S)=\exp \left[-\frac{1}{2}\left(\frac{s-\hat{S}}{\sigma}\right)^{2}\right] \Rightarrow q_{0}=\left(\frac{\hat{S}}{\sigma}\right)^{2} \Rightarrow{\sqrt{q_{0}}}^{2}=\frac{\hat{S}}{\sigma} \sim G(0,1) \Rightarrow q_{0} \sim \chi^{2}\left(n_{\mathrm{dof}}=1\right)$

Homework 1: Gaussian Counting

Count number of events \mathbf{n} in data

\rightarrow assume n large enough so process is Gaussian
\rightarrow assume B is known, measure S

Likelihood: $\quad L\left(S ; \boldsymbol{n}_{\text {obs }}\right)=e^{-\frac{1}{2}\left(\frac{n_{\text {obs }}-(S+B)}{\sqrt{S}+B}\right)^{2}}$

\rightarrow Find the best-fit value (MLE) \hat{S} for the signal (can use $\lambda=-2 \log L$ instead of L for simplicity)
\rightarrow Find the expression of a_{0} for $\hat{\mathrm{S}}>0$.
\rightarrow Find the expression for the significance

$$
Z=\frac{\hat{S}}{\sqrt{B}}
$$

Homework 2: Poisson Counting

Same problem but now not assuming Gaussian behavior:

$$
L(S ; n)=e^{-(S+B)}(S+B)^{n}
$$

(Can remove the n ! constant since we're only
\rightarrow As before, compute \hat{S}, and a_{0} dealing with L ratios)
\rightarrow Compute $\mathrm{Z}=\sqrt{ } \mathrm{a}_{0}$, assuming asymptotic behavior

Solution:

$$
Z=\sqrt{2\left\lfloor\left.(\hat{S}+B) \log \left(1+\frac{\hat{S}}{B}\right)-\hat{S} \right\rvert\,\right.}
$$

Exact result can be obtained using pseudo-experiments \rightarrow close to $\sqrt{ } \mathrm{a}_{0}$ result

Asymptotic formulas justified by Gaussian regime, but remain valid even for small values of S+B (down to 5 events!)

Eur.Phys.J.C71:1554,2011

Some Examples

High-mass X $\boldsymbol{\text { WY S Search: JHEP } 0 9 \text { (2016) } 1 .}$

Discovery Thresholds

Evidence : $3 \sigma \Leftrightarrow p_{0}=0.3 \% \Leftrightarrow 1$ chance in 300
Discovery: $5 \sigma \Leftrightarrow p_{0}=310-7 \Leftrightarrow 1$ chance in 3.5 M
Why so high thresholds? (from Louis Lyons):

- Look-elsewhere effect : searches typically cover multiple independent regions \Rightarrow Higher chance to have a fluctuation "somewhere" $N_{\text {trials }} \sim 1000$: local $5 \sigma \Leftrightarrow O\left(10^{-4}\right)$ more reasonable
- Mismodeled systematics: factor 2 error in syst-dominated analysis \Rightarrow factor 2 error on Z...

- History: 3σ and 4σ excesses do occur regularly, for the reasons above Extraordinary claims require extraordinary evidence!

Takeaways

Given a statistical model $P($ data; $\mu)$, define likelihood $L(\mu)=P($ data; $\boldsymbol{\mu})$
To estimate a parameter, use the value $\hat{\boldsymbol{\mu}}$ that maximizes $L(\mu) \rightarrow$ best-fit value

To decide between hypotheses H_{0} and H_{1}, use the likelihood ratio $\frac{L\left(\boldsymbol{H}_{0}\right)}{\boldsymbol{L}\left(\boldsymbol{H}_{1}\right)}$

To test for discovery, use

$$
q_{0}=-2 \log \frac{L(S=0)}{L(\hat{S})} \quad \hat{S} \geq 0
$$

For large enough datasets ($n>\sim 5$), $\quad \mathbf{Z}=\sqrt{\boldsymbol{q}_{\mathbf{0}}}$
For a Gaussian measurement, $\quad Z=\frac{\hat{S}}{\sqrt{\boldsymbol{B}}}$
For a Poisson measurement, $\quad Z=\sqrt{2}\left[(\hat{S}+B) \log \left(1+\frac{\hat{S}}{B}\right)-\hat{S}\right]$

Outline

Computing statistical results

Discovery Testing

Confidence intervals

Upper limits on signal yields

Expected limits

Confidence Intervals

Last lecture we saw how to estimate (=compute) the value of a parameter

Maximum Likelihood Estimator (MLE) $\hat{\mu}$:

$\hat{\mu}=\arg \max L(\mu)$

However we also need to estimate the associated uncertainty.

What is the meaning of an uncertainty?

We don't know what the true value is, but there is a 68% chance that it is within the orange interval

Gaussian Intervals

If $\hat{\mu} \sim G\left(\mu^{*}, \sigma\right)$, known quantiles :

$$
P\left(\mu^{*}-\sigma<\hat{\mu}<\mu^{*}+\sigma\right)=68 \%
$$

This is a probability for $\hat{\mu}$, not μ^{*} !
$\rightarrow \mu^{*}$ is a fixed number, not a random variable

But we can invert the relation:

$$
\begin{aligned}
& P\left(\mu^{*}-\sigma<\hat{\mu}<\mu^{*}+\sigma\right)=68 \% \\
\Rightarrow & P\left(\left|\hat{\mu}-\mu^{*}\right|<\sigma\right)=\mathbf{6 8 \%} \\
\Rightarrow & P\left(\hat{\mu}-\sigma<\mu^{*}<\hat{\mu}+\sigma\right)=68 \%
\end{aligned}
$$

\rightarrow If we repeat the experiment many times, [$\hat{\mu}-\sigma, \hat{\mu}+\sigma]$ will contain the true value $\mathbf{6 8 . 3 \%}$ of the time: $\boldsymbol{\mu}^{*}=\hat{\mu} \pm \boldsymbol{\sigma}$
This is a statement on the interval $[\hat{\mu}-\sigma, \hat{\mu}+\sigma]$ obtained for each experiment sizes: [$\hat{\boldsymbol{\mu}}-\mathbf{Z} \boldsymbol{\sigma}, \hat{\boldsymbol{\mu}}+\mathbf{Z} \boldsymbol{\sigma}]$ with

Z	1	1.96	2
$C L$	68.3%	95%	95.5%

Neyman Construction

General case: Build 1σ intervals of observed values for each true value \Rightarrow Confidence belt

Neyman Construction

General case: Build 1σ intervals of observed values for each true value \Rightarrow Confidence belt

Inversion using the Confidence Belt

General case: Intersect belt with given $\hat{\mu}$, get $P\left(\hat{\mu}-\sigma_{\mu}^{-}<\mu^{*}<\hat{\mu}+\sigma_{\mu}^{+}\right)=68 \%$
\rightarrow Same as before for Gaussian, works also when $P\left(\mu^{\mathrm{obs}} \mid \mu\right)$ varies with μ.

Inversion using the Confidence Belt

General case: Intersect belt with given $\hat{\mu}$, get $P\left(\hat{\mu}-\sigma_{\mu}^{-}<\mu^{*}<\hat{\mu}+\sigma_{\mu}^{+}\right)=68 \%$
\rightarrow Same as before for Gaussian, works also when $P\left(\mu^{\mathrm{obs}} \mid \mu\right)$ varies with μ.

Inversion using the Confidence Belt

General case: Intersect belt with given $\hat{\mu}$, get $P\left(\hat{\mu}-\sigma_{\mu}^{-}<\mu^{*}<\hat{\mu}+\sigma_{\mu}^{+}\right)=68 \%$
\rightarrow Same as before for Gaussian, works also when $P\left(\mu^{\mathrm{obs}} \mid \mu\right)$ varies with μ.

Inversion using the Confidence Belt

General case: Intersect belt with given $\hat{\mu}$, get $P\left(\hat{\mu}-\sigma_{\mu}^{-}<\mu^{*}<\hat{\mu}+\sigma_{\mu}^{+}\right)=68 \%$
\rightarrow Same as before for Gaussian, works also when $P\left(\mu^{\mathrm{obs}} \mid \mu\right)$ varies with μ.

Likelihood Intervals

Confidence intervals from L :

- Test $\mathrm{H}\left(\mu_{0}\right)$ against alternative using $\boldsymbol{t}_{\mu_{0}}=-2 \log \frac{\boldsymbol{L}\left(\boldsymbol{\mu}=\mu_{0}\right)}{\boldsymbol{L}(\hat{\boldsymbol{\mu}})}$
- Two-sided test since true value can be

$$
t_{\mu_{0}}=-2 \log \frac{L\left(\mu=\mu_{0}\right)}{L(\hat{\mu})}
$$ higher or lower than observed

Gaussian L:

- $\quad \boldsymbol{t}_{\mu_{0}}=\left(\frac{\hat{\boldsymbol{\mu}}-\mu_{0}}{\boldsymbol{\sigma}_{\mu}}\right)^{2}$: parabolic in μ_{0}.
- Minimum occurs at $\boldsymbol{\mu}=\hat{\mu}$
- Crossings with $\dagger_{\mu}=1$ give the lo interval

General case:

- Generally not a perfect parabola
- Minimum still occurs at $\boldsymbol{\mu}=\hat{\mu}$

- Still define 1σ interval from the $t_{\mu}= \pm 1$ crossings

Homework 3: Gaussian Case

Consider a parameter m (e.g. Higgs boson mass) whose measurement is Gaussian with known width $\sigma_{m^{\prime}}$ and we measure $\mathrm{m}_{\text {obs }}$:

$$
L\left(\boldsymbol{m} ; \boldsymbol{m}_{\mathrm{obs}}\right)=e^{-\frac{1}{2}\left(\frac{\left.\boldsymbol{m}-\boldsymbol{m}_{\mathrm{oss}}\right)^{2}}{\sigma_{m}}\right.}
$$

m
\rightarrow Compute the best-fit value (MLE) $\hat{\mathrm{m}}$
\rightarrow Compute \dagger_{m}
\rightarrow Compute the $1-\sigma(Z=1, \sim 68 \% \mathrm{CL})$ interval on m

Solution: $m=m_{\mathrm{obs}} \pm \sigma_{m}$
\rightarrow Not really a surprise - the method works as expected on this simple case
\rightarrow General method can be applied in the same way to more complex cases

2D Example: Higgs $\sigma_{\text {VBF }}$ vs. $\sigma_{\text {ggF }}$

Outline

Computing statistical results

Discovery Testing

Confidence intervals

Upper limits on signal yields

Expected Limits

Hypothesis tests for Limits

If no signal in data, testing for discovery not very relevant (report 0.2σ excess ?)
\rightarrow More interesting to exclude large signals
\Rightarrow Upper limits on signal yield
\rightarrow Typically report 95\% CL upper limit (p-value = 5\%) : "S < So @ 95\% CL"

Hypothesis tests for Limits

If no signal in data, testing for discovery not very relevant (report 0.2σ excess ?)
\rightarrow More interesting to exclude large signals
\Rightarrow Upper limits on signal yield
\rightarrow Typically report 95\% CL upper limit (p-value = 5\%) : "S < So @ 95\% CL"

Hypothesis tests for Limits

If no signal in data, testing for discovery not very relevant (report 0.2σ excess ?)
\rightarrow More interesting to exclude large signals
\Rightarrow Upper limits on signal yield
\rightarrow Typically report 95\% CL upper limit (p-value = 5\%) : "S < S @ 95\% CL"

Hypothesis tests for Limits

If no signal in data, testing for discovery not very relevant (report 0.2σ excess ?)
\rightarrow More interesting to exclude large signals
\Rightarrow Upper limits on signal yield
\rightarrow Typically report 95\% CL upper limit (p-value = 5\%) : "S < S @ 95\% CL"

Test Statistic for Limit-Setting

Discovery :
Compare

- $\mathrm{H}_{0}: \mathrm{S}=0$

$$
\begin{equation*}
q_{0}=-2 \log \frac{L(S=0)}{L(\hat{S})} \longleftarrow \text { Likelihood of } \mathrm{H}_{0} \tag{S}
\end{equation*}
$$

Limit-setting

- $\mathrm{H}_{0}: \mathrm{S}=\mathrm{S}_{0}$

- $H_{1}: S<S_{0}$

> Compare

$$
\boldsymbol{q}_{S_{0}}=-2 \log \frac{L\left(S=S_{0}\right)}{L(\hat{S})} \longleftarrow \text { Likelihood of } \mathrm{H}_{0} \quad\left(\hat{S}<\mathrm{S}_{0}\right)
$$

Same as q_{0} :
\rightarrow large values \Rightarrow good rejection of H_{0}.
Asymptotic case: p -value $\quad p_{s_{0}}=1-\Phi\left(\sqrt{q_{s_{0}}}\right)$

Inversion : Getting the limit for a given CL

Procedure:

Asymptotics
$\sqrt{q_{S_{0}}}=\Phi^{-1}\left(1-p_{0}\right)$
\rightarrow Compute a_{so} for some S_{0}, get
the exclusion p -value $\mathrm{p}_{\mathrm{s} 0}$.
\rightarrow Adjust S_{0} until 95\% CL exclusion ($\mathrm{p}_{\mathrm{s} 0}=5 \%$) is reached Asymptotic case: need $\sqrt{ } \mathrm{a}_{\mathrm{so}}=1.64$

CL	Region
90%	$\sqrt{ } a_{s}>1.28$
95%	$\sqrt{ } a_{s}>1.64$
99%	$\sqrt{ } a_{s}>2.33$

25

Inversion : Getting the limit for a given CL

Procedure:

Asymptotics

$$
\sqrt{q_{s_{0}}}=\Phi^{-1}\left(1-p_{0}\right)
$$

\rightarrow Compute a_{so} for some S_{0}, get
the exclusion p-value $p_{\text {so }}$.
\rightarrow Adjust S_{0} until 95\% CL exclusion ($\mathrm{p}_{\mathrm{s} 0}=5 \%$) is reached Asymptotic case: need $\sqrt{ } \mathrm{a}_{\mathrm{so}}=1.64$

CL	Region
90%	$\sqrt{ } a_{s}>1.28$
95%	$\sqrt{a_{s}}>1.64$
99%	$\sqrt{ } a_{s}>2.33$

25

Inversion : Getting the limit for a given CL

Procedure:

Asymptotics

$$
\sqrt{q_{s_{0}}}=\Phi^{-1}\left(1-p_{0}\right)
$$

\rightarrow Compute a_{so} for some S_{0}, get
the exclusion p-value $p_{\text {so }}$.
\rightarrow Adjust S_{0} until 95% CL exclusion ($\mathrm{p}_{\mathrm{s} 0}=5 \%$) is reached Asymptotic case: need $\sqrt{ } \mathrm{a}_{\mathrm{so}}=1.64$

$C L$	Region
90%	$\sqrt{ } \mathrm{a}_{\mathrm{S}}>1.28$
95%	$\sqrt{\mathrm{q}_{\mathrm{S}}}>1.64$
99%	$\sqrt{\mathrm{a}_{\mathrm{S}}}>2.33$

Homework 4: Gaussian Example

Usual Gaussian counting example with known B:

$$
L(S ; n)=e^{-\frac{1}{2}\left(\frac{n-(S+B)}{\sigma_{s}}\right)^{2}}
$$

$\sigma_{s} \sim \sqrt{ }$ B for small S

$S+B$

Reminder: Significance: $Z=\hat{S} / \sigma_{s}$
\rightarrow Compute $\mathrm{q}_{\text {so }}$
\rightarrow Compute the 95% CL upper limit on $S, S_{\text {up }}$, by solving $\sqrt{ } \mathrm{a}_{\mathrm{so}}=1.64$.

Solution: $\quad S_{\mathrm{up}}=\hat{S}+1.64 \sigma_{S}$ at $95 \% \mathrm{CL}$

Upper Limit Pathologies

Upper limit: $\quad \mathbf{S}_{\text {up }} \sim \hat{\mathbf{S}}+1.64 \sigma_{\mathrm{s}}$.
Problem: for negative Ŝ, get very good observed limit.
\rightarrow For \widehat{S} sufficiently negative, even $\mathrm{S}_{\mathrm{up}}<0$!

How can this be ?
\rightarrow Background modeling issue ?... Or:
\rightarrow This is a 95% limit $\Rightarrow 5 \%$ of the time, the limit wrongly excludes the true value,
 e.g. $S^{*}=0$.

Options

\rightarrow live with it: sometimes report limit < 0
\rightarrow Special procedure to avoid these cases, since if we assume S must be >0, we know a priori this is just a fluctuation.

27

Usual solution in HEP : CL_{s}.
\rightarrow Compute modified p-value

$$
\boldsymbol{p}_{C L_{s}}={\frac{\boldsymbol{p}_{S_{0}}}{\left(\mathbf{1}-\boldsymbol{p}_{B}\right)} \mathrm{H}\left(\mathrm{~S}=\mathrm{S}_{0}\right)(=5 \%)}_{\text {The usual } \mathrm{p} \text {-val }}
$$

\Rightarrow Rescale exclusion at S_{0} by exclusion at $\mathrm{S}=0$.
The p -value computed
\rightarrow Somewhat ad-hoc, but good properties...
\hat{s} compatible with $0: p_{B} \sim O(1)$
$p_{\mathrm{cls}} \sim p_{\mathrm{so}} \sim 5 \%$, no change.

Far-negative \widehat{S} : $1-p_{B} \ll 1$
$p_{\mathrm{Cls}} \sim \mathrm{p}_{\mathrm{s} 0} /\left(1-\mathrm{p}_{\mathrm{B}}\right) \gg 5 \%$
\rightarrow lower exclusion \Rightarrow higher limit, usually >0 as desired

Drawback: overcoverage
\rightarrow limit is claimed to be $95 \% \mathrm{CL}$, but actually $>95 \%$ CL for small $1-\mathrm{p}_{\mathrm{B}}$.

Homework 5: CL_{s} : Gaussian Case

Usual Gaussian counting example with known B:

$$
L(S ; n)=e^{-\frac{1}{2}\left(\frac{n-(S+B)}{\sigma_{s}}\right)^{2}}
$$

$$
\sigma_{\mathrm{S}} \sim \sqrt{ } \mathrm{~B} \text { for small } \mathrm{S}
$$

Reminder
$\mathrm{CL}_{\text {s+b }}$ limit: $\quad \boldsymbol{S}_{\text {up }}=\hat{\boldsymbol{S}}+\mathbf{1 . 6 4} \sigma_{s}$ at $\mathbf{9 5} \% \mathbf{C L}$

CL_{s} upper limit :
\rightarrow Compute p_{so} (same as for $\mathrm{CLs}+\mathrm{b}$)
\rightarrow Compute 1-p (hard!)
Solution: $\quad S_{\text {up }}=\hat{S}+\left[\Phi^{-1}\left(\mathbf{1}-\mathbf{0 . 0 5} \Phi\left(\hat{S} / \sigma_{S}\right)\right)\right] \sigma_{S}$ at $95 \% \mathrm{CL}$

$$
\text { for } \hat{S} \sim 0, \quad S_{u p}=\hat{S}+1.96 \sigma_{s} \text { at } 95 \% \mathrm{CL}
$$

Homework 6: CL_{s} Rule of Thumb for $\mathrm{n}_{\text {obs }}=0$

Same exercise, for the Poisson case with $n_{\text {obs }}=0$. Perform an exact
computation of the 95% CLs upper limit based on the definition of the p-value:
p-value : sum probabilities of cases at least as extreme as the data

Hint: for $\mathrm{n}_{\mathrm{obs}}=0$, there are no "more extreme" cases (cannot have $\mathrm{n}<0$!), so
$p_{s o}=\operatorname{Poisson}\left(n=0 \mid S_{0}+B\right)$ and $1-p_{B}=\operatorname{Poisson}(n=0 \mid B)$

$$
S_{\mathrm{up}}\left(n_{\mathrm{obs}}=0\right)=\log (20)=2.996 \approx 3
$$

Solution:
\Rightarrow Rule of thumb: when $\mathrm{n}_{\text {obs }}=0$, the $95 \% \mathrm{CL}_{\mathrm{s}}$ limit is 3 events (for any B)

Outline

Computing statistical results

Confidence intervals

Upper limits on signal yields

Expected Limits

Generating Pseudo-data

Model describes the distribution of the observable: P(data; parameters)
\Rightarrow Possible outcomes of the experiment, for given parameter values
Can draw random events according to PDF : generate pseudo-data

$$
P(\lambda=5)
$$

$2,5,3,7,4,9, \ldots$.
Each entry = separate "experiment"

Generate

Expected Limits: Toys

Expected results: median outcome under a given hypothesis
\rightarrow usually B-only for searches, but other choices possible.

Two main ways to compute:
\rightarrow Pseudo-experiments (toys):

- Generate a pseudo-dataset in B-only hypothesis
- Compute limit

Phys. Lett. B 775 (2017) 105

- Repeat and histogram the results
- Central value = median, bands based on quantiles
68% of toys 95% of toys

Eur.Phys.J.C71:1554,2011 Computed limit

Expected Limits: Asimov Datasets

Expected results: median outcome under a given hypothesis
\rightarrow usually B-only for searches, but other choices possible.
Two main ways to compute:
\rightarrow Asimov Datasets

Strictly speaking, Asimov dataset if
$\mathbf{X}=\mathbf{X}_{\mathbf{0}}$ for all parameters \mathbf{X}, where X_{0} is the generation value

- Generate a "perfect dataset" - e.g. for binned data, set bin contents carefully, no fluctuations.
- Gives the median result immediately: median(toy results) \leftrightarrow result(median dataset)
- Get bands from asymptotic formulas: Band width

$$
\sigma_{S_{0}, A}^{2}=\frac{S_{0}^{2}}{q_{S_{0}}(\text { Asimov })}
$$

\oplus Much faster (1"toy")

ө Relies on Gaussian approximation

Toys: Example

ATLAS $X \rightarrow Z \gamma$ Search: covers $200 \mathrm{GeV}<\mathrm{m}_{x}<2.5 \mathrm{TeV}$
\rightarrow for $m_{x}>1.6 \mathrm{TeV}$, low event counts \Rightarrow derive results from toys

Asimov results (in gray) give optimistic result compared to toys (in blue)

Upper Limit Examples

Takeaways

Confidence intervals: use $\quad t_{\mu_{0}}=-2 \log \frac{L\left(\mu=\mu_{0}\right)}{L(\hat{\mu})}$
\rightarrow Crossings with $\dagger_{\mu 0}=Z^{2}$ for \pm Z σ intervals (in 1D)

Gaussian regime: $\mu=\hat{\mu} \pm \sigma_{\mu}$ (l σ interval)

Limits : use LR-based test statistic: $\quad q_{S_{0}}=-2 \log \frac{L\left(S=S_{0}\right)}{L(\hat{S})} \quad S_{0} \geq \hat{S}$
\rightarrow Use CL_{s} procedure to avoid negative limits

Poisson regime, $n=0: S_{u p}=3$ events

Extra Slides

CL_{s} : Gaussian Bands

Usual Gaussian counting example with known B: $95 \% \mathrm{CL}_{\mathrm{s}}$ upper limit on S :

$$
S_{\mathrm{up}}=\hat{S}+\left[\boldsymbol{\Phi}^{-1}\left(1-0.05 \Phi\left(\hat{S} / \sigma_{S}\right)\right)\right] \sigma_{S} \quad \begin{gathered}
\text { with } \\
\sigma_{S}=\sqrt{B}
\end{gathered}
$$

Compute expected bands for $\mathrm{S}=0$:
\rightarrow Asimov dataset $\Leftrightarrow \hat{\mathrm{S}}=0: S_{\text {up,exp }}^{0}=1.96 \sigma_{S}$

$\rightarrow \pm$ no bands:

$$
S_{\mathrm{up}, \mathrm{exp}}^{ \pm n \mathrm{exp}}=\left(\pm n+\left[1-\Phi^{-1}(0.05 \Phi(\mp n))\right]\right) \sigma_{s}
$$

n	$\mathrm{S}_{\text {exp }}{ }^{ \pm n} / \sqrt{\text { B }}$
+2	3.66
+ 1	2.72
0	1.96
-1	1.41
-2	1.05

CLs:

- Positive bands somewhat reduced,
- Negative ones more so

Band width from $\sigma_{s, A}^{2}=\frac{S^{2}}{\boldsymbol{q}_{s}(\text { Asimov })}$
depends on S, for non-Gaussian cases,different values for each band...

Comparison with LEP/TeVatron definitions

Likelihood ratios are not a new idea:

- LEP: Simple LR with NPs from MC

$$
\begin{aligned}
q_{L E P} & =-2 \log \frac{L(\mu=0, \widetilde{\theta})}{L(\mu=1, \widetilde{\theta})} \\
q_{\text {Tevatron }} & =-2 \log \frac{L\left(\mu=0, \hat{\hat{\theta}_{0}}\right)}{L\left(\mu=1, \hat{\theta}_{1}\right)}
\end{aligned}
$$

- Compare $\mu=0$ and $\mu=1$
- Tevatron: PLR with profiled NPs

Both compare to $\boldsymbol{\mu}=\mathbf{1}$ instead of best-fit $\hat{\boldsymbol{\mu}}$

LEP/Tevatron LHC

\rightarrow Asymptotically:

- LEP/Tevaton: q linear in $\mu \Rightarrow \sim$ Gaussian
- LHC: q quadratic in $\mu \Rightarrow \sim x^{2}$
\rightarrow Still use TeVatron-style for discrete cases

