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Introduction to 
Statistical Analysis



Course Outline

Previously in this course:
Statistics basics
Describing measurements
Determining the value of a parameter

Today:
Computing statistical results:

Discovery testing
Confidence intervals
Limits
Expected limits



Hypothesis Testing
Hypothesis: assumption on model parameters, say value of S (e.g. H0 : S=0)
 

Data disfavors H0 
(Discovery claim)

Data favors H0

(Nothing found)
H0 is false 

(New physics!) Discovery! Type-II error
(Missed discovery)

H0 is true 
(Nothing new)

Type-I error 
(False discovery)

No new physics, 
none found

Lower Type-I errors ⇔ Higher Type-II errors and vice versa: cannot have 
everything!

S = 0

Type-I error
p-value

BSM

Type-II Error
→ Goal: test that minimizes Type-II 
errors for given level of Type-I error.
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ROC Curves

→ Goal: test that minimizes Type-II 
errors for given level of Type-I error.

→ Usually set predefined level of
acceptable Type-I error (e.g. “5σ”)

S = 0

Type-I error
p-value

BSM

Type-II Error

1- εType-II (= εS)

1-
 ε Ty

pe
-I (

=1
 - 

ε B)

1

1

Better

Be
tte

r

0

Same S=0 and S>0 

distributions 

Increasingly
more powerful
discriminators

“Receiver operating 
characteristic” (ROC) Curve:
→ Plot Type-I vs Type-II rates for 
different cut values
→ All curves monotonically 
decrease from (0,1) to (1,0)
→ Better discriminators more 
bent towards (1,1)
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Hypothesis Testing with Likelihoods

Neyman-Pearson Lemma
When comparing two hypotheses H0 and H1, the 
optimal discriminator is the Likelihood ratio (LR) 

e.g. 

As for MLE, choose the hypothesis that is more likely given the data we have.

L(H1 ;data)

L(H0 ; data)

L(S= 5 ; data)

L(S= 0 ; data)
Caveat: Strictly true only for simple 
hypotheses (no free parameters)

→ Minimizes Type-II uncertainties for given level of Type-I uncertainties
→ Always need an alternate hypothesis to test against.

→ In the following: all tests based on LR, will focus on p-values (Type-I errors),
trusting that Type-II errors are anyway as small as they can be...
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Discovery: Test Statistic
Discovery :

• H0 : background only (S = 0) against

• H1: presence of a signal (S > 0)

→ For H1, any S>0 is possible, which to use ? The one preferred by the data, Ŝ.

Þ Use Likelihood ratio:

→ In fact use the test statistic

Note: for Ŝ < 0, set q0=0 to reject negative signals (“one-sided test statistic”)

S=0

H0
H1

Cowan, Cranmer, Gross & Vitells, 
Eur.Phys.J.C71:1554,2011

L(S=0)

L( Ŝ)

q0 = −2 log
L(S=0)

L( Ŝ)
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https://arxiv.org/abs/1007.1727


Discovery p-value
Large values of
⇒ observed Ŝ is far from 0

⇒ H0(S=0) disfavored compared to H1(S≠0).

How large q0 before we can exclude H0 ? 
(and claim a discovery!)

→ Need small Type-I rate (falsely rejecting H0)

→ Type-I rate, a.k.a. the p-value : 
= Fraction of outcomes that are 
at  least as extreme (signal-like) as data, when H0 is true (no signal).

−2 log
L(S=0)

L( Ŝ)

Ŝ ≤ 0

Observed 
value q0

obs

data 
prefer
S = 0

data 
prefer
S > 0

f(q0|S=0) 

p0 =∫
q0

obs

∞

f (q0∣S=0) dq0

large Ŝ

q0

if:
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Asymptotic distribution of q0

 Gaussian regime for Ŝ (e.g. large nevts, Central-limit theorem) :

Wilk’s Theorem (*) : for S = 0

 q0 is distributed as χ2 (npar) 

Cowan, Cranmer, Gross & Vitells
Eur.Phys.J.C71:1554,2011

Z = √q0

L(S) = exp[− 1
2
( S− Ŝσ )

2

] ⇒ q 0 = ( Ŝσ )
2

⇒ √q 0 =
Ŝ
σ ∼ G(0,1) ⇒ q0 ∼ χ

2
(ndof=1 )

⇒ npar = 1 :  √q0 is distributed as a Gaussian

⇒ Can compute p-values from Gaussian 
quantiles

⇒ Even more simply, the significance is:

Typically works well already for for event counts of O(5) 
and above  ⇒ Widely applicable

S ≤ 0

q0

Observed 
value q0

obs

χ2(ndof=1) 

large S
p-value

√q0

(*) 1-line “proof” : asymptotically L and S are Gaussian, so

p0 = 1 − Φ(√ q0)
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https://arxiv.org/abs/1007.1727


Homework 1: Gaussian Counting
Count number of events n in data
→ assume n large enough so process is Gaussian
→ assume B is known, measure S

Likelihood :

→ Find the best-fit value (MLE) Ŝ for the signal
    (can use λ = -2 log L instead of L for simplicity)

→ Find the expression of q0 for Ŝ > 0.

→ Find the expression for the significance

L(S ;nobs) = e
−

1
2 (
nobs−(S+B)

√S+B )
2

S+B

√(S+B)
nobs

Z =
Ŝ

√B
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Homework 2: Poisson Counting
Same problem but now not assuming Gaussian behavior:

→ As before, compute Ŝ, and q0

→ Compute Z = √q0, assuming asymptotic behavior

Solution:

Exact result can be obtained using
pseudo-experiments → close to √q0 result

L(S ;n) = e−(S+ B)
(S+B)n

Z= √ 2 [ ( Ŝ+B) log ( 1 +
Ŝ
B ) − Ŝ ]

Asymptotic formulas justified by Gaussian
regime, but remain valid even for small 
values of S+B (down to 5 events!) See G. Cowan’s slides for the 

case with B uncertainty

Eur.Phys.J.C71:1554,2011

(Can remove the n! constant since we’re only 
dealing with L ratios)
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http://www-conf.slac.stanford.edu/statisticalissues2012/talks/glen_cowan_slac_4jun12.pdf
https://arxiv.org/abs/1007.1727


Some Examples High-mass X→γγ Search: JHEP 09 (2016) 1

Higgs Discovery: Phys. Lett. B 716 (2012) 1-29

p0 = 1.8 ´ 10-9  Û  Z = 5.9σ

3.9σ
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http://link.springer.com/article/10.1007/JHEP09%282016%29001
http://www.sciencedirect.com/science/article/pii/S037026931200857X


Discovery Thresholds

Evidence : 3σ ⇔ p0 = 0.3%  ⇔ 1 chance in 300

Discovery:  5σ ⇔ p0 = 3 10-7  ⇔ 1 chance in 3.5M
Why so high thresholds ? (from Louis Lyons):
• Look-elsewhere effect : searches typically cover 

multiple independent regions ⇒ Higher chance
to have a fluctuation “somewhere”

Ntrials ~ 1000 : local 5σ  ⇔ O(10-4) more reasonable

• Mismodeled systematics: factor 2 error in 
syst-dominated analysis ⇒ factor 2 error on Z…

• History: 3σ and 4σ excesses do occur regularly, for the reasons above

Extraordinary claims require extraordinary evidence!
12 / 
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https://arxiv.org/abs/1409.1903


Takeaways
Given a statistical model P(data; μ), define likelihood L(μ) = P(data; μ)
To estimate a parameter, use the value μ̂ that maximizes L(μ) → best-fit value

To decide between hypotheses H0 and H1, use the likelihood ratio

To test for discovery, use

For large enough datasets (n >~ 5), 

For a Gaussian measurement,

For a Poisson measurement,

L(H 0)

L(H 1)

q0 =−2 log
L(S=0)

L( Ŝ)
Ŝ ≥ 0

Z = √ q0

Z =
Ŝ

√B

Z = √ 2 [ ( Ŝ+B) log ( 1 +
Ŝ
B ) − Ŝ ]
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Outline

Computing statistical results

Discovery Testing

Confidence intervals

Upper limits on signal yields

Expected limits
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Confidence Intervals
Last lecture we saw how to estimate (=compute) the value of a parameter

However we also need to estimate the associated uncertainty.

What is the meaning of an 
uncertainty ?

We don’t know what the true 
value is, but there is a
68% chance that it is within 
the orange interval

μ̂=argmax L(μ)Maximum Likelihood 
Estimator (MLE) μ̂:

15 / 
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Gaussian Intervals
If μ̂ ~ G(μ*, σ), known quantiles : 

This is a probability for μ̂ , not μ* !
→ μ* is a fixed number, not a random variable

But we can invert the relation:

→ If  we repeat the experiment many times, [μ̂ - σ, μ̂ + σ] will contain the true 
value 68.3% of the time: μ* = μ̂ ± σ  
This is a statement on the interval [μ̂ - σ, μ̂ + σ] obtained for each experiment

Works in the same way for other interval
sizes: [μ̂ - Zσ, μ̂ + Zσ] with

Experiment 6

Experiment 4

Experiment 3

Experiment 2

Experiment 5

Experiment 1

μ*–σ     μ*    μ*+σ

Z 1 1.96 2
CL 68.3% 95% 95.5%

P (μ*
− σ < μ̂ < μ

*
+ σ) = 68 %

⇒ P (∣ μ̂ − μ
*
∣< σ) = 68 %

P (μ*
− σ < μ̂ < μ

*
+ σ) = 68 %

⇒ P (μ̂ − σ < μ
*
< μ̂ + σ) = 68 %

16 / 
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Neyman Construction
Tru

e 
va

lue
 μ

*

Observed value μ̂

General case: Build 1σ intervals of observed values for each true value 
⇒ Confidence belt

68% intervals for μ̂ 

P(μ; μ*)

Peak Position
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Inversion using the Confidence Belt
Tru

e 
va

lue
 μ

*

Observed value μ̂

General case: Intersect belt with given μ̂ , get 
→ Same as before for Gaussian, works also when P(μobs|μ) varies with μ.

P (μ̂ − σμ

-
< μ

*
< μ̂ + σμ

+
) = 68%
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Inversion using the Confidence Belt
Tru

e 
va

lue
 μ

*

σμ
+

μ̂ 

σμ
-

μ̂ Observed value μ̂

General case: Intersect belt with given μ̂ , get 
→ Same as before for Gaussian, works also when P(μobs|μ) varies with μ.

σμ comes from the 
model, not the data
→ data only provides μ̂.

σμ
+ from negative side of μ̂ intervals

σμ
- from positive side of μ̂ intervals

Problem: Doesn’t generalize well to 
many parameters in realistic models

P (μ̂ − σμ

-
< μ

*
< μ̂ + σμ

+
) = 68%
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Likelihood Intervals
Confidence intervals from L:
• Test H(μ0) against alternative using
• Two-sided test since true value can be 

higher or lower than observed

Gaussian L:

•     : parabolic in μ0.
• Minimum occurs at μ = μ̂
• Crossings with tμ= 1 give the 

1σ interval

General case:
• Generally not a perfect parabola
• Minimum still occurs at μ = μ̂
• Still define 1σ interval from the tμ= ±1 crossings

H0
m

tμ 0
=−2 log

L(μ=μ0)

L(μ̂ )

ATLAS-CONF-2017-047 

H1
H1

tμ 0
= (

μ̂−μ 0

σμ )
2

19 / 
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-047/


Consider a parameter m (e.g. Higgs boson mass)
whose measurement is Gaussian with known
width σm, and we measure mobs:

→ Compute the best-fit value (MLE) m̂ 
→ Compute tm

→ Compute the 1-σ (Z=1, ~68% CL) interval on m

Solution:

→ Not really a surprise – the method works as expected on this simple case
→ General method can be applied in the same way to more complex cases

m

σm

mobs

m = mobs ± σm

L(m;mobs) = e
−

1
2 (
m−mobs

σm )
2

Homework 3: Gaussian Case
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2D Example: Higgs σVBF vs. σggF ATLAS-CONF-2017-047 

By
 K

ris
hn

av
ed

al
a 

- O
wn

 w
or

k, 
CC

 BY
-SA

 3.
0, 

ht
tp

s:/
/c

om
m

on
s.w

iki
m

ed
ia

.o
rg

/w
/in

de
x.p

hp
?c

ur
id

=1
52

78
82

6

tggF,VBF

ggF

VBF

CL 68% (1σ) 95% 95.5% (2σ)
1D Z2 1 3.84 4
2D Z2 2.30 5.99 6.18

Z2

 t < 2.30
t < 5.99

Gaussian case: elliptic 
paraboloid surface

t =−2 log
L(X0,Y 0)

L( X̂ , Ŷ )
∼ χ

2
(N dof=2)
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-047/


Outline

Computing statistical results

Discovery Testing

Confidence intervals

Upper limits on signal yields

Expected Limits
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Hypothesis tests for Limits

If no signal in data, testing for discovery not very relevant (report 0.2σ excess ?)
→ More interesting to exclude large signals 
⇒  Upper limits on signal yield

→ Typically report 95% CL upper limit (p-value = 5%) : “S < S0 @ 95% CL”

?

23 / 
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Hypothesis tests for Limits

If no signal in data, testing for discovery not very relevant (report 0.2σ excess ?)
→ More interesting to exclude large signals 
⇒  Upper limits on signal yield

→ Typically report 95% CL upper limit (p-value = 5%) : “S < S0 @ 95% CL”

Allowed
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Hypothesis tests for Limits

If no signal in data, testing for discovery not very relevant (report 0.2σ excess ?)
→ More interesting to exclude large signals 
⇒  Upper limits on signal yield

→ Typically report 95% CL upper limit (p-value = 5%) : “S < S0 @ 95% CL”
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Test Statistic for Limit-Setting

Discovery :
• H0 : S = 0
• H1 : S > 0

Limit-setting
• H0 : S = S0

• H1 : S < S0

q0=−2 log
L(S=0)

L( Ŝ)

Compare
Likelihood of H0

Likelihood of H1

S0

H0H1

qS0
=−2 log

L(S=S0)

L( Ŝ)

Compare
Likelihood of H0

Likelihood of H1

S=0
H0 H1

Same as q0 : 
→ large values Þ good rejection of H0.

Asymptotic case: p-value 

(Ŝ > 0)

(Ŝ < S0)

pS0
= 1− Φ(√ qS0

)

S0Ŝ

24 / 
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Inversion : Getting the limit for a given CL
Procedure:

→ Compute qS0 for some S0, get 
     the exclusion p-value pS0.

→ Adjust S0 until 95% CL exclusion (pS0 = 5%) is reached
Asymptotic case: need √qS0 = 1.64

S1 : (too) strong exclusion 

CL Region

90% √qS > 1.28

95% √qS > 1.64

99% √qS > 2.33

Asymptotics

√ qS0
= Φ

−1
(1− p0 )

√qS1

p-value for qS1

√qS = 1.64 : p = 5% 
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Inversion : Getting the limit for a given CL
Procedure:

→ Compute qS0 for some S0, get 
     the exclusion p-value pS0.

→ Adjust S0 until 95% CL exclusion (pS0 = 5%) is reached
Asymptotic case: need √qS0 = 1.64

S1 : (too) strong exclusion S2 : no exclusion S3 : 95% exclusion 

CL Region

90% √qS > 1.28

95% √qS > 1.64

99% √qS > 2.33

Asymptotics

√ qS0
= Φ

−1
(1− p0 )

√qS2
√qS1

√qS = 1.64 : p = 5% 

√qS3
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Homework 4: Gaussian Example
Usual Gaussian counting example with known B:

Reminder: Significance: Z = Ŝ/σS

→ Compute qS0

→ Compute the 95% CL upper limit on S, Sup, by solving √qS0 = 1.64.

Solution:

S+B

σS 
n

Sup = Ŝ + 1.64σ S  at 95 %  CL

L(S ;n) = e
−

1
2 ( n−(S+ B)

σS )
2

σS ~ √B for small S
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Upper Limit Pathologies
Upper limit:   Sup ~ Ŝ + 1.64 σS.

Problem: for negative Ŝ, get very good 
observed limit. 
→ For Ŝ sufficiently negative, even Sup < 0 ! 

How can this be ?
→ Background modeling issue ?… Or:
→ This is a 95% limit ⇒ 5% of the time, the 
limit wrongly excludes the true value,
e.g. S*=0.

Options
→ live with it: sometimes report limit < 0
→ Special procedure to avoid these cases,
since if we assume S must be >0, we know 
a priori this is just a fluctuation.

σS = 1

27 / 
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CLs

Usual solution in HEP : CLs.
→ Compute modified p-value 

⇒ Rescale exclusion at S0 by exclusion at S=0.
→ Somewhat ad-hoc, but good properties…

Ŝ compatible with 0 : pB ~ O(1)
pCLs ~ pS0 ~ 5%, no change.

Far-negative Ŝ : 1 - pB ≪ 1
pCLs~ pS0/(1-pB) ≫ 5%
→ lower exclusion ⇒ higher limit, 
    usually >0 as desired

pCLs =
pS0

(1 − pB)

A. Read, J.Phys. G28 (2002) 2693-2704

σS = 1

The usual p-value under 
H(S=S0) (=5%)

The p-value computed 
under H(S=0)

Drawback: overcoverage 
→ limit is claimed to be 95% CL, but actually >95% CL for small 1-pB.

28 / 
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http://inspirehep.net/record/599622?ln=en


Usual Gaussian counting example with known B:

Reminder 
CLs+b limit:  

CLs upper limit :
→ Compute pS0 (same as for CLs+b)
→ Compute 1-pB (hard!)

Solution: 

                      for Ŝ ~ 0,  

S+B

n
σS 

Sup = Ŝ + 1.64σ S  at 95 % CL

Sup = Ŝ + [ Φ−1 ( 1 − 0.05 Φ ( Ŝ / σ S ) ) ] σ S  at 95 %  CL

L(S ;n) = e
−

1
2 ( n−(S+B)

σS )
2

σS ~ √B for small S

Homework 5: CLs : Gaussian Case

Sup = Ŝ + 1.96 σ S  at 95 %  CL
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Homework 6: CLS Rule of Thumb for nobs=0

Same exercise, for the Poisson case with nobs = 0. Perform an exact 
computation of the 95% CLs upper limit based on the definition of the p-value: 
p-value : sum probabilities of cases at least as extreme as the data

Hint: for nobs=0, there are no “more extreme” cases (cannot have n<0 !), so

pS0 = Poisson(n=0 | S0+B) and 1 - pB = Poisson(n=0 | B)

Solution:

⇒ Rule of thumb: when nobs = 0, the 95% CLs limit is 3 events (for any B)

Sup(nobs=0) = log(20) = 2.996 ≈ 3
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Outline

Computing statistical results

Confidence intervals

Upper limits on signal yields

Expected Limits
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Generating Pseudo-data
Model describes the distribution of the observable: P(data; parameters)
Þ Possible outcomes of the experiment, for given parameter values
Can draw random events according to PDF : generate pseudo-data

Generate 

P ( λ=5)
2, 5, 3, 7, 4, 9, ….

Each entry = separate “experiment”

Unbinned

32 / 
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Expected Limits: Toys
Expected results: median outcome under a given hypothesis
→ usually B-only for searches, but other choices possible.

Two main ways to compute:
→ Pseudo-experiments (toys):
• Generate a pseudo-dataset in B-only hypothesis
• Compute limit
• Repeat and histogram the results
• Central value = median, bands 

based on quantiles

Computed limit

95% of toys68% of toys

    Repeat for each mass

Nu
m

be
r o

f T
oy

s

Eur.Phys.J.C71:1554,2011

Phys. Lett. B 775 (2017) 105
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https://arxiv.org/abs/1007.1727
http://www.sciencedirect.com/science/article/pii/S0370269317308511?via=ihub


Expected Limits: Asimov Datasets
Expected results: median outcome under a given hypothesis
→ usually B-only for searches, but other choices possible.

Two main ways to compute:

→ Asimov Datasets
• Generate a “perfect dataset” – e.g. for binned

data, set bin contents carefully, no fluctuations.
• Gives the median result immediately:

median(toy results) ↔ result(median dataset) 
• Get bands from asymptotic formulas:

Band width

⊕ Much faster (1 “toy”)
⊖ Relies on Gaussian approximation

σ S0 , A
2

=
S0

2

qS0
(Asimov)

Strictly speaking, Asimov dataset if
X ̂= X0 for all parameters X, 

where X0 is the generation value

34 / 
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Toys: Example  JHEP 10 (2017) 112

ATLAS X→Zγ Search: covers 200 GeV < mX < 2.5 TeV
→ for mX > 1.6 TeV, low event counts Þ derive results from toys

Asimov results (in gray) give optimistic result compared to toys (in blue) 

35 / 
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2016-14/


Upper Limit Examples
ATLAS 2015-2016 4l aTGC Search

Phys. Lett. B 775 (2017) 105

Phys. Re v. D 92 (2015) 0 12004 36 / 
40

http://inspirehep.net/record/1625109
http://www.sciencedirect.com/science/article/pii/S0370269317308511?via=ihub
http://dx.doi.org/10.1103/PhysRevD.92.012004


Takeaways

Confidence intervals: use

→ Crossings with tμ0 = Z2 for ±Zσ intervals (in 1D)

Gaussian regime: μ = μ̂ ± σμ (1σ interval)

Limits : use LR-based test statistic:

→ Use CLs procedure to avoid negative limits

Poisson regime, n=0 : Sup = 3 events

qS0
= −2 log

L(S=S0)

L( Ŝ)
S0 ≥ Ŝ

tμ 0
=−2 log

L(μ=μ0)

L(μ̂ )
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CLs : Gaussian Bands
Usual Gaussian counting example with known B:
95% CLs upper limit on S:

Compute expected bands for S=0:
→ Asimov dataset ⇔ Ŝ = 0 : 
→ ± nσ bands:  

Sup,exp
0

= 1.96 σ S

Sup = Ŝ + [ Φ−1

(1 − 0.05 Φ ( Ŝ / σ S) ) ] σ S

Sup,exp
±n

= (±n + [ 1 − Φ
−1

( 0.05 Φ(∓n) ) ] ) σ S

Ŝ 

n Sexp
±n

  /√B

+2 3.66
+1 2.72
  0 1.96
-1 1.41
-2 1.05

CLs : 
● Positive bands 

somewhat reduced,
● Negative ones more so

σS = √B
with

Band width from
depends on S, for
non-Gaussian cases,different
values for each band...

σ S , A
2

=
S2

qS(Asimov)

Eur.Phys.J.C71:1554,2011
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https://arxiv.org/abs/1007.1727


Comparison with LEP/TeVatron definitions
Likelihood ratios are not a new idea:
• LEP: Simple LR with NPs from MC

– Compare μ=0 and μ=1
• Tevatron: PLR with profiled NPs

Both compare to μ=1 instead of best-fit μ̂ 

→ Asymptotically:
• LEP/Tevaton: q linear in μ Þ ~Gaussian
• LHC: q quadratic in μ Þ  ~χ2 

→ Still use TeVatron-style for discrete cases

H0
H1

m=1
H1

H0

qLEP=−2 log
L(μ=0,~θ)

L (μ=1,~θ)

qTevatron=−2 log
L(μ=0, ^̂θ0)

L(μ=1, ^̂θ1)

LEP/Tevatron
LHC

m=0

Andrey Korytov , EPS 20 11
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