Fundamental constants, gravity and dark energy

Jean-Philippe UZAN

Dark energy

Standard Cosmological model relies on <u>Theory</u>: Grav=RG + SM + **DM** + Λ <u>Solutions</u>: Copernican principle

Data drive us to include in an effective way two extra-components:

- Dark matter appears as a *low acceleration* problem
- Dark energy appears as *low curvature* or *low acceleration* problem

Solutions to the dark energy problem range in:

- Astrophysical [NOT favored anymore]
- Cosmological
- Physical

It involves the **introduction of new degrees of freedom**:

- geometrical or physical

Universality classes of extensions (slide from 2004)

A series of tests

This has triggered an activity to test the hypothesis of the standard cosmological model.

- Tests of the Copernican principle: Homogeneity [JPU, Clarkson, Ellis, PRL (2008)] Isotropy [see e.g. Pereira, Pitrou, JPU, A&A Lett. (2016)]

- Tests of General Relativity

* Not new on small scales

* Use of LSS with large surveys $[\ensuremath{\mathsf{JPU}}, \ensuremath{\mathsf{Bernardeau}}\,, \ensuremath{\mathsf{PRD}}\,(\ensuremath{\mathsf{2001}})]$

* Test of the EEP outside the Solar system *and in particular with constants*.

Gravitation

<u>*Definition*</u>: Long range interaction that is not screened <u>*Description*</u>: General relativity

- Einstein equivalence principle (weak and strong)
- dof = massless spin 2

Einstein theory (1915) relies heavily on the **universality of free fall**, and its generalisation under the form of **Einstein Equivalence principle**:

- Universality of free fall
- Local Lorentz invariance
- Local position invariance

 $S_{matter}(\psi, g_{\mu\nu})$

Not a basic principle of physics but an <u>empirical</u> fact. Allows to define a local freely falling laboratory. It implies that we need to define only 1 kilogram!

Equivalence principle and constants

<u>In general relativity</u>, any test particle follows a geodesic, which does not depend on its mass or on its chemical composition

Imagine some constants are space-time dependent

1- Local position invariance is violated.

2- Universality of free fall has also to be violated

Mass of test body = mass of its constituants + binding energy

In Newtonian terms, a free motion implies $\frac{d\vec{p}}{dt} = m\frac{d\vec{v}}{dt} = \vec{0}$

But, now

$$\frac{d\vec{p}}{dt} = \vec{0} = m\vec{a} + \frac{dm}{d\alpha}\dot{\alpha}\vec{v}$$

$$\vec{m}\vec{a}_{\text{anomalous}}$$

Equivalence principle and constants

Action of a test mass:

$$S = -\int m_{A}[\alpha_{i}]c\sqrt{-g_{\mu\nu}v^{\mu}v^{\nu}}dt \quad \text{with} \quad v^{\mu} = dx^{\mu}/dt$$

$$u^{\mu} = dx^{\mu}/d\tau$$
Dependence
on some
constants
$$a^{\mu}_{A} = -\sum_{i} \left(\frac{\partial \ln m_{A}}{\partial \alpha_{i}} \frac{\partial \alpha_{i}}{\partial x^{\beta}}\right) \left(g^{\beta\mu} + u^{\beta}u^{\mu}\right) \quad \text{(NOT a}$$
geodesic)
$$g_{00} = -1 + 2\Phi_{N}/c^{2} \quad \text{(Newtonian limit)}$$

$$\mathbf{a} = \mathbf{g}_{N} + \delta \mathbf{a}_{A} \quad \text{Anomalous force}$$

$$\delta \mathbf{a}_{A} = -c^{2}\sum_{i} f_{A,i} \left(\nabla \alpha_{i} + \dot{\alpha}_{i} \frac{\mathbf{v}}{c^{2}}\right) \quad \text{dependent}$$

 $S[\phi, \overline{\psi}, A_{\mu}, h_{\mu\nu}, \ldots; c_1, \ldots, c_2]$

If a constant is varying, this implies that it has to be replaced by a dynamical field

This has 2 consequences:

1- the equations derived with this parameter constant will be modified

one cannot just make it vary in the equations

2- the theory will provide an equation of evolution for this new parameter

The field responsible for the time variation of the « constant » is also responsible for a long-range (composition-dependent) interaction i.e. at the origin of the deviation from General Relativity.

JPU, Rev. Mod. Phys (2003) JPU & G. Ellis, Am. J. Phys (2005) JPU, Liv. Rev. Relat. (2011)

Example of varying fine structure constant

It is a priori « easy » to design a theory with varying fundamental constants Consider

$$S = \int \!\! \{ rac{1}{16\pi G} \! R - 2 (\partial_\mu \phi)^2 - V\!(\phi) - rac{1}{4} \! B(\phi) \! F_{\mu
u}^2 \} \sqrt{-g} \, d^4x$$

But that may have dramatic implications.

$$m_A(\phi) \supset 98.25 lpha rac{Z(Z-1)}{A^{1/3}} \mathrm{MeV} \quad \longrightarrow \quad f_i = \partial_\phi \ln m_i \sim 10^{-2} rac{Z(Z-1)}{A^{4/3}} lpha'(\phi)$$

Violation of UFF is quantified by

$$\eta_{12} = 2 \frac{|\vec{a}_1 - \vec{a}_2|}{|\vec{a}_1 + \vec{a}_2|} = \frac{f_{\text{ext}}|f_1 - f_2|}{1 + f_{\text{ext}}(f_1 + f_2)/2}$$

It is of the order of

$$\eta_{12} \sim 10^{-9} \underbrace{\mathrm{X}_{1,2,\mathrm{ext}}(A,Z)}_{\mathcal{O}(0.1-10)} imes (\partial_{\phi} \ln B)_0^2$$

Requires to be close to the minimum

Famous example: Scalar-tensor theories

$$S=rac{c^3}{16\pi G}\int\!\sqrt{-g}\{R-2(\partial_\mu\phi)^2-V(\phi)\}^{ ext{spin 0}}+S_m\{ ext{matter}, ilde{g}_{\mu
u}=A^2(\phi)g_{\mu
u}\}$$

Maxwell electromagnetism is conformally invariant in d=4

$$S_{em} = \frac{1}{4} \int \sqrt{-\tilde{g}} \, \tilde{g}^{ab} \tilde{g}^{cd} F_{ac} F_{bd} \mathrm{d}^d x$$
$$= \frac{1}{4} \int \sqrt{-g} \, g^{ab} g^{cd} F_{ac} F_{bd} A^{d-4}(\phi) \mathrm{d}^d x$$

Light deflection is given as in GR

$$\delta heta = rac{4GM}{bc^2}$$

What is the difference?

The difference with GR comes from the fact that massive matter feels the scalar field

$$lpha = \mathrm{d}\ln A/\mathrm{d}\phi$$

Motion of massive bodies determines $G_{cav}M$ not GM.

Thus, in terms of observable quantities, light deflection is given by

$$\delta heta = rac{4G_{ ext{N}}M}{(1+lpha^2)bc^2} \leq rac{4GM}{bc^2}$$

which means

$$M_{\rm lens} \leq M_{\rm rot}$$

[Stratified theory, AQUAL,..., TeVeS,...]

Local AND Global scales: exemple of BBN

$$V\!=\!\mathrm{cst}, \quad A=\exp\left(\!rac{1}{2}eta\phi^2
ight) \qquad a=\!rac{1}{2}\!eta\phi^2, \quad lpha=eta\phi$$

Wall of fundamental constant

[Olive, Peloso, JPU, 2010]

Idea: Spatial discontinuity in the fundamental constant due to a domain wall crossing our Hubble volume.

<u>Constant</u>: PHYS., Numerical value of *some* quantity that allows to characterize a body. Quantity whose value is fixed (*e.g.* mass and charge of the electron, speed of light) and that plays a *central* role in physical theories.

This definition asks more questions than it gives answers!

- How many constants?
- Are they all on the same footing?
- What role do they play in laws of physics?
- Can they vary? (according to the dictionary, NO!)

Proposed definition:

[JPU, arXiv:1009.5514; hep-ph/0205340]

Fundamental constants are the free parameters of a theory

- the theory cannot determine them
- we need to measure them (need of a theoretical AND experimental definition)
- they shall be measurable
- their number and status will change over time

Are we sure constants do remain constant?

- Most constants have units.
- Any measurement is a comparison between two physical systems.
- Only the variations of dimensionless ratio makes sense.

Then:

- 3 base units defined by 3 constants (e.g., c, G, h) numerical values fix units
- all other constants are then **dimensionless** numerical values are independent of all units value is important / fine tuning /

JPU, Rev. Mod. Phys (2003) JPU & G. Ellis, Am. J. Phys (2005) JPU, Liv. Rev. Relat. (2011)

Reference theoretical framework

In our present understanding [*General Relativity* + SU(3)xSU(2)xU(1)]:

Constant	Symbol	Value	
Speed of light	с	299 792 458 m s ⁻¹	
Planck constant (reduced)	ħ	1.054 571 628(53) × 10 ^{−34} J s	
Newton constant	G	$6.674\ 28(67) \times 10^{-11}\ m^2\ kg^{-1}\ s^{-2}$	
Weak coupling constant (at m_Z)	$g_2(m_Z)$	0.6520 ± 0.0001	
Strong coupling constant (at m_Z)	$g_3(m_Z)$	1.221 ± 0.022	
Weinberg angle	$\sin^2 \theta_{\mathrm{W}}$ (91.2 GeV) _{MS}	0.23120 ± 0.00015	
Electron Yukawa coupling	he	2.94 × 10 ⁻⁶	
Muon Yukawa coupling	h_{μ}	0.000607	
Tauon Yukawa coupling	h_{τ}	0.0102156	
Up Yukawa coupling	h_{u}	0.000016 ± 0.000007	
Down Yukawa coupling	$h_{\rm d}$	0.00003 ± 0.00002	
Charm Yukawa coupling	hc	0.0072 ± 0.0006	
Strange Yukawa coupling	$h_{\rm s}$	0.0006 ± 0.0002	
Top Yukawa coupling	ht	1.002 ± 0.029	
Bottom Yukawa coupling	$h_{\rm b}$	0.026 ± 0.003	
Quark CKM matrix angle	$\sin \theta_{12}$	0.2243 ± 0.0016	
	$\sin \theta_{23}$	0.0413 ± 0.0015	
	$\sin \theta_{13}$	0.0037 ± 0.0005	
Quark CKM matrix phase	$\delta_{\rm CKM}$	1.05 ± 0.24	
Higgs potential quadratic coefficient	$\hat{\mu}^2$? $-(250.6 \pm 1.2) \text{ GeV}^2$	
Higgs potential quartic coefficient	λ	? 1.015 ± 0.05	
QCD vacuum phase	$\theta_{\rm QCD}$	< 10 ⁻⁹	

22 constants
19 parameters
(+ cosmological constant)

This number can *increase* or *decrease* with our knowledge of physics: Unification / conversion factor / new constants (e.g. neutrinos) / ...

 $v = (246.7 \pm 0.2) GeV$ $m_{H} = (125.3 \pm 0.6) GeV$

Observables and primary constraints

A given physical system gives us an observable quantity

Step 1:

From a physical model of our system we can deduce the sensitivities to the primary physical parameters

$$\kappa_{G_k} = rac{\partial \ln O}{\partial \ln G_k}$$

Step 2:

The primary physical parameters are usually not fundamental constants.

$$\Delta \ln G_k = \sum_i d_{ki} \Delta \ln c_i$$

Theory:

Shall give the relation to the low energy constants that we measure in the lab in terms of new fields and arbitrary function

JPU, Liv. Rev. Relat. (2011)

System	Observable	Primary constraint	Other hypothesis
Atomic clocks	Clock rates	α, μ, g _i	_
Quasar spectra	Atomic spectra	α, μ, g _p	Cloud physical properties
Oklo	Isotopic ratio	E _r	Geophysical model
Meteorite dating	Isotopic ratio	λ	Solar system formation
СМВ	Temperature anisotropies	α, μ	Cosmological model
BBN	Light element abundances	Q, τ_n , m_e , m_N , α , B_d	Cosmological model

Atomic spectra

General atom	$ u_{\rm hfs} \simeq R_{\infty} c \times A_{\rm hfs} \times g_i \times \alpha_{\rm EM}^2 \times \bar{\mu} \times F_{\rm hfs}(\alpha) $
	$ u_{\rm elec} \simeq R_{\infty} c \times A_{\rm elec} \times F_{\rm elec}(Z, \alpha) $

Clock 1	Clock 2	Constraint (yr^{-1})	Constants dependence	Reference
	$rac{\mathrm{d}}{\mathrm{d}t}\ln\left(rac{ u_{\mathrm{clock}_1}}{ u_{\mathrm{clock}_2}} ight)$			
87 Rb	^{133}Cs	$(0.2 \pm 7.0) \times 10^{-16}$	$\frac{g_{Cs}}{a_{Db}}\alpha_{EM}^{0.49}$	
87 Rb	^{133}Cs	$(-0.5 \pm 5.3) \times 10^{-16}$	SKD LIN	Bize (2003)
$^{1}\mathrm{H}$	^{133}Cs	$(-32\pm 63)\times 10^{-16}$	$g_{Cs}\mu\alpha_{EM}^{2.83}$	Fischer (2004)
$^{199}Hg^{+}$	^{133}Cs	$(0.2 \pm 7) \times 10^{-15}$	$g_{C_8}\mu\alpha_{C_8}^{6.05}$	Bize (2005)
$^{199}Hg^{+}$	^{133}Cs	$(3.7 \pm 3.9) \times 10^{-16}$	E EM	Fortier (2007)
$^{171}Yb^{+}$	^{133}Cs	$(-1.2 \pm 4.4) \times 10^{-15}$	$g_{\rm Cs}\mu\alpha_{\rm rs}^{1.93}$	Peik (2004)
$^{171}\mathrm{Yb^{+}}$	^{133}Cs	$(-0.78 \pm 1.40) \times 10^{-15}$	D - N EM	Peik (2006)
^{87}Sr	^{133}Cs	$(-1.0 \pm 1.8) \times 10^{-15}$	$q_{Cs}\mu\alpha_{-1}^{2.77}$	Blatt (2008)
87 Dy	87 Dy	(50a/ EM	Cingöz (2008)
²⁷ Al ⁺	$^{199}\mathrm{Hg^{+}}$	$(-5.3\pm7.9)\times10^{-17}$	$\alpha_{\rm EM}^{-3.208}$	Blatt (2008)

To be updated (sorry)

No variation larger than 10⁻⁵ on a time scale of 10 Gyr

Cosmic microwave background (CMB)

Recombination of hydrogen and helium Gravitational dynamics (expansion rate)

predictions depend on Gm_p^{-2} , α , $m_{e'}m_p$

Out-of-equilibrium process requires to solve a Boltzmann equation

Independent variations of α and m_{e} are constrained to be

 $\Delta \alpha / \alpha = (3.6 \pm 3.7) \times 10^{-3}$ $\Delta m_e / m_e = (4 \pm 11) \times 10^{-3}$

This is a <u>factor 5</u> better compared to WMAP analysis

Planck team. (2013) – Galli, Prunet, JPU

Why *Planck* does better

Why *Planck* does better

Big bang nucleosynthesis

$$\begin{split} &-7.5\times 10^{-2} < \frac{\Delta B_D}{B_D} < 6.5\times 10^{-2} \\ &-8.2\times 10^{-2} < \frac{\Delta \tau_n}{\tau_n} < 6\times 10^{-2} \\ &-4\times 10^{-2} < \frac{\Delta Q}{Q} < 2.7\times 10^{-2} \end{split}$$

[Coc,Nunes,Olive,JPU,Vangioni 2006 Coc, Descouvemont, Olive, JPU, Vangioni, 2012]

Stellar carbon/oxygen synthesis

[Ekström, Coc, Descouvemont, Meynet, Olive, JPU, Vangioni, 2009]

Physical systems: new and future

New laboratory test

Take a charged particle in ST-theory with B-field

$$mc^{2}\gamma^{\mu} = \frac{q}{A(\phi)}F^{\mu}{}_{\nu}u^{\nu} - mc^{2}\frac{\partial\ln A}{\partial\phi}\perp^{\mu\nu}\nabla_{\nu}\phi$$

The **5th force** induces a **drift**

For chameleon in screened regime, one can design the profile of the scalar field.

Conclusions

- General Relativity is well-tested in the Solar system. Not a single experimental sign that it needs to be modified.

- Dark energy, if not Λ , requires that we introduce new d.o.f

- One needs to identify the dof of the model: can be either *geometrical* or *physical*.

- We have tests of RG(LSS) + EEP + Copernican principle (isostropy+homogeneity) + of other couplings. Tests of GR are not LSS only.

- **Physical d.o.f**.: new matter field and/or modification of general relativity, i.e. characterize nature+couplings to SM fields + range

We do **not** vary constants in equations.

- Constancy of dimensionless constants related to the EEP. We have strong constraints from z=0 to $z=10^8$.
- Local and global are required.

local physics is very constraining (fifth force/constants) attraction toward RG

- The **cosmological model** is required to compare and interpret the constraints.