

PLANCK constraints on the tensor-to-scalar ratio

Planck constraints on the tensor-to-scalar ratio

M. Tristram¹, A. J. Banday^{2,3}, K. M. Górski^{4,5}, R. Keskitalo^{6,7}, C. R. Lawrence⁴, K. J. Andersen⁸, R. B. Barreiro⁹, J. Borrill^{6,7}, H. K. Eriksen⁸, R. Fernandez-Cobos⁹, T. S. Kisner^{6,7}, E. Martínez-González⁹, B. Partridge¹⁰, D. Scott¹¹, T. L. Svalheim⁸, H. Thommesen⁸, and I. K. Wehus⁸

- ¹ Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France
- ² Université de Toulouse, UPS-OMP, IRAP, F-31028 Toulouse cedex 4, France
- ³ CNRS, IRAP, 9 Av. colonel Roche, BP 44346, F-31028 Toulouse cedex 4, France
- ⁴ Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California, U.S.A.
- ⁵ Warsaw University Observatory, Aleje Ujazdowskie 4, 00-478 Warszawa, Poland
- ⁶ Computational Cosmology Center, Lawrence Berkeley National Laboratory, Berkeley, California, U.S.A.
- ⁷ Space Sciences Laboratory, University of California, Berkeley, California, U.S.A.
- ⁸ Institute of Theoretical Astrophysics, University of Oslo, Blindern, Oslo, Norway
- ⁹ Instituto de Física de Cantabria (CSIC-Universidad de Cantabria), Avda. de los Castros s/n, Santander, Spain
- ¹⁰ Haverford College Astronomy Department, 370 Lancaster Avenue, Haverford, Pennsylvania, U.S.A.
- ¹¹ Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia, Canada

[Tristram et al. A&A 647, A128 (2021)] astro-ph/2010.01139

PLANCK polarization data

- PLANCK detectors are sensitive to one polarization direction
- PLANCK scanning strategy do not allow for polarization reconstruction for each detector independently
 - ➡ need to combine detectors with different polarization orientation
- Any flux mismatch between detectors will create spurious polarization signal through well known I-to-P leakage.

In particular : ADC non-linearity, bandpass mismatch, calibration mismatch, ...

this is the major systematic in polarization at large scales

PLANCK Release 4 NPIPE processing

• Processing applied consistently over the whole 9 PLANCK frequencies (from 30 GHz to 857 GHz)

- systematic effects

(time transfer-function, ADC non-linearities, Far Side Lobes, bandpass-mismatch)

- sky-asynchronous signals (orbital dipole, zodiacal light)

Provide frequency maps

 - cleaner: less residuals (compared to PR3) at the price of a non-zero transfer function at large scale in polarization

"Ehr

- more accurate: less noise (compared to PR3)
- no residuals from template resolution mismatch (as visible in PR3)

Provide independent split-maps

- PR3: time-split (half-mission or half-ring) = correlated
- PR4: detector-split (detset) ⇒ independent

• Provide low-resolution maps with pixel-pixel noise covariance estimates across all PLANCK frequencies

PLANCK Release 4

CMB polarized maps

[Planck Collaboration Int. LVII (2020)]

Commander CMB Q and U maps (large scale, 5° smoothing)

PLANCK constraints on the tensor-to-scalar ratio

PLANCK Release 4 NPIPE simulations

a realistic simulation set is essential to properly assess polarization uncertainties especially at large angular scales

600 consistent simulations (frequency and split maps)

Inputs

- including instrumental noise (consistent with data-split differences)
- including models for systematics (ADC non-linearity)
- random CMB with 4pi beam convolution
- foreground sky model based on Commander PLANCK solution

Allow for

- accurate effective description of the noise and covariance of the maps (including noise, instrumental systematics, foreground residuals) no need for "a posteriori" rescaling as in PR3
- 2. estimation of the **transfer function** of the PLANCK processing

NPIPE simulations

processing transfer function

Simulations allow to characterize accurately the processing transfer-function for each frequency

- stable with frequency (less for LFI with fewer systematic templates)
- stable with sky-fraction

NPIPE simulations noise estimation

Scalar v.s. Tensor fluctuations

Full E/B Likelihood (lollipop)

— 1.0 [Hamimeche & Lewis (2008)] [Mangilli, Plaszczynski, Tristram (2015)]

Hamimeche&Lewis approximation modified for cross-spectra

• C_{ℓ} not Gaussian but X_{ℓ} statistics is very close to Gaussianity

$$X_{\ell} = \sqrt{C_{\ell}^{\mathrm{f}} + O_{\ell}} g\left(\frac{\widetilde{C}_{\ell} + O_{\ell}}{C_{\ell} + O_{\ell}}\right) \sqrt{C_{\ell}^{\mathrm{f}} + O_{\ell}}$$

with $g(x) = \sqrt{2(x - \ln x - 1)}$

 \tilde{C}_ℓ is the measured spectrum

 $C_{\boldsymbol{\ell}}$ is the model to test

istram

 C_{ℓ}^{f} is a fiducial theoretical model

 O_{ℓ} is the offset given by the level of noise $\Delta C_{\ell} \equiv \sqrt{\frac{2}{2\ell+1}}O_{\ell}$

then the likelihood approximation simply reads

$$-2\ln P(C_{\ell}|\widetilde{C}_{\ell}) = \sum_{\ell\ell'} X_{\ell}^{\mathsf{T}} M_{\ell\ell'}^{-1} X_{\ell'}$$

with the matrix $\mathbf{M}_{\ell\ell'}$ being the covariance from the C_ℓ

[https://github.com/planck-npipe/lollipop]

Lollipop Planck power-spectra

sky fraction 50%

xQML (https://gitlab.in2p3.fr/xQML)

Xpol [https://gitlab.in2p3.fr/tristram/Xpol]

Lollipop Planck spectra covariance

400 simulations of CMB reconstructed independently by Commander on each set of simulated frequency maps

Parameter constraints

Results (in combination with TT)

BREAKING NEWS Last news from BICEP/Keck

using Planck NPIPE maps at

30, 44, 143, 217 and 353 GHz

Conclusions

• NPIPE maps

- cleaner
- less noisy
- split-maps not correlated

NPIPE sims

- consistent with the data
- allow for TF and variance estimation
- include uncertainties from systematics (both instrumental and astrophysical)

Results

 $r_{0.05} < 0.072$ BICEP2/Keck 2015 (2018)1% of the sky $r_{0.05} < 0.069$ Planck EB (2020)50% of the sky

 $r_{0.05} < 0.044$ (Planck + BK15)

[Tristram et al. A&A 647, A128 (2021)] astro-ph/2010.01139

 $r_{0.05} < 0.036$ BICEP/Keck 2018 (2021) 1% of the sky