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- Renormalization to a small (but non-zero) value required
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One possible solution: Obtain dark energy in some other way...

Formulate dark energy as the spacetime response to variation of G.
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However, then Bianchi identity implies the usual conservation of matter and
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Einstein’s equations with time-dependent G

Satisfying both D,G*” = 0 and D, T* = 0 is possible by adding another
dynamical term, SH,

GH = 8 G(t)TH + 8rSHY

Assuming Hubble flow, this tensor can be written in terms of only two scalar
functions, ®(t) + W(t),

S = (D(t) + W(t))uru” + W(t)gh

Using the usual FLRW metric we get the cosmological equations:
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Obtaining ® and v

Bianchi identitiy gives a relation between ®(t) and W(t).
D, S" = -T"9,6 = &+3H(1+ &)d=-Gp

Define w(t) = ®(t)/W(t), and &(t) as a function satisfying £/& = 3H(1 + w).
®+3HA+W)d =-Gp = G(PE) = —Gpe



Obtaining ® and v

Att =0, p — oo but we can integrate these at the lower limit t = ¢.
D(0E(r) = limo (L) [ G

. 3(1+w(t)) .
&(t) = lima_o [{(5)% exp <— 3f;W In(a) dt>]
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Obtaining ® and v

O(0E(0) = ime () — [ G
£(t) = lime_so [g(g)m exp ( —3 Y In(a) dt)]
1. No direct dependence on the scale factor. = ¢ = cst.

2. No constant terms in .



Ansatz for G

G(a) = Go (1 +> 02, ba(1— a)”). We take only the first few terms.

Assuming flat universe k = 0 allows determining one of the b, in terms of the
others.
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Late Universe Data

- Type la Supernovae (JLA)

i. Lo Mep ox G
i, Loc G412

- Baryon Acoustic Oscillations (6dFGS, SDSS-MGS, BOSS DR12, eBOSS DR14)

'B. S. Wright and B. Li, Phys. Rev. D97, 083505
?). Sakstein, et al. Phys. Rev. D53
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We obtain the model parameters with a x? minimization analysis.

Model N d.of
ACDM 698.05 749
Varying G 697.73 747

b, b, bs
0.07£0.15 —0.51£0.33 0.679 £ 0.094

Qnm Q, Horg [km s=']
0.284+0.017 (0.0 £7.0) x 1073 (101.7 +1.3) x 10
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G(a)/Gy = <1 + b1(1—a) + by(1—a)? + b3(1 — a)3>
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Conclusion and Outlook

- When G is taken as a time dependent parameter, the geometry of Einstein’s
equations can cause a "dark energy” term to emerge.

- This type of a model is consistent with the late-time expansion data.

- The predicted variation of G is small.
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Conclusion and Outlook

- What about the early Universe?

- The bounds of G variation from CMB are theory dependent. Requires analysis
of perturbations.

- A different G value at the early universe can lead to a different Hy.
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Thank you for listening!

ET. Hanimeli, B. Lamine, A. Blanchard, |. Tutusaus, Phys. Rev. D 101, 063513 (2020)



