Can dark energy emerge from a varying G and spacetime geometry?

Ekim T. Hanımeli

ZARM, Universität Bremen (IRAP, Toulouse)

E.T.H., B. Lamine, A. Blanchard, I. Tutusaus, Phys. Rev. D 101, 063513 (2020)

Contents

- · Rationale and derivation
- Cosmological tests and results
- Conclusion and outlook

· Dark energy as cosmological constant corresponds to the vacuum energy

- · Dark energy as cosmological constant corresponds to the vacuum energy
- \cdot Energy of the quantum vacuum is many magnitudes off

- · Dark energy as cosmological constant corresponds to the vacuum energy
- \cdot Energy of the quantum vacuum is many magnitudes off
- · Renormalization to a small (but non-zero) value required

One possible solution: Obtain dark energy in some other way...

One possible solution: Obtain dark energy in some other way...

Formulate dark energy as the spacetime response to variation of G.

Instead of offering a new theory of gravity, extend general relativity by allowing a time-dependence on *G*.

$$G^{\mu\nu}=8\pi G(t)T^{\mu\nu}$$

Instead of offering a new theory of gravity, extend general relativity by allowing a time-dependence on G.

$$G^{\mu\nu}=8\pi G(t)T^{\mu\nu}$$

However, then Bianchi identity implies the usual conservation of matter and radiation is not satisfied.

$$D_{\mu}G^{\mu\nu} = 0 \quad \Rightarrow \quad D_{\mu}T^{\mu\nu} = -\frac{T^{\mu\nu}\partial_{\mu}G(t)}{G(t)} \neq 0$$

4

Instead of offering a new theory of gravity, extend general relativity by allowing a time-dependence on G.

$$G^{\mu\nu}=8\pi G(t)T^{\mu\nu}$$

However, then Bianchi identity implies the usual conservation of matter and radiation is not satisfied.

$$D_{\mu}G^{\mu\nu} = 0 \quad \Rightarrow \quad D_{\mu}T^{\mu\nu} = -\frac{T^{\mu\nu}\partial_{\mu}G(t)}{G(t)} \neq 0 \quad \Rightarrow \quad \rho_{\text{matter}} \propto G^{-1}a^{-3}$$

4

Satisfying both $D_{\mu}G^{\mu\nu}=0$ and $D_{\mu}T^{\mu\nu}=0$ is possible by adding another dynamical term, $S^{\mu\nu}$.

$$G^{\mu\nu} = 8\pi G(t)T^{\mu\nu} + 8\pi S^{\mu\nu}$$

Satisfying both $D_{\mu}G^{\mu\nu}=0$ and $D_{\mu}T^{\mu\nu}=0$ is possible by adding another dynamical term, $S^{\mu\nu}$.

$$G^{\mu\nu} = 8\pi G(t)T^{\mu\nu} + 8\pi S^{\mu\nu}$$

Assuming Hubble flow, this tensor can be written in terms of only two scalar functions, $\Phi(t) + \Psi(t)$,

$$S^{\mu\nu} = (\Phi(t) + \Psi(t))u^{\mu}u^{\nu} + \Psi(t)g^{\mu\nu}$$

Satisfying both $D_\mu G^{\mu\nu}=0$ and $D_\mu T^{\mu\nu}=0$ is possible by adding another dynamical term, $S^{\mu\nu}$.

$$G^{\mu\nu} = 8\pi G(t)T^{\mu\nu} + 8\pi S^{\mu\nu}$$

Assuming Hubble flow, this tensor can be written in terms of only two scalar functions, $\Phi(t) + \Psi(t)$,

$$S^{\mu\nu} = (\Phi(t) + \Psi(t))u^{\mu}u^{\nu} + \Psi(t)g^{\mu\nu}$$

Using the usual FLRW metric we get the cosmological equations:

$$H^2 = \frac{8\pi G\rho}{3} + \frac{8\pi \Phi}{3} - \frac{\kappa}{a^2}, \qquad \frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p) - \frac{4\pi}{3}(\Phi + 3\Psi)$$

5

Bianchi identitiy gives a relation between $\Phi(t)$ and $\Psi(t)$.

$$\mathrm{D}_{\mu}S^{\mu\nu} = -T^{\mu\nu}\partial_{\mu}G \quad \Rightarrow \quad \dot{\Phi} + 3H(1 + \frac{\Phi}{\Psi})\Phi = -\dot{G}\rho$$

Bianchi identitiy gives a relation between $\Phi(t)$ and $\Psi(t)$.

$$\mathrm{D}_{\mu}S^{\mu\nu} = -T^{\mu\nu}\partial_{\mu}G \quad \Rightarrow \quad \dot{\Phi} + 3H(1 + \frac{\Phi}{\Psi})\Phi = -\dot{G}\rho$$

Define $w(t) = \Phi(t)/\Psi(t)$, and $\xi(t)$ as a function satisfying $\dot{\xi}/\xi = 3H(1+w)$.

$$\dot{\Phi} + 3H(1+w)\Phi = -\dot{G}\rho \quad \Rightarrow \quad \frac{d}{dt}(\Phi\xi) = -\dot{G}\rho\xi$$

6

At t=0, $\rho\to\infty$ but we can integrate these at the lower limit $t=\varepsilon$.

$$\Phi(t)\xi(t) = \lim_{\varepsilon \to 0} \left(\Phi(\varepsilon)\xi(\varepsilon) - \int_{\varepsilon}^{t} \dot{G}\rho \xi dt \right)$$

$$\xi(t) = \lim_{\varepsilon \to 0} \left[\xi(\varepsilon) \frac{a(t)^{3(1+w(t))}}{a(\varepsilon)^{3(1+w(\varepsilon))}} \exp\left(-3 \int_{\varepsilon}^{t} \dot{w} \ln(a) dt \right) \right]$$

7

Take $S^{\mu\nu}$ to represent exclusively the spacetime response to the change of G.

 \Rightarrow Φ should be zero if G is constant.

Take $S^{\mu\nu}$ to represent exclusively the spacetime response to the change of G.

 \Rightarrow Φ should be zero if G is constant.

1. No direct dependence on the scale factor.

Take $S^{\mu\nu}$ to represent exclusively the spacetime response to the change of G.

 \Rightarrow Φ should be zero if G is constant.

- 1. No direct dependence on the scale factor.
- 2. No constant terms in Φ .

$$\Phi(t)\xi(t) = \lim_{\varepsilon \to 0} \left(\Phi(\varepsilon)\xi(\varepsilon) - \int_{\varepsilon}^{t} \dot{G}\rho \xi dt \right)$$

$$\xi(t) = \lim_{\varepsilon \to 0} \left[\xi(\varepsilon) \frac{a(t)^{3(1+w(t))}}{a(\varepsilon)^{3(1+w(\varepsilon))}} \exp\left(-3 \int_{\varepsilon}^{t} \dot{w} \ln(a) dt \right) \right]$$

- 1. No direct dependence on the scale factor. $\Rightarrow \xi = cst$.
- 2. No constant terms in Φ .

Ansatz for *G*

$$G(a) = G_0 \left(1 + \sum_{n=1}^{\infty} b_n (1-a)^n \right)$$
. We take only the first few terms.

Assuming flat universe $\kappa = 0$ allows determining one of the b_n in terms of the others.

Late Universe Data

· Type Ia Supernovae (JLA)

i.
$$L \propto M_{Ch} \propto G^{-1.5}$$

ii.
$$L \propto G^{1.46}$$
 1,2

· Baryon Acoustic Oscillations (6dFGS, SDSS-MGS, BOSS DR12, eBOSS DR14)

¹B. S. Wright and B. Li, Phys. Rev. D97, 083505

²J. Sakstein, et al. Phys. Rev. D53

Results

We obtain the model parameters with a χ^2 minimization analysis.

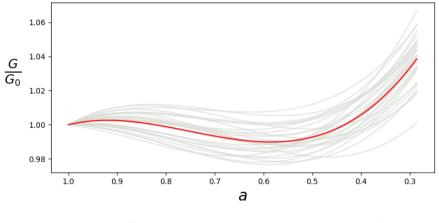
Model
$$\chi^2$$
 d.o.f.

ΛCDM 698.05 749

Varying G 697.73 747

$$Ω_m$$
 $Ω_r$ H_0r_d [km s⁻¹]
 0.284 ± 0.017 $(0.0 \pm 7.0) \times 10^{-3}$ $(101.7 \pm 1.3) \times 10^2$

Results



$$G(a)/G_0 = \left(1 + b_1(1-a) + b_2(1-a)^2 + b_3(1-a)^3\right)$$

• When *G* is taken as a time dependent parameter, the geometry of Einstein's equations can cause a "dark energy" term to emerge.

- When *G* is taken as a time dependent parameter, the geometry of Einstein's equations can cause a "dark energy" term to emerge.
- This type of a model is consistent with the late-time expansion data.

- When *G* is taken as a time dependent parameter, the geometry of Einstein's equations can cause a "dark energy" term to emerge.
- This type of a model is consistent with the late-time expansion data.
- \cdot The predicted variation of G is small.

 $\boldsymbol{\cdot}$ What about the early Universe?

- · What about the early Universe?
- The bounds of *G* variation from CMB are theory dependent. Requires analysis of perturbations.

- What about the early Universe?
- The bounds of *G* variation from CMB are theory dependent. Requires analysis of perturbations.
- A different G value at the early universe can lead to a different H_0 .

Thank you for listening!

E.T. Hanımeli, B. Lamine, A. Blanchard, I. Tutusaus, Phys. Rev. D 101, 063513 (2020)