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Cosmological constant problem

• Dark energy as cosmological constant corresponds to the vacuum energy

• Energy of the quantum vacuum is many magnitudes off

• Renormalization to a small (but non-zero) value required
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Cosmological constant problem

One possible solution: Obtain dark energy in some other way...

Formulate dark energy as the spacetime response to variation of G.
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Einstein’s equations with time-dependent G

Instead of offering a new theory of gravity, extend general relativity by allowing a
time-dependence on G.

Gµν = 8πG(t)Tµν

However, then Bianchi identity implies the usual conservation of matter and
radiation is not satisfied.

DµGµν = 0 ⇒ DµTµν = − Tµν∂µG(t)
G(t) ̸= 0 ⇒ ρmatter ∝ G−1a−3

4



Einstein’s equations with time-dependent G

Instead of offering a new theory of gravity, extend general relativity by allowing a
time-dependence on G.

Gµν = 8πG(t)Tµν

However, then Bianchi identity implies the usual conservation of matter and
radiation is not satisfied.

DµGµν = 0 ⇒ DµTµν = − Tµν∂µG(t)
G(t) ̸= 0

⇒ ρmatter ∝ G−1a−3

4



Einstein’s equations with time-dependent G

Instead of offering a new theory of gravity, extend general relativity by allowing a
time-dependence on G.

Gµν = 8πG(t)Tµν

However, then Bianchi identity implies the usual conservation of matter and
radiation is not satisfied.

DµGµν = 0 ⇒ DµTµν = − Tµν∂µG(t)
G(t) ̸= 0 ⇒ ρmatter ∝ G−1a−3

4



Einstein’s equations with time-dependent G

Satisfying both DµGµν = 0 and DµTµν = 0 is possible by adding another
dynamical term, Sµν .

Gµν = 8πG(t)Tµν + 8πSµν

Assuming Hubble flow, this tensor can be written in terms of only two scalar
functions, Φ(t) + Ψ(t),

Sµν = (Φ(t) + Ψ(t))uµuν +Ψ(t)gµν

Using the usual FLRW metric we get the cosmological equations:

H2 = 8πGρ
3 + 8πΦ

3 − κ
a2 ,

ä
a = −4πG

3 (ρ+ 3p)− 4π
3 (Φ + 3Ψ)
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Obtaining Φ and Ψ

Bianchi identitiy gives a relation between Φ(t) and Ψ(t).

DµSµν = −Tµν∂µG ⇒ Φ̇ + 3H(1+ Φ
Ψ)Φ = −Ġρ

Define w(t) = Φ(t)/Ψ(t), and ξ(t) as a function satisfying ξ̇/ξ = 3H(1+ w).

Φ̇ + 3H(1+ w)Φ = −Ġρ ⇒ d
dt(Φξ) = −Ġρξ
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dt(Φξ) = −Ġρξ
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Obtaining Φ and Ψ

At t = 0, ρ → ∞ but we can integrate these at the lower limit t = ε.

Φ(t)ξ(t) = limε→0

(
Φ(ε)ξ(ε)−

∫ t
ε Ġρξdt

)

ξ(t) = limε→0

[
ξ(ε) a(t)

3(1+w(t))

a(ε)3(1+w(ε)) exp

(
− 3

∫ t
ε ẇ ln(a)dt

)]
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Obtaining Φ and Ψ

Take Sµν to represent exclusively the spacetime response to the change of G.
⇒ Φ should be zero if G is constant.

1. No direct dependence on the scale factor.

2. No constant terms in Φ.
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Ansatz for G

G(a) = G0

(
1+

∑∞
n=1 bn(1− a)n

)
. We take only the first few terms.

Assuming flat universe κ = 0 allows determining one of the bn in terms of the
others.
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Late Universe Data

• Type Ia Supernovae (JLA)
i. L ∝ MCh ∝ G−1.5

ii. L ∝ G1.46 1,2

• Baryon Acoustic Oscillations (6dFGS, SDSS-MGS, BOSS DR12, eBOSS DR14)

1B. S. Wright and B. Li, Phys. Rev. D97, 083505
2J. Sakstein, et al. Phys. Rev. D53
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Results

We obtain the model parameters with a χ2 minimization analysis.

Model χ2 d.o.f.
ΛCDM 698.05 749

Varying G 697.73 747

b1 b2 b3
0.07± 0.15 −0.51± 0.33 0.679± 0.094

Ωm Ωr H0rd [km s−1 ]
0.284± 0.017 (0.0± 7.0)× 10−3 (101.7± 1.3)× 102
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Results

G(a)/G0 =
(
1+ b1(1− a) + b2(1− a)2 + b3(1− a)3

)
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Conclusion and Outlook

• When G is taken as a time dependent parameter, the geometry of Einstein’s
equations can cause a ”dark energy” term to emerge.

• This type of a model is consistent with the late-time expansion data.

• The predicted variation of G is small.
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Conclusion and Outlook

• What about the early Universe?

• The bounds of G variation from CMB are theory dependent. Requires analysis
of perturbations.

• A different G value at the early universe can lead to a different H0.
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Thank you for listening!
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