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Motivation

« Standard cosmological model: ACDM
— Concordant with observations, but...

— Unobserved “dark” components make up ~95% of its content

— Origin of dark energy (cosmological constant) is unclear
» Linked to quantum vacuum energy?

> Is it even a constant, or does it vary in space and time?

> Is it a problem at all, or just one more gravitational constant on top of Newton’s G

« Coasting cosmologies (e.g. Dirac-Milne, see G. Chardin’s talk)
— Unaccelerated expansion: a(t) = t/t,
— One gets almost everything out of the single parameter H,

[ 10 =1/Hy ~ 14 Gy, Hy = 70kms~! /Mpc

A=H/?~5%x107m™2,
po = HOZ/(SJ’TG) ~ 1.8 protons/m3,
ag = cHy ~ 6.8 x 10~10 ms_z, Milgrom’s acceleration



Left or right?
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N\ is a property of spacetime, which N is part of the energy-momentum tensor:
curves even in the absence of matter it's a “substance” with peculiar properties

A as the eigenvalue of a (nonlinear) problem
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* No modifications of Einstein’s field equations

— No “new physics”, only new interpretation

 Eigenvalue is determined by boundary conditions (as usual)



Scalar gravity model

AP =4r1Gp, Newtonian gravity

« We want to include self-gravity (as in GR)

«  Energy density of the Newtonian gravitational field: —|V ® |2/8Ir G,
* Not enough to simply add it to Newton’s equation

« Correct procedure yields:
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«  With the cosmological constant included:
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Already written as an eigenvalue problem.

Giulini, D.: Consistently implementing the field self-energy in Newtonian gravity. Phys. Lett. A 232, 165 (1997)
Franklin, J.: Self-consistent, self-coupled scalar gravity. Am. J. Phys. 83, 332 (2015)



Exact linearization

The above scalar model can be linearized exactly by setting: ¥ = /@,
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Identical to the stationary Schrodinger equation with eigenvalue A/2

Just like in QM, the physically meaningful quantity is not ¥, but rather |¥|? = ®

First integral (energy):
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Boundary conditions: v (Ir] = R) =c, (required for Newtonian limit)
VWV (rl=R)=0. (no force at r =R)

Boundary conditions determine the value of A.

We use: R = Ry = ¢/H, (Hubble radius)



Numerical example

= A term cancels on average
o the matter distribution
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Fig. 1 Potential function W (r) normalized to ¢ (solid lines), matter density pj;, (r) (dashed line) and vacuum
density pa (dotted line), as a function of the radius r normalized to a reference value R. Both py, (r) and
pa have been divided by the peak value py; (0).

E, =228, Eseq = 0.36, and E, = 2.65.



Cosmological considerations: homogeneous universe

Considering a homogeneous universe at large scales, with matter density p,, = const,
an immediate solution of the field equation
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« Taking p,, = 1 proton/m3 yields the correct order of magnitude for the CC
« (Almost trivial, but nevertheless stems from interpreting /A as an eigenvalue).

 Foran almost homogeneous distribution with fluctuations: the vacuum term cancels on
average the matter distribution (as long as gradients can be neglected)

Gravitationally empty universe (coasting):
a(t) = t/ty

0.0 0.2 0.4 0.6 0.8 1.0
r/R



Structure formation

The Newtonian limit of the scalar modelis: A® =47G (pm — 2pA).
In co-moving coordinates, the equation of motions are:

d27 s dr 1 9d
ol — —_ = — o =
dr? dr a or a(t) = t/ty

and the field equation is invariant: A;® = 47G (,, — 2pa0)-

These equations have been simulated with an N-body code in the context of
the Dirac-Milne universe (G. Manfredi et al., PRD 98, 023514 (2018))

They show structure formation very similar to that of ACDM and occurring on
similar timescales
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Galaxy rotation curves

We solve the scalar field equation in the vicinity of a spherical
“‘galaxy” of radius R, = 200 kpc

R, < Ryp= Hubble radius

We can estimate the gradient of y as: Vi/(R,) ~ ¢/Ro
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Conclusion

We proposed a new interpretation of the gravitational field equations as
a nonlinear eigenvalue problem
This conjecture relies on the following hypotheses:

1. Any gravitational field equation that incorporates self-gravity can be cast mathematically in
the form of a nonlinear eigenvalue problem;

2. The cosmological constant A can be interpreted as the smallest (“ground state”) eigenvalue;
3. The value of A is determined by the boundary conditions;

4. In a cosmological context, the b.c. are to be set on the Hubble sphere of radius R.

This approach:

— provides the correct order of magnitude for A;

— is compatible with structure formation on a cosmological scale;

— Is compatible with the effects of Dark Matter on a local scale (galactic rotation curves).
Open problems:

— Can it work for full GR? How about exact linearization?

— “Serious” comparison to observational data.

G. Manfredi, Gen Relativ Gravit 53, 31 (2021). ArXiv:2102.09601
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