Monopole fluctuations

CALUM MURRAY LABORATOIRE DE PHYSIQUE SUBATOMIQUE ET COSMOLOGIE, GRENOBLE.

Overview

- CMB monopole fluctuations
- Current measurements of the monopole temperature
- New things we can do
 - Primordial mass spectrum
 - Peculiar velocities with quasar absorption lines

CMB monopole temperature

$$T_{\gamma}(\mathbf{x}) = \int \frac{d^2 \mathbf{n}}{4\pi} T_{\gamma}(\mathbf{x}, \mathbf{n})$$

 $T_{\gamma}(\mathbf{x}) = \bar{T}_{\gamma}(1 + \Theta_{0}(\mathbf{x}))$

- x is a position in the universe, n is a direction on the sky from that position

- Penzias and Wilson 1964 measured $T_{\gamma}(\mathbf{x}_{\text{Crawford Hill, NJ}}) = 3.5 \pm 1.0 \text{ [K]}$
- McKellar 1941 measured $T_{\gamma}(\mathbf{x}_{\mathsf{A}} \text{ distant molecular cloud}) = 2.3 [K]$
 - Using CN stellar absorption lines of ζ Ophiuchi
 - The absorption depth depends on the spin temperature, for the right molecules this is CMB dominated

CMB monopole temperature

 $T_{\gamma}(\mathbf{x}) = \int \frac{d^2 \mathbf{n}}{4\pi} T_{\gamma}(\mathbf{x}, \mathbf{n})$

- $T_{\gamma}(\mathbf{x}) = \bar{T}_{\gamma}(1 + \Theta_{0}(\mathbf{x}))$
- \bar{T}_{γ} is the **average temperature** of the universe over all positions
- Often monopole fluctuations are called unobservable due to having only one measure of the monopole, this is not true we have many measurements so they are **observable**!

Current measurements $\bar{T}_{\gamma}(z) = \bar{T}_{\gamma,0}(1+z)$

- COBE/FIRAS $T_{0,\gamma}(\mathbf{x}) = 2.72548 \pm 0.00057$ [K]

le se selle batie universe the terms exeture has a	10	
 In an adiabatic universe, the temperature has a very simple relation with redshift 	16	
- The universe cools down (Tolman 1934)	14	
- Decaying dark energy would change this (Lima et al. 2000)	12	
- Would mean $\beta eq 0$	$T_{\rm CMB}, {\rm K}$	-
- $\beta = 0.010 \pm 0.013$ (Klimenko et al. 2020)	$T_{ m C}$	
 SZ + molecules gives an independent measure of the monopole temperature! 	6	_
- $\bar{T}_{0,\gamma} = 2.719 \pm 0.009$ [K] (Klimenko et al. 2020)	4	-
- On the order of 100s of SZ clusters and 10s molecular absorption systems (Saro et al. 2014	2	_
Planck clusters, Muller et al. 2013 CN, Li et al.	0	(

2021 ACT clusters, and many others)

CALUM MURRAY

Photon energy density fluctuations

- We can measure the CMB temperature elsewhere
 - Therefore we can measure the photon energy density elsewhere

- Sensitive to the spectrum of primordial density perturbations therefore gives **new** cosmological information

- For gauge issues see:
 - Zibin & Scott 2008
 - Baumgartner & Yoo 2021

$$T_{\gamma}(\mathbf{x}) = \bar{T}_{\gamma}(1 + \Theta_0(\mathbf{x})) \qquad \rho_{\gamma} = aT_{\gamma}^4$$
$$\delta_{\gamma}(\mathbf{x}) = \frac{\rho_{\gamma}(\mathbf{x})}{\bar{\rho}_{\gamma}} - 1 \approx 4\Theta_0(\mathbf{x})$$

Adding the monopole

- CMB low multipoles are dominated by cosmic variance
 - We can not measure the monopole fluctuations with normal analyses
- The rms of the monopole fluctuations is $\sqrt{\Theta_0^2}\approx 1.15\cdot 10^{-5}$ assuming Planck 2018 ΛCDM (Baumgartner & Yoo 2021, although they don't understand that it is directly measurable)
- Although this \mathscr{D}_{ℓ} is defined so that the monopole variance is zero....

 $\Delta D_{\ell}^{T'}$

CALUM MURRAY

Sunyaev-Zel'dovich effect

- The thermal SZ is the **spectral distortion** of the CMB as they are reflected by the hot electron gas inside galaxy clusters
- The reflected spectrum depends on the CMB temperature!
- Unlike the absorption lines, the SZ signal is sensitive to redshifted temperature $T_{\gamma,0,cluster}$ not the absolute CMB temperature
 - Therefore **no peculiar velocity effects**
 - Except doppler beaming but that's order $\sim 10^{-6}$

Preliminary P(k) **forecasts**

- We can estimate the precision at which the photon energy density power spectrum may be reconstructed

$$\Delta P(k) = \frac{1}{\sqrt{N_k}} \left(P(k) + \sigma_{\delta_{\gamma}}^2 \right)$$

- $N_k \sim 2\pi k^2 \Delta k V$ is the number of independent modes measurable for each k mode, where V is the survey volume

- $\sigma_{\!\delta_{\!\gamma}}^2$ is the measurement variance

- Consider a cluster survey which extends to a redshift z = 2 with 100,000 galaxy clusters
- Unable to access small scales due to the sparse sampling of the survey volume
- We need a precision on the remote CMB monopole of $\,<10^{-3}\,{\rm to}\,$ make power spectrum measurements

Quasar absorption lines

- Considering a molecular cloud in interstellar space
- An incident radiation field (the CMB, which is dominant for certain transitions) will excite molecules to higher energy states
- Lines are redshifted but the **proportion of molecules** in each state will depend on the **CMB** temperature

$$\frac{n_u}{n_l} = \frac{g_u}{e^{-(E_u - E_l)/k_b}}$$

$$\frac{n_l}{g_l}$$

- Various molecules can be used CO, CN CI,... (J. Bahcall and R. Wolf 1968 provide a detailed overview)

Peculiar velocity effects $\bar{T}_{\gamma}(z) = \bar{T}_{\gamma,0}(1+z)$ $T_{\gamma}(\mathbf{s}) = T_{\gamma}(\mathbf{x}) + \delta z E(z) \bar{T}_{\gamma,0}$

CALUM MURRAY

- Consider the observed position of a source s,

$$\mathbf{s} = \mathbf{x} + \frac{c}{H}\delta z\mathbf{n}$$

- Where x is the unperturbed position, n is the unit vector pointing to the source and δz is the redshift perturbation
- For peculiar velocities, $\delta z \approx \frac{1}{a} \frac{v_{\parallel}}{c}$, with scale factor a and line-of-sight velocity v_{\parallel}

Peculiar velocity effects $\bar{T}_{\gamma}(z) = \bar{T}_{\gamma,0}(1+z)$ $T_{\gamma}(\mathbf{s}) = T_{\gamma}(\mathbf{x}) + \delta z E(z) T_{\gamma,0}$

CALUM MURRAY

- Consider the observed position of a source s,

$$\mathbf{s} = \mathbf{x} + \frac{c}{H}\delta z\mathbf{n}$$

- Where \mathbf{x} is the unperturbed position, \mathbf{n} is the unit vector pointing to the source and δz is the redshift perturbation
- For peculiar velocities, $\delta z \approx \frac{1}{a} \frac{v_{\parallel}}{c}$, with scale factor *a* and lineof-sight velocity v_{\parallel}

Conclusions

- CMB monopole fluctuations are measurable (but very small) and could constrain the primordial density field
- Preliminary forecast using an SZ survey
- Molecular cloud measurements allow peculiar velocity measurements

CALUM MURRAY