DHOST Inflation

JCAP 08 (2021) 061 (arXiv: 2106.09319)
\&
arXiv: 2110.05913
with Philippe Brax
Andrei Lazanu
Département de Physique, École Normale Supérieure
Colloque national Action Dark Energy 2021
13 October 2021

Département
de Physique
École normale supérieure

PSL*

Outline

* DHOST models
* Scordatura corrections
* The second order action
* de Sitter solutions
* Field quantisation
* Power spectrum
* Shift-symmetry breaking perturbations
* Theoretical aspects
* Tensor perturbations
* Numerical results for 2 models
* Determination of non-Gaussianities
* Field excursion and trans-Planckian censorship conjecture
* Conclusions

DHOST Theories and Scordatura perturbations

DHOST theories

』 Degenerate Higher-Order Scalar-Tensor (DHOST) theories are scalar-tensor theories with one scalar degree of freedom depending on a scalar field, its gradient and also second derivatives, such that they don't lead to Ostrogradsky ghosts.

- They are the most general such theories which lead to second order equations of motion for the scalar field.
』 Most studies of these theories have so far focussed on explaining the late time universe (dark energy).
m They generals the Beyond Horndeski theories, which are themselves a generalisation of Horndeski theories.
- Based on how many power of the second order derivatives are present, they can be quadratic, cubic, etc...Here we concentrate on quadratic theories.
- The results that I am presenting now look at the early universe, creating a viable inflationary model.

DHOST action

- Most general action involving up to second-order interaction in the scalar field

$$
S=\int d^{4} x \sqrt{-g}\left[F_{0}(\phi, X)+F_{1}(\phi, X) \square \phi+F_{2}(\phi, X) R+\sum_{i=1}^{5} A_{i}(\phi, X) L_{i}\right]
$$

where

$$
\begin{aligned}
& L_{1}=\phi_{\nu \eta} \phi^{\nu \eta} \\
& L_{2}=(\square \phi)^{2} \\
& L_{3}=\square \phi \phi_{\nu} \phi^{\nu \eta} \phi_{\eta} \quad X=g^{\nu \eta} \phi_{\nu} \phi_{\eta}, \quad \phi_{\nu} \equiv \nabla_{\nu} \phi \\
& L_{4}=\phi^{\nu} \phi_{\nu \eta} \phi^{\eta \lambda} \phi_{\lambda} \\
& L_{5}=\left(\phi_{\nu} \phi^{\nu \eta} \phi_{\eta}\right)^{2}
\end{aligned}
$$

- There are several degeneracy conditions in this action, coming from constraints of not having ghosts and from GW decay into DE:

$$
S_{\mathrm{DHOST}}=\int d^{4} x \sqrt{-g}\left[F_{0}(X)+F_{1}(X) \square \phi+F_{2}(X) R+\frac{6 F_{2, X}^{2}}{F_{2}} \phi^{\nu} \phi_{\nu \eta} \phi^{\eta \lambda} \phi_{\lambda}\right]
$$

Scordatura corrections

- We add small corrections to this action, the scordatura corrections, as one of the L_{i} terms. We choose L2.

$$
S_{\mathrm{g}}=S_{\mathrm{DHOST}}+S_{\mathrm{S}}
$$

with

$$
S_{\mathrm{S}}=\int d^{4} x \sqrt{-g}\left[-\frac{\alpha}{2} \frac{(\square \phi)^{2}}{M_{S}^{2}}\right]
$$

where a is the a small dimensionless parameter that breaks the degeneracy condition and M_{s} is a mass scale related to the strong coupling scale of the EFT

- We rewrite the action in terms of dimensionless coordinates and variables

$$
\begin{aligned}
\tilde{t} & \equiv \Lambda t, \tilde{x}^{i} \equiv \Lambda x^{i}, \\
\phi & \equiv M \varphi, X \equiv M^{2} \Lambda^{2} \mathrm{x}, F_{0} \equiv \Lambda^{4} f_{0}, F_{1} \equiv \frac{\Lambda^{2}}{M} f_{1}, F_{2} \equiv \Lambda^{2} f_{2}, H=\Lambda h .
\end{aligned}
$$

- Models are low energy well beyond the Planck scale
- We consider $\Lambda \approx m_{\mathrm{Pl}}, M \ll m_{\mathrm{Pl}}$
- In order to have a consistent expansion in powers of X , we need $\mu_{c} \equiv \sqrt{M \Lambda} \ll m_{\mathrm{Pl}}$

DHOST background

- We start with an action

$$
d s^{2}=\Lambda^{2}\left[-d \tilde{t}^{2}+a(\tilde{t})^{2} \delta_{i j} d \tilde{x}^{i} d \tilde{x}^{j}\right]
$$

- We write the 00 and ii Einstein equations.
- We expect inflation to be driven by an energy density below μ_{c}, hence we impose $h \ll 1$.
- We define the following parameters, first order in the perturbations of f_{i}

$$
\alpha_{H} \equiv-\mathrm{x} \frac{f_{2, \mathrm{x}}}{f_{2}}, \quad \alpha_{B} \equiv \frac{1}{2} \frac{\dot{\varphi} \mathrm{x}}{h_{b}} \frac{f_{1, \mathrm{x}}}{f_{2}}+\alpha_{H}, \quad \alpha_{K} \equiv-\frac{\mathrm{x}}{6 h_{b}^{2}} \frac{f_{0, \mathrm{x}}}{f_{2}}+\alpha_{H}+\alpha_{B}
$$

and

$$
b \equiv \sqrt{f_{2}} a, h_{b} \equiv \frac{\dot{b}}{b}=h-\frac{\ddot{\varphi}}{\dot{\varphi}} \alpha_{H}
$$

2nd order DHOST perturbations

- The line element for scalar perturbations is given by

$$
d s^{2}=\Lambda^{2}\left(-(1+2 A) d \tilde{t}^{2}+2 \tilde{\partial}_{i} B d \tilde{t} d \tilde{x}^{i}+a^{2}(1+2 \psi) \delta_{i j} d \tilde{x}^{i} d \tilde{x}^{j}\right)
$$

- The second order DHOST action can be written a

$$
S_{\mathrm{DHOST}}^{(2)} \equiv \int d \tilde{t} d^{3} \tilde{k} \tilde{\mathscr{L}}_{\mathrm{D}}^{(2)}(\dot{\psi}, \psi, \dot{A}, A, B)
$$

m We perform the change of variable $\zeta \equiv \psi+\alpha_{H} A$ to get

$$
\begin{aligned}
\tilde{\mathscr{L}}_{\mathrm{D}}^{(2)}=2 f_{2}\left(-3 a^{3} \dot{\zeta}^{2}+\right. & 6 a^{3} h_{b}\left(1+\alpha_{B}\right) \dot{\zeta} A-2 a \tilde{k}^{2} \dot{\zeta} B+a \tilde{k}^{2} \zeta^{2} \\
& \left.+2 a\left(1+\alpha_{H}\right) \tilde{k}^{2} \zeta A-3 a^{3} h_{b}^{2} \beta_{K} A^{2}+2 a h_{b}\left(1+\alpha_{B}\right) \tilde{k}^{2} A B\right)
\end{aligned}
$$

$$
S_{\mathrm{DHOST}}^{(2)}=\int d \tilde{t} d^{3} \tilde{k} M^{4} \tilde{\mathscr{L}}_{\mathrm{D}}^{(2)}(\dot{\zeta}, \zeta, A, B)
$$

where
$\beta_{K} \equiv-\frac{\mathrm{x}^{2}}{3} \frac{f_{0, \mathrm{xx}}}{h_{b}^{2} f_{2}}+\left(1-\alpha_{H}\right)\left(1+3 \alpha_{B}\right)+\beta_{B}+\frac{\left(1+6 \alpha_{H}-3 \alpha_{H}^{2}\right) \alpha_{K}-2\left(2-6 \alpha_{H}+3 \alpha_{K}\right) \beta_{H}}{1-3 \alpha_{H}}$,
$\beta_{B} \equiv \dot{\varphi} \mathrm{x}^{2} \frac{f_{1, \mathrm{xx}}}{h_{b} f_{2}}, \quad \beta_{H} \equiv \mathrm{x}^{2} \frac{f_{2, \mathrm{xx}}}{f_{2}}$.

- We can treat A and B as Lagrange multipliers, solve for them and put the solutions back into the second order action to find

$$
\tilde{\mathscr{L}}_{\mathrm{D}}^{(2)}=a^{3} f_{2}\left(\overline{\mathscr{A}} \dot{\zeta}^{2}-\overline{\mathscr{B}} \frac{\tilde{k}^{2}}{a^{2}} \zeta^{2}\right),
$$

where

$$
\overline{\mathscr{A}}=6\left[1-\frac{\beta_{K}}{\left(1+\alpha_{B}\right)^{2}}\right], \quad \overline{\mathscr{B}}=-2\left[1-\frac{1}{a f_{2}} \frac{d}{d \tilde{t}}\left(\frac{a f_{2}}{h_{b}} \frac{1+\alpha_{H}}{1+\alpha_{B}}\right)\right]
$$

- The equation of motion for ζ is

$$
\ddot{\zeta}+\left(3 h+\frac{d}{d \tilde{t}} \ln \left(f_{2} \overline{\mathscr{A}}\right)\right) \dot{\zeta}+\left(\frac{\bar{c}_{s} \tilde{k}}{a}\right)^{2} \zeta=0
$$

where, $\bar{c}_{\mathrm{s}}^{2}=\frac{\mathscr{B}}{\mathscr{A}}$

2nd order scordatura perturbations

■ We can similarly expand the scordatura action at second order to get

$$
\begin{aligned}
\tilde{\mathscr{L}}_{\mathrm{S}}^{(2)}=\frac{1}{2}(& \bar{k}_{11} \dot{\zeta}^{2}+\bar{k}_{22} \dot{A}^{2}+2 \bar{k}_{12} \dot{\zeta} \dot{A}+2 \dot{\zeta}\left(\bar{n}_{12} A+\bar{n}_{13} \tilde{k}^{2} B\right)+2 \bar{n}_{23} \tilde{k}^{2} \dot{A} B-\bar{m}_{11} \zeta^{2} \\
& \left.-2 \bar{m}_{12} \zeta A-\bar{m}_{22} A^{2}-\bar{m}_{22 \mathrm{~s}} \tilde{k}^{2} A^{2}-2 \bar{m}_{23} \tilde{k}^{2} A B+\bar{m}_{33} \tilde{k}^{2} B^{2}+\bar{m}_{33 s} \tilde{k}^{4} B^{2}\right)
\end{aligned}
$$

- The total Lagrangian is

$$
\tilde{\mathscr{L}}_{\mathrm{g}}^{(2)}=a^{3} f_{2} \mathscr{K}\left[\dot{\zeta}^{2}-\left(c_{\mathrm{s}}^{2}(\tilde{k}) \frac{\tilde{k}^{2}}{a^{2}}+\alpha m^{2}\right) \zeta^{2}\right]
$$

where, $c_{\mathrm{s}}^{2}(\tilde{k}) \equiv \bar{c}_{\mathrm{s}}^{2}+\frac{\alpha}{2 f_{2}}\left(\frac{\mathscr{B}_{1}}{\overline{\mathscr{A}}}-\bar{c}_{\mathrm{s}}^{2} \frac{\mathscr{A}_{1}}{\mathscr{A}}+\left(\frac{\tilde{k}}{a}\right)^{2} \frac{\mathscr{B}_{2}}{\overline{\mathscr{A}}}\right)$
and $m^{2} \equiv \frac{1}{2 f_{2}}\left(\frac{\mathscr{M}}{\overline{\mathscr{A}}}-\bar{c}_{\mathrm{s}}^{2} \frac{\mathscr{A}_{2}}{\overline{\mathscr{A}}}\right), \mathscr{K} \equiv \overline{\mathscr{A}}\left(1+\frac{\alpha}{2 f_{2}}\left(\frac{\mathscr{A}_{1}}{\overline{\mathscr{A}}}+\frac{a^{2}}{\tilde{k}^{2}+\alpha k_{\mathrm{IR}}^{2}} \frac{\mathscr{A}_{2}}{\overline{\mathscr{A}}}\right)\right)$

de Sitter solutions

- We consider an expanding universe with constant Hubble parameter. By choosing $\varphi(\tilde{t})=\tilde{t}, \quad \mathrm{x}=-1$, the Friedmann equations become

$$
\begin{aligned}
& f_{0}+6 h_{\mathrm{dS}}^{2} f_{2}=0 \\
& f_{0, \mathrm{x}}+3 h_{\mathrm{dS}}\left(4 h_{\mathrm{ds}} f_{2, \mathrm{x}}-f_{1, \mathrm{x}}\right)=0
\end{aligned}
$$

- The functions f are now evaluated at $x=-1$ and hence they are constants.
n We get:

$$
\begin{aligned}
& h_{\mathrm{dS}}=\sqrt{\frac{-f_{0}}{6 f_{2}}} \\
& \bar{c}_{\mathrm{s}}^{2}=-\frac{\left(1+\alpha_{B}\right)\left(\alpha_{B}-\alpha_{H}\right)}{3\left(1+2 \alpha_{B}+\alpha_{B}^{2}-\beta_{K}\right)}
\end{aligned}
$$

Quantisation

■ We consider the creation of primordial fluctuations from the Bunch-Davies vacuum

- The scale factor is

$$
a(\eta)=-\frac{1}{h_{\mathrm{dS}} \eta}
$$

- The second order action can be expressed in conformal time as

$$
S_{\mathrm{g}}^{(2)}=\int d \eta d^{3} \tilde{k} z^{2}\left[\zeta^{2}-a^{2}\left(c_{\mathrm{s}}^{2}(\tilde{k}) \frac{\tilde{k}^{2}}{a^{2}}+\alpha m^{2}\right) \zeta^{2}\right]
$$

where $z^{2}=a^{2} f_{2} \mathscr{K}$ and hence

$$
z=\frac{1}{h_{\mathrm{dS}} \eta} \sqrt{f_{2} \mathscr{A}} \sqrt{\left(1+\frac{\alpha}{2 f_{2}}\left(\frac{\mathscr{A}_{1}}{\overline{\mathscr{A}}}+\frac{1}{h_{\mathrm{dS}}^{2} \eta^{2}} \frac{1}{\tilde{k}^{2}+\alpha k_{\mathrm{R}}^{2}} \frac{\mathscr{A}_{2}}{\overline{\mathscr{A}}}\right)\right.}
$$

m We define the Mukhanov-Sasaki variable $v=z \zeta$, which satisfies

$$
\begin{aligned}
& \qquad v^{\prime \prime}+\left[a^{2}\left(c_{\mathrm{s}}^{2}(\tilde{k}) \frac{\tilde{k}^{2}}{a^{2}}+\alpha m^{2}\right)-\frac{z^{\prime \prime}}{z}\right] v=0 \\
& \text { where } \frac{z^{\prime \prime}}{z}=\frac{2}{\eta^{2}}+\frac{5 \mathscr{A}_{2}}{2 f_{2} \mathscr{A} h_{\mathrm{dS}}^{2} \eta^{4}\left(\tilde{k}^{2}+\alpha k_{\mathrm{R}}^{2}\right)} \alpha
\end{aligned}
$$

- We can write the equation for v as

$$
v^{\prime \prime}(y)+K^{2}(y) v(y)=0
$$

where

$$
K^{2}(y)=\bar{c}_{\mathrm{s}}^{2}-\frac{2}{y^{2}}+\alpha\left[-\frac{b_{1}}{\left(y^{4}+\alpha c_{1} y^{2}\right)}+\frac{d_{1}}{y^{2}}+e_{1}+f_{1} y^{2}\right]
$$

where $\mathrm{b}_{1}, \mathrm{c}_{1}, \mathrm{~d}_{1}, \mathrm{e}_{1}$ and f_{1} are constants.

- The equation $\mathrm{K}^{2}(\mathrm{y})=0$ has a unique root in $(-\infty, 0)$

■ In the absence of scordatura, there is an analytical solution,

$$
\begin{aligned}
& v(\tilde{k}, y)=\frac{1}{\sqrt{2 \bar{c}_{s} \tilde{k}}}\left(1-\frac{i}{\bar{c}_{s} y}\right) \exp \left(-i \bar{c}_{s} y\right) \\
& z^{2}(\tilde{k}, y)=\frac{6 \tilde{k}^{2} f_{2}}{h_{\mathrm{dS}}^{2} y^{2}}\left(1-\frac{\beta_{K}}{\left(1+\alpha_{B}\right)^{2}}\right)
\end{aligned}
$$

m For $\alpha \neq 0$, we apply the improved WKB method [Weinberg]

» We define $\tilde{\phi}(y)=\int_{y}^{y_{1}} K\left(y^{\prime}\right) d y^{\prime}$.

- Around the root y_{1} of K^{2}, we can approximate the function as

$$
K(y)=\beta_{E} \sqrt{y_{1}-y}
$$

where $\beta_{E}=\sqrt{-\left(K^{2}\right)^{\prime}\left(y_{1}\right)}$

- Expansion is valid in interval, $y_{1}-\delta_{E} \lesssim y \leq y_{1}$, where $\delta_{E}=\left|\frac{2\left(K^{2}\right)^{\prime}\left(y_{1}\right)}{\left(K^{2}\right)^{\prime \prime}\left(y_{1}\right)}\right|$.
- In this interval $\quad \tilde{\phi}(y) \simeq \frac{2 \beta_{E}}{3}\left(y_{1}-y\right)^{3 / 2}$.

$$
\begin{aligned}
& \frac{d^{2} v}{d \tilde{\phi}^{2}}+\frac{1}{3 \tilde{\phi}} \frac{d v}{d \tilde{\phi}}+v=0 \\
& v \propto A_{1} \tilde{\phi}^{1 / 3} H_{1 / 3}^{(1)}(\tilde{\phi})+A_{2} \tilde{\phi}^{1 / 3} H_{1 / 3}^{(2)}(\tilde{\phi})
\end{aligned}
$$

- Around $y_{1}-\delta_{E}$ we can use the WKB approximation to find $v_{\mathrm{WKB} \pm} \propto \frac{1}{\sqrt{K(y)}} \exp (\pm i \tilde{\phi})$
Valid when Valid when $\quad\left|K^{\prime \prime} / K^{\prime}\right| \ll K,\left|K^{\prime} / K\right| \ll K$
- From the canonical quantisation condition,

$$
v_{\mathrm{WKB}}=\frac{1}{\sqrt{2 \tilde{k}}} \frac{1}{\sqrt{K(y)}} \exp (i \tilde{\phi})
$$

- By matching the two approximations, we find

$$
\begin{aligned}
& v(y)=\frac{\sqrt{\pi}}{2 \sqrt{\tilde{k}}}\left(\frac{2}{-3 s_{1}}\right)^{1 / 6} \exp \left(\frac{5 \pi}{12} i\right) \tilde{\phi}^{1 / 3}(y) H_{1 / 3}^{(1)}(\tilde{\phi}(y)) \\
& \text { where } s_{1}=\left.\frac{d\left(K^{2}(y)\right)}{d y}\right|_{y=y_{1}} .
\end{aligned}
$$

- The power spectrum and is given by

$$
\mathscr{P}_{\zeta}\left(\tilde{k}, y_{1}\right)=\frac{\tilde{k}^{3}}{2 \pi^{2}}\left|\frac{v\left(y_{1}\right)}{z\left(\eta_{1}\right)}\right|^{2}=\frac{y_{1}^{2}}{4 \pi^{3}} \frac{\left(\frac{1}{3 s_{1}}\right)^{1 / 3} \Gamma(1 / 3)^{2}}{\frac{1}{h_{\mathrm{dS}}^{2}} f_{2} \mathscr{A}\left(1+\frac{\alpha}{2 f_{2}}\left(\frac{\mathscr{A}_{1}}{\overline{\mathscr{A}}}+\frac{1}{h_{\mathrm{dS}}^{2} y_{1}^{2}} \frac{1}{1+\alpha \frac{27 \beta_{K}}{8 \delta_{2}\left(1+\alpha_{3}\right)^{2}}} \frac{\mathscr{A}_{2}}{\overline{\mathscr{A}}}\right)\right)}
$$

Shift-symmetry breaking perturbations

Models

- We start with the DHOST background and we consider a perturbation of the form

$$
S_{\mathrm{V}}=-\int d^{4} x \sqrt{-g} \mu^{4}\left(\cos \frac{\phi}{f}-1\right)
$$

- If $\phi \ll f$, we can expand this action as

$$
S_{\mathrm{V}}=\int d^{4} x \sqrt{-g}\left[-\frac{m_{\mathrm{phys}}^{2}}{2} \phi^{2}-\frac{\lambda_{\text {phys }}}{4!} \phi^{4}\right]
$$

where

$$
m_{\mathrm{phys}}^{2}=-\frac{\mu^{4}}{f^{2}}<0, \lambda_{\mathrm{phys}}=\frac{\mu^{4}}{f^{4}}
$$

- In reduced units we have

$$
S_{\mathrm{V}}=\int d^{4} \tilde{x} \sqrt{-\tilde{g}}\left[-\frac{m^{2}}{2} \varphi^{2}-\frac{\lambda}{4!} \varphi^{4}\right]
$$

- Also

$$
f=\frac{\sqrt{\left|m^{2}\right|}}{\sqrt{\lambda}} M, \mu=\frac{\sqrt{\left|m^{2}\right|}}{\lambda^{1 / 4}} \Lambda
$$

and we have the constraint $\varphi \lesssim \frac{\sqrt{\left|m^{2}\right|}}{\sqrt{\lambda}}$

- We proceed as in the first part, to get a second order equation for

$$
v^{\prime \prime}+K^{2}(y, k) v=0
$$

■ K22 and z have complicated expressions (written in the paper).

- We still have $m^{2}, \lambda \ll 1$ and hence the turning point of K^{2} still exists and we can use the same methods as before, and in particular the asymptotic matching.
- The power spectrum and its first three derivatives are

$$
\begin{aligned}
\mathscr{P}_{\zeta}\left(\tilde{k}, y_{H}\right) & =\frac{\tilde{k}^{3}}{2 \pi^{2}}\left|\frac{v\left(\tilde{k}, y_{H}, m^{2}, \lambda\right)}{z\left(\tilde{k}, y_{H}, m^{2}, \lambda\right)}\right|^{2} \\
n_{s}\left(\tilde{k}, y_{H}\right) & =1+\frac{d \log \left(\mathscr{P}_{\zeta}\left(\tilde{k}, y_{H}\right)\right)}{d \log (\tilde{k})} \\
\alpha_{s}\left(\tilde{k}, y_{H}\right) & =\frac{d n_{s}\left(\tilde{k}, y_{H}\right)}{d \log (\tilde{k})} \\
\beta_{s}\left(\tilde{k}, y_{H}\right) & =\frac{d \alpha_{s}\left(\tilde{k}, y_{H}\right)}{d \log (\tilde{k})}
\end{aligned}
$$

Where y_{H} is the horizon position $\mathrm{y}_{\boldsymbol{H}}=-1$

Tensor perturbations

■ In a similar fashion to scalars, we investigate the tensor perturbations in these models.
We write the second order tensor perturbation action

$$
S_{2}^{\mathrm{tensor}}=\int d \eta d^{3} k\left[a^{2} f_{2} E_{i j}^{\prime} E^{i j^{\prime}}-a^{2} f_{2} k^{2} E_{i j} E^{i j}+\frac{1}{24} E_{i j} E^{i j} a^{4}\left(12 m^{2} \varphi^{2}+\lambda \varphi^{4}\right)\right]
$$

』 Using $\mu_{T}=z_{T} E$ and $z_{T}^{2}=a^{2} f_{2}$, we get the equation of motion for μ_{T}

$$
\mu_{T}^{\prime \prime}+\left[\tilde{k}^{2}-\frac{1}{24 f_{2}} \frac{1}{h_{\mathrm{ds}}^{2} \eta^{2}}\left(12 m^{2}\left(c+\frac{1}{h_{\mathrm{ds}}} \log \left(-h_{\mathrm{ds}} \eta\right)\right)^{2}+\lambda\left(c+\frac{1}{h_{\mathrm{ds}}} \log \left(-h_{\mathrm{ds}} \eta\right)\right)^{4}\right)-\frac{2}{\eta^{2}}\right] \mu_{T}=0
$$

$$
\begin{aligned}
& \text { solved by } \\
& \qquad \begin{aligned}
\mu_{T}(\tilde{k}, y) & =\frac{1}{\sqrt{2 \tilde{k}}}\left(1-\frac{i}{y}\right) \exp (-i y) \\
z_{T}(\tilde{k}, y) & =\frac{\tilde{k}^{2} f_{2}}{h_{\mathrm{ds}}^{2} y^{2}}
\end{aligned}
\end{aligned}
$$

』 Hence the tensor power spectrum and the tensor to scalar ratio become (for the DHOST case)

$$
\begin{aligned}
& \mathscr{P}_{T}(\tilde{k}, y)=\frac{\tilde{k}^{3}}{2 \pi^{2}}\left|\frac{\mu_{T}}{z_{T}}\right|^{2}=\frac{h_{\mathrm{ds}}^{2} y^{2}\left(1+\frac{1}{y^{2}}\right)}{4 \pi^{2} f_{2}} \\
& r_{\text {DHOST }}(\tilde{k}, y)=\frac{\mathscr{P}_{T}(\tilde{k}, y)}{\mathscr{P}_{\zeta}(\tilde{k}, y)}=6 \bar{c}_{s} \frac{1+\frac{1}{y^{2}}}{1+\frac{1}{\bar{c}_{s}^{2} y^{2}}}\left(1-\frac{\beta_{K}}{\left(1+\alpha_{B}\right)^{2}}\right)
\end{aligned}
$$

Numerical results

* Planck constraints on inflation (Planck 2018 data release)

$$
\begin{aligned}
n_{s} & =0.9625 \pm 0.0048 \\
\alpha_{s} & =0.002 \pm 0.010 \\
\beta_{s} & =0.010 \pm 0.013 \\
\ln \left(10^{10} A_{s}\right) & =3.044 \pm 0.014
\end{aligned}
$$

at $k_{*}=0.05 \mathrm{Mpc}^{-1}$.

- Planck + Bicep2/Keck constrained $r<0.044$.
m In the future, LiteBird could lower this to 10-3
- Observable scales correspond to $10^{-4} \mathrm{Mpc}^{-1} \lesssim k \lesssim 10^{-1} \mathrm{Mpc}^{-1}$.
* We fix $\Lambda=m_{\mathrm{Pl}}$ and hence $\tilde{k}_{*}=2.62 \times 10^{-59} / h_{\mathrm{ds}}$.

Parameter space where the Planck CMB
constraints are satisfied

Plot showing how the allowed space is narrowing as r is decreased

Model 1: r ~ 0.04

- Parameters

$$
\begin{aligned}
& \alpha_{B}=1, \alpha_{H}=1.04, \beta_{K}=3.97343 \\
& r_{\mathrm{DHOST}}=0.04, \bar{c}_{s}=1.002
\end{aligned}
$$

$$
\begin{aligned}
& f_{2, \mathrm{x}}=2.81, \quad f_{1, \mathrm{x}}=-6.48 \times 10^{-6}, \quad f_{0, \mathrm{x}}=-2.97 \times 10^{-8} \\
& f_{2, \mathrm{xx}}=2.7 \beta_{H}, \quad f_{1, \mathrm{xx}}=-8.1 \times 10^{-5} \beta_{B}, \quad f_{0, \mathrm{xx}}=-2.97 \times 10^{-8}\left(\beta_{B}-4 \beta_{H}-4.133\right)
\end{aligned}
$$

- $h_{\mathrm{dS}}=3 \times 10^{-5}, f_{2}=2.7$
- Perturbations fixed at $m^{2}=-1.6 \times 10^{-23}$ and $\lambda=10^{-36}$.
- Parameters for the potential $f / M=4 \times 10^{6}, \quad \mu / \Lambda=0.004$.
- Results for inflation:
- $A_{s}=2.04 \times 10^{-9}$

■ $n_{s}=0.966$

- $\alpha_{s}=0.00059$
- $\beta_{s}=0.000019$
- $r=0.0074$

The scalar field at horizon exit showing that the condition of small perturbations is satisfied

Scalar power spectrum

α_{s}

Tensor power spectrum

n_{T}

β_{s}

r

$r /\left(8\left|n_{T}\right|\right)$

Model 2: r ~ 0.001

- Parameters

$$
\begin{aligned}
& \alpha_{B}=1, \alpha_{H}=1.001, \beta_{K}=3.9993 \\
& r_{\mathrm{DHOST}}=10^{-3}, \bar{c}_{s}=0.976
\end{aligned}
$$

$$
\begin{array}{ll}
f_{2, \mathrm{x}}=8.809, & f_{1, \mathrm{x}}=-1.76 \times 10^{-7},
\end{array} f_{0, \mathrm{x}}=-1.05 \times 10^{-9} 0
$$

- $h_{\mathrm{dS}}=10^{-5}, f_{2}=8.8$
- Perturbations fixed at $m^{2}=-1.5 \times 10^{-26}$ and $\lambda=5 \times 10^{-43}$.
- Parameters for the potential $f / M=1.73 \times 10^{8}, \quad \mu / \Lambda=0.0046$.

๓ Results for inflation:

- $A_{s}=2.76 \times 10^{-9}$
- $n_{s}=0.96716$
- $\alpha_{s}=0.00065$
- $\beta_{s}=-0.000022$

ต $r=3.9 \times 10^{-4}$

Amplitude of the potential at horizon exit is negligible compared to the background

The scalar field at horizon exit showing that the condition of small perturbations is satisfied

α_{s}

Tensor power spectrum

n_{T}

β_{s}

\tilde{k}
r

$r /\left(8\left|n_{T}\right|\right)$

Non-Gaussianities

- In order to make an estimate of the level of non-Gaussianities produced by these models, we need to perturb the action to third order, where the most general action can be expressed as

$$
\begin{gathered}
S_{3}=\int d \eta\left(\prod_{i=1}^{3} d^{3} \tilde{k}_{i}\right) \delta\left(\overrightarrow{\vec{k}}_{1}+\overrightarrow{\tilde{k}}_{2}+\overrightarrow{\tilde{k}}_{3}\right) a^{2}\left(C_{0} \zeta\left(\tilde{k}_{1}\right) \zeta\left(\tilde{k}_{2}\right) \zeta\left(\tilde{k}_{3}\right)+C_{1} \zeta^{\prime}\left(\tilde{k}_{1}\right) \zeta\left(\tilde{k}_{2}\right) \zeta\left(\tilde{k}_{3}\right)\right. \\
\left.+C_{2} \zeta^{\prime}\left(\tilde{k}_{1}\right) \zeta^{\prime}\left(\tilde{k}_{2}\right) \zeta\left(\tilde{k}_{3}\right)+C_{3} \zeta^{\prime}\left(\tilde{k}_{1}\right) \zeta^{\prime}\left(\tilde{k}_{2}\right) \zeta^{\prime}\left(\tilde{k}_{3}\right)\right)
\end{gathered}
$$

- We aim to calculate

$$
\langle 0| \zeta\left(\tilde{k}_{1}\right) \zeta\left(\tilde{k}_{2}\right) \zeta\left(\tilde{k}_{3}\right)|0\rangle=-i \int d \eta\langle 0|\left[\zeta\left(\tilde{k}_{1}\right) \zeta\left(\tilde{k}_{2}\right) \zeta\left(\tilde{k}_{3}\right), H_{3}\right]|0\rangle
$$

Where H_{3} is the interaction picture Hamiltonian given by

$$
\begin{gathered}
H_{3}=-\int\left(\prod_{i=1}^{3} d^{3} \tilde{k}_{i}\right) \delta\left(\overrightarrow{\vec{k}}_{1}+\overrightarrow{\vec{k}}_{2}+\vec{k}_{3}\right) a^{2}\left(C_{0} \zeta\left(\tilde{k}_{1}\right) \zeta\left(\tilde{k}_{2}\right) \zeta\left(\tilde{k}_{3}\right)+C_{1} \zeta^{\prime}\left(\tilde{k}_{1}\right) \zeta\left(\tilde{k}_{2}\right) \zeta\left(\tilde{k}_{3}\right)\right. \\
\left.+C_{2} \zeta^{\prime}\left(\tilde{k}_{1}\right) \zeta^{\prime}\left(\tilde{k}_{2}\right) \zeta\left(\tilde{k}_{3}\right)+C_{3} \zeta^{\prime}\left(\tilde{k}_{1}\right) \zeta^{\prime}\left(\tilde{k}_{2}\right) \zeta^{\prime}\left(\tilde{k}_{3}\right)\right)
\end{gathered}
$$

』 Full bispectrum can thus be determined for each of the 4 terms, e.g.

$$
\begin{aligned}
& B_{0}\left(k_{1}, k_{2}, k_{3}, \eta_{f}\right)=-\operatorname{Re}\left[-2 i \int_{-\infty(1-i \epsilon)}^{\eta_{f}} d \eta a C_{0} u\left(k_{1}, \eta_{f}\right) u\left(k_{2}, \eta_{f}\right) u\left(k_{3}, \eta_{f}\right) u^{*}\left(k_{1}, \eta\right) u^{*}\left(k_{2}, \eta\right) u^{*}\left(k_{3}, \eta\right)\right]+5 \text { perm. } \\
& \quad \eta_{f}=-\frac{1}{c_{s} \max \left(k_{1}, k_{2}, k_{3}\right)}
\end{aligned}
$$

- We have 6 additional parameters which are not fixed: $\beta_{B}, \beta_{H}, f_{1}, f_{0, \mathrm{xxx}}, f_{1, \mathrm{xxx}}, f_{2, \mathrm{xxx}}$.
- Standard PNG shapes

$$
\begin{array}{ll}
B_{\Phi}^{\text {loc }}\left(k_{1}, k_{2}, k_{3}\right)=2\left[P_{\Phi}\left(k_{1}\right) P_{\Phi}\left(k_{2}\right)+2 \text { perms }\right], & 95 \% \text { CL Planck constraints } \\
B_{\Phi}^{\text {eq }}\left(k_{1}, k_{2}, k_{3}\right)=6\left\{-\left[P_{\Phi}\left(k_{1}\right) P_{\Phi}\left(k_{2}\right)+2 \text { perms }\right]\right. & -11.1<f_{\text {NL }}^{\text {local }}<9.3 \\
\left.\quad-2\left[P_{\Phi}\left(k_{1}\right) P_{\Phi}\left(k_{2}\right) P_{\Phi}\left(k_{3}\right)\right]^{2 / 3}+\left[P_{\Phi}^{1 / 3}\left(k_{1}\right) P_{\Phi}^{2 / 3}\left(k_{2}\right) P_{\Phi}\left(k_{3}\right)+5 \text { perms }\right]\right\} & -120<f_{\mathrm{NL}}^{\text {euil }}<68 \\
B_{\Phi}^{\text {orth }}\left(k_{1}, k_{2}, k_{3}\right)=6\left[3\left(P_{\Phi}^{1 / 3}\left(k_{1}\right) P_{\Phi}^{2 / 3}\left(k_{2}\right) P_{\Phi}\left(k_{3}\right)+5 \text { perms }\right)\right. & -86<f_{\mathrm{NL}}^{\text {orth }}<10 \\
\left.\quad-3\left[P_{\Phi}\left(k_{1}\right) P_{\Phi}\left(k_{2}\right)+2 \text { perms }\right]-8\left(P_{\Phi}\left(k_{1}\right) P_{\Phi}\left(k_{2}\right) P_{\Phi}\left(k_{3}\right)\right)^{2 / 3}\right] . &
\end{array}
$$

- Shapes of DHOST bispectrum depend on the 6 parameters

■ We can choose them such that the shape correlations between the DHOST bispectrum and all three standard shapes are small, and hence the Planck constraints are satisfied.
■ However, the overall bispectrum remains large

- We plot the reduced bispectrum $Q\left(k_{1}, k_{2}, k_{3}\right)=\frac{B\left(k_{1}, k_{2}, k_{3}\right)}{P\left(k_{1}\right) P\left(k_{2}\right)+P\left(k_{2}\right) P\left(k_{3}\right)+P\left(k_{3}\right) P\left(k_{1}\right)}$

for isosceles triangles with equal sides k^{*}, in terms of the angle between them.
- Model $1(r=0.04)$: $a_{B}=1, a_{H}=1.04$ and $\beta_{k}=3.97343, f_{2}=2.7, h_{d s}=3 \times 10^{-5}, f_{o x x x}=2 \times$ $10^{-6}, f_{1, x x x}=-0.16, f_{2, x x}=150, f_{1}=0.0076, \beta_{8}=0, \beta_{H}=0$
■ Model $2\left(r=10^{-3}\right): a_{B}=1, a_{H}=1.001, \beta_{\mathrm{K}}=3.9993, h_{d s}=10^{-5}, f_{2}=8.8, f_{0, x x x}=7 \times 10^{-6}, f_{1, x x}=$ $0.12, f_{2 x x}=-2675, f_{1}=-0.013, \beta_{B}=0, \beta_{H}=0.1$.
』 Plots show that overall amplitude of the bispectrum is large - a careful comparison with data from Planck is required.

Field excursion

- Inflation must end!
- Number of e-foldings between the time when k^{*} enters the horizon and the end of inflation

$$
N_{\star}=\ln \left(\frac{a_{\mathrm{end}} H_{\mathrm{end}}}{k_{\star}}\right)
$$

where $a_{\text {end }} \simeq\left(\frac{H_{0}}{H_{\text {end }}}\right)^{1 / 2}=\left(\frac{H_{0}}{h_{\mathrm{dS}} m_{\mathrm{Pl}}}\right)^{1 / 2}$

$$
\begin{aligned}
& N_{\star}^{\text {model } 1}=59.52 \\
& N_{\star}^{\text {model } 2}=58.97
\end{aligned}
$$

■ We define the field excursion as

$$
\Delta \phi_{k} \equiv\left|\phi\left(t_{\text {end }}\right)-\phi\left(t_{k}\right)\right|
$$

■ Distance conjecture: $\Delta \phi_{k} \ll l_{\mathrm{Pl}}=m_{\mathrm{Pl}}^{-1}$

- Distance conjecture is satisfied as long as $M \lesssim 10^{-6} m_{\mathrm{Pl}}$; as M is still a free parameter of the model, we can fix it such that the conjecture is satisfied

$$
\left|\Delta \phi_{k}\right|(r=0.04)
$$

$$
\left|\Delta \phi_{k}\right|\left(r=10^{-3}\right)
$$

The trans-Planckian censorship conjecture

』 Trans-Planckian censorship conjecture: the length scales observed today originate from modes that were larger than the Planck length during inflation
■ In slow roll inflation, modes can become Trans-Planckinan unless all modes of length scale the Planck scale satisfy

$$
\frac{a\left(t_{\mathrm{end}}\right)}{a_{\mathrm{in}}} l_{\mathrm{Pl}}<H^{-1}
$$

- We satisfy the conjecture, we need

$$
N_{T}=\ln \frac{a_{\mathrm{end}}}{a_{\mathrm{in}}}<-\ln \left(h_{\mathrm{dS}}\right)
$$

- But $\quad N_{T}^{\text {model } 1}<10.41$

$$
N_{T}^{\text {model } 2}<11.51
$$

- Hence, we would require a much lower number of e-foldings
- As there are no free parameters, h_{dS} is fixed, our models do not evade this issue.

Conclusions

- First look at DHOST theories in the early universe.
[. Study of inflationary consequences of scordatura models, showing that they all produce scale invariant spectra in de Sitter universes.
[] Analysis of shift-symmetry breaking perturbations to DHOST models.
■ Built inflationary de Sitter models with $m^{2} \phi^{2}$ and $\lambda \phi^{4}$ interaction terms that yield nearly scale invariant power spectra.
■ The parameters of these models can be tuned such that they are compatible with inflationary constraints on n_{s}, α_{s} and β_{s} and also to current and future constraints of the tensor-to-scalar ratio.
- The non-Gaussianities that they produce can be tuned to be small in the usual templates (local, equilateral and orthogonal), and they might be detected with Planck and future experiments.

