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- Goal: try to convince you that there is an incompatibility between 
statistical mechanics and the way we deal with gravity at large 
scales. 



- The importance of correlations in 
statistical mechanics

< ma > = ∑
i

mai

= N∫V
ma( ⃗r)P1( ⃗r)dV

< Hint > = ∑
i<j

ϕ(rij)

=
N(N − 1)

2 ∫V,V′ 

P2( ⃗r, ⃗r′ )ϕ( | ⃗r − ⃗r′ | )dVdV′ 

Nbody

Fluid

BBGKY Hierarchy
P1( ⃗r), P2( ⃗r, ⃗r′ ), P3( ⃗r, ⃗r′ , ⃗r′ ′ ), . . .

ρ( ⃗r) = NP1( ⃗r) ξ( ⃗r, ⃗r′ ) = V2(P2( ⃗r, ⃗r′ ) − P1( ⃗r)P1( ⃗r′ ))
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With e.g. for 
gravity

ϕ(r) =
Gm2

r



- The importance of correlations in 
statistical mechanics
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P1( ⃗r) = 1/V, ρ( ⃗r) = N/V
ξ( ⃗r, ⃗r′ ) = ξ( | | ⃗r − ⃗r′ | | ), g(r) = 1 + ξ(r)
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With e.g. for 
gravity ϕ(r) =

Gm2

r
- For a homogeneous and isotropic fluid

    used in cosmology 
to characterize the large 
scale structures of the 
universe see e.g. Peebles 
1980

ξ(r)
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With e.g. for 
gravity ϕ(r) =

Gm2

r
- For a homogeneous and isotropic fluid

- For an ideal fluid: g(r) = 1, ξ(r) = 0

< Hint >
V

≈ 2πρ2 ∫
R

0
g(r)ϕ(r)r2dr

    used in cosmology 
to characterize the large 
scale structures of the 
universe see e.g. Peebles 
1980

ξ(r)

P2( ⃗r, ⃗r′ ) = P1( ⃗r)P1( ⃗r′ )



- The importance of correlations in 
statistical mechanics

< Hint > ≈
N2

2 ∫V,V′ 

P2( ⃗r, ⃗r′ )ϕ( | ⃗r − ⃗r′ | )dVdV′ 

- With a control volume V1, the 
distribution is inhomogeneous and 
uncorrelated 

- With a control volume V2, the 
distribution is homogeneous and 
isotropic but correlated (non-ideal)

ρ( ⃗x ) ≠ cst P2( ⃗r, ⃗r′ ) = P1( ⃗r)P1( ⃗r′ )

P2( ⃗r, ⃗r′ ) ≠ P1( ⃗r)P1( ⃗r′ )ρ( ⃗x ) = cst
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- Correlations in liquids/solids and the 
Universe
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- At large scale, the universe is 
homogeneous and isotropic but 
non-ideal (the most non-ideal 
fluid we will ever study)



- The importance of correlations in self 
gravitating astrophysical flows
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- Virial theorem is most of the time 
applied in a very simplified way in 
astrophysics 

- e.g. Zwicky 1933 need dark matter 
to explain velocity dispersion in the 
Coma Cluster

⟨v⟩2 ≈
GM
R

−2 < Ec > = < Hint > ≈
N2

2 ∫V,V
P2( ⃗r, ⃗r′ )ϕ( | ⃗r − ⃗r′ | )dVdV′ 

- But correlations matter for the Virial theorem



- The importance of correlations in self 
gravitating astrophysical flows
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- A semi-analytical example for finite size systems: the Lane-
Emden equation, hydrostatic solution of self-gravitating 
polytropic stars P=K rho^gamma (n=1/(gamma-1)) 

- Homogeneous: 
- Inhomogeneous: 

H/M = GM/5R
H/M = GM/5Rαih

αih =
N2 ∬

V,V
P2( ⃗r, ⃗r′ )ϕ( | ⃗r − ⃗r′ | )dVdV′ 

N2 ∬
V,V

1/(4πR3/3)2ϕ( | ⃗r − ⃗r′ | )dVdV′ 

25x



- The importance of correlations in self 
gravitating astrophysical flows
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- Problem: for infinite systems, the gravitational interaction 
energy does not converge in the thermodynamic limit because 
the gravitational force is long range and always attractive   

−2 < Ec > = < Hint > ≈
N2

2 ∫V,V
P2( ⃗r, ⃗r′ )ϕ( | ⃗r − ⃗r′ | )dVdV′ 

- But correlations matter for the Virial theorem

Fluid of polytropic stars: long-range 
interactions should not be accounted for the 
viral theorem in a star: they contribute to the 

star-cluster dynamic



- The importance of correlations in self 
gravitating astrophysical flows
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- Problem: for infinite system, the gravitational interaction 
energy does not converge in the thermodynamic limit because 
the gravitational force is long range and always attractive   

−2 < Ec > = < Hint > ≈
N2

2 ∫V,V
P2( ⃗r, ⃗r′ )ϕ( | ⃗r − ⃗r′ | )dVdV′ 

- But correlations matter for the Virial theorem

Decompose the force into a near-field and far-
field component and use near-field for the virial 

theorem

ϕ = ϕe−r/λ0 + ϕ(1 − e−r/λ0)

λ0



- The importance of correlations in self 
gravitating astrophysical flows
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- Hierarchical viral theorem

ϕ0 = ϕe−r/λ0

ϕ1 = ϕ(1 − e−r/λ0)e−r/λ1

ϕ2 = ϕ(1 − e−r/λ0)(1 − e−r/λ1)e−r/λ2

ϕ3 = . . .

λ0 λ1 λ2 λ3

−2 < Ec,i > ≈
N2

2 ∫V,V
P2( ⃗r, ⃗r′ )ϕi( | ⃗r − ⃗r′ | )dVdV′ 

⟨v2
i ⟩ ≈

GM
λi

αni

αni =
∬

V,V
ϕi( | ⃗r − ⃗r′ | )P2( ⃗r, ⃗r′ )dVdV′ 

∬
V,V

ϕi( | ⃗r − ⃗r′ | )P1( ⃗r)P1( ⃗r′ )dVdV′ 



- The importance of correlations in 
statistical mechanics

- We can define a mean 
interaction field only 
in the absence of 
correlations:
P2( ⃗r, ⃗r′ ) = P1( ⃗r)P1( ⃗r′ )

< Hint > ≈
N2

2 ∫V,V′ 

P1( ⃗r)P1( ⃗r′ )ϕ( | ⃗r − ⃗r′ | )dVdV′ 

≈
1
2 ∫V

ρ( ⃗r)∫V′ 

ρ( ⃗r′ )ϕ( | ⃗r − ⃗r′ | )dV′ dV

≈
1
2 ∫V

mρ( ⃗r)Φ( ⃗r)dV

With e.g. for gravity ∇2Φ( ⃗r) = 4πGmρ( ⃗r)

- Using a mean field is an approximation of the N-Body problem
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- Poisson/Einstein theory and 
correlations

< Hint > =
N2

2 ∫V,V′ 

P2( ⃗r, ⃗r′ )ϕ( | ⃗r − ⃗r′ | )dVdV′ 

≠
N2

2 ∫V,V′ 

P1( ⃗r)P1( ⃗r′ )ϕ( | ⃗r − ⃗r′ | )dVdV′ 
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Gμν =
8πG
c4

Tμν

ΔΦ ≈ − 4πGT00/c2

⟨Hint⟩ = −
1
2 ∬V,V

G
ρ( ⃗r)T00( ⃗r′ )/c2

| | ⃗r − ⃗r′ | |
dVdV′ 

- Poisson/Eisntein theories are valid 
for a inhomogeneous ideal fluid 
but should not be applied to a 
homogeneous correlated fluid as 
they ignore the correlations, i.e. they 
are mean-field theories



- Statistical Newton laws for pressureless 
fluids

< ma >1 = < f >2→1

Σimai,1 = Σi,j fj,2→i,1

N1 ∫V1

ma( ⃗r)P1( ⃗r)dV1 = N1N2 ∫V1,V2

P2( ⃗r, ⃗r′ )f ⃗r′ → ⃗rdV1dV2

- Second law:

- First law, for an isolated 
fluid volume:

< ma >1 = < f >1→1 = 0

- Third law:

< ma >2 = < f >1→2 = − < f >2→1

- Using a mean field is an approximation with
ρma ≈ ρmG a ≈ G G = − ∇Φ

P2( ⃗r, ⃗r′ ) = P1( ⃗r)P1( ⃗r′ )
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- Cosmological models
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- Einstein equations of general 
relativity 

- Assuming an homogeneous 
and isotropic fluid  

- assuming an ideal fluid 

-> Standard cosmological model
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g(r) ≫ 1

- Einstein equations of general 
relativity 
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- assuming an ideal fluid 

-> Standard cosmological model



- Cosmological models
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g(r) ≫ 1

- Einstein equations of general 
relativity 

- Assuming an homogeneous 
and isotropic fluid  

- assuming an ideal fluid 

-> Standard cosmological model

- With infinite resolution, 
the universe is 
inhomogeneous and ideal 
and Poisson/Einstein 
equations can be used -> 
inhomogeneous cosmology 
(e.g. Buchert et al.)

- At large scale, the universe is 
homogeneous and isotropic but 
non-ideal (the most non-ideal 
fluid we will ever study) and 
Poisson/Einstein equations 
cannot be used -> non-ideal 
cosmology 



- non-ideal cosmology
- Starts from Newtonian demonstration of Friedmann 

equations and add correlations as in the Virial theorem 

R
E = ⟨Ekin⟩ + ⟨Hint⟩

E/M ≈
1
2

·R2 −
GM
R

·R2

R2
−

2E/M
R2

=
8πG
3c2

ρb

H2 =
8πG
3c2

ρb
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- non-ideal cosmology
- Starts from Newtonian demonstration of Friedmann 

equations and add correlations as in the Viral theorem 

R

H2
ni =

8πG
3c2

ρbαni

qni ≈
1
2

−
·αni

2Hniαni

αni =
∬

V,V
ϕi( | ⃗r − ⃗r′ | )P2( ⃗r, ⃗r′ )dVdV′ 

∬
V,V

ϕi( | ⃗r − ⃗r′ | )P1( ⃗r)P1( ⃗r′ )dVdV′ 



- non-ideal cosmology
- Starts from Newtonian demonstration of Friedmann 

equations and add correlations as in the Viral theorem 

H2
ni =

8πG
3c2

ρbαni

qni ≈
1
2

−
·αni

2Hniαni

αni =
∬

V,V
ϕ( | ⃗r − ⃗r′ | )P2( ⃗r, ⃗r′ )dVdV′ 

∬
V,V

ϕ( | ⃗r − ⃗r′ | )P1( ⃗r)P1( ⃗r′ )dVdV′ 

qni ≈
1
2

−
ln(ρc/ρb)

2tuHni
≈

1
2

−
ln(20)
2tuHni

≈ − 1.06

Assuming that alpha_ni as varied 
from 1 to 20 during the age of 
the Universe, we get an analytical 
expression for the acceleration:

Inferred q value from Type 1a 
supernovae:

q = − 1.0 ± 0.4



- Friedmann equations

H2
ni =

8πG
3c2

ρbαni

qni ≈
1
2

−
·αni

2Hniαni

αni =
∬

V,V
ϕ( | ⃗r − ⃗r′ | )P2( ⃗r, ⃗r′ )dVdV′ 

∬
V,V

ϕ( | ⃗r − ⃗r′ | )P1( ⃗r)P1( ⃗r′ )dVdV′ 

H2 =
8πG
3c2

(ρb+ρCDM) +
Λc2

3

q = − 1 −
·H

H2
≈

1
2

−
Λc2

2H

Ideal LCDM: add dark matter/energy

Non-ideal: add correlations

The baryon energy density 
account for ~5% of the observed 
expansion 

Estimations of alpha_ni lie 
between 5 and 20 potentially 
explaining the observed expansion 

Assuming that alpha_ni as varied 
from 1 to 20 during the age of 
the Universe, we get an analytical 
expression for the acceleration:

qni ≈
1
2

−
ln(ρc/ρb)

2tuHni
≈

1
2

−
ln(20)
2tuHni

≈ − 1.06

Inferred q value from Type 1a 
supernovae: q = − 1.0 ± 0.4



- Conclusions

- We propose to account for correlations in astrophysical self-
gravitating flows by using a non-ideal viral theorem, non-ideal 
Navier-Stockes equations and non-ideal Friedmann equations 

- This is not a modification of newton law of gravitation. This does 
not contradict Poisson/Einstein theories, they remain valid if one 
can use them taking into account all inhomogeneities down to the 
scale at which we can assume the fluid to be ideal. They, however, 
cannot be used for a correlated (non-ideal) fluid 

- The universe at large scale is homogeneous and isotropic but non-
ideal, the most non-ideal fluid we will ever study: the standard 
model of cosmology should be revised to properly take into 
account correlations, even when using lambda and CDM. 



- Conclusions

- The strength of this approach is that the non-ideal effects are 
linked to the correlation function that can easily be constrained in 
astrophysics by observations, or numerical simulations at different 
scale 

- This is still a very simple model, a lot needs to be done to properly 
address other observable constrains (CMB, grav. Lensing, etc) 



- Non-ideal self-gravitating hydrodynamics

Non-ideal equation of state: impact of the gravitational 
interaction on transport properties of a fluid

P = ρkBT −
2π
3

ρ2 ∫
R

0
g(r)

dϕ(r)
dr

r3dr

ρe =
ρkBT
γ − 1

+ 2πρ2 ∫
R

0
g(r)ϕ(r)r2dr

« Virial theorem »  
- virial equilibrium: P=0 
- Expansion P>0 
- Gravitational collapse P<0 

Ideal hypothesis ok if

ρkBT ≫
2π
3

ρ2 ∫
R

0
g(r)

dϕ(r)
dr

r3dr

R ≪ λJ If the Jeans length is resolved
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energy does not converge in the thermodynamic limit because 
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- Non-ideal self-gravitating hydrodynamics

Non-ideal equation of state: impact of the gravitational 
interaction on transport properties of a fluid

P = ρkBT −
2π
3

ρ2 ∫
R

0
g(r)

dϕ(r)
dr

r3dr

ρe =
ρkBT
γ − 1

+ 2πρ2 ∫
R

0
g(r)ϕ(r)r2dr

Decompose the force into: 
- a near-field component accounted for 

in the EOS by statistical mechanics 
- A far-field component as an external 

force in the mean field approximation

ϕ = ϕint + ϕext

ϕ = ϕe−r/Δx + ϕ(1 − e−r/Δx)



- Non-ideal self-gravitating hydrodynamics

P = ρkBT −
2πρ2

3 ∫
∞

0
g(r)

dϕint(r)
dr

r3dr

ρme =
ρkBT
γ − 1

+ 2πρ2 ∫
∞

0
g(r)ϕint(r)r2dr

η =
1
2

ρmD +
π

15D
ρ2 ∫

∞

0
ψ2(r)g(r)

dϕint(r)
dr

r3dr

χ =
1
3

ρmD +
π

9D
ρ2 ∫

∞

0
ψ0(r)g(r)

dϕint(r)
dr

r3dr

with ϕint(r) = −
Gm2

r
e−r/Δx,

∂ρm

∂t
+ ⃗∇ (ρm ⃗u ) = 0,

∂ρm ⃗u
∂t

+ ⃗∇ (ρm ⃗u ⊗ ⃗u + σ) = ⃗F ext,

∂ρmE
∂t

+ ⃗∇ (ρm ⃗u E + σ ⋅ ⃗u ) = ⃗F ext ⋅ ⃗u ,

E = e +
1
2

⃗u 2,

σij = − (P + ( 2
3

η − χ)∑
k

∂kuk) δij + η (∂iuj + ∂jui),

⃗F ext( ⃗x ) = − ρ( ⃗x ) ⃗∇ ⃗x (Φext( ⃗x )),

Φext( ⃗x ) = ∫Vsim

ϕext( | ⃗x − ⃗x ′ | )ρ( ⃗x ′ )dVsim,

with ϕext(r) = −
Gm2

r
(1 − e−r/Δx)



- Non-ideal self-gravitating hydrodynamics

P = ρkBT −
2πρ2

3 ∫
∞

0
g(r)

dϕint(r)
dr

r3dr

with ϕint(r) = −
Gm2

r
e−r/Δx,

∂ρm

∂t
+ ⃗∇ (ρm ⃗u ) = 0,

∂ρm ⃗u
∂t

+ ⃗∇ (ρm ⃗u ⊗ ⃗u + σ) = ⃗F ext,

∂ρmE
∂t

+ ⃗∇ (ρm ⃗u E + σ ⋅ ⃗u ) = ⃗F ext ⋅ ⃗u ,

Formation of the large scale structures 
The need of cold dark matter, i.e. a 
collisionless fluid with P=0



- Non-ideal self-gravitating hydrodynamics

∂ρm

∂t
+ ⃗∇ (ρm ⃗u ) = 0,

∂ρm ⃗u
∂t

+ ⃗∇ (ρm ⃗u ⊗ ⃗u + σ) = ⃗F ext,

∂ρmE
∂t

+ ⃗∇ (ρm ⃗u E + σ ⋅ ⃗u ) = ⃗F ext ⋅ ⃗u ,

Rotation curve of galaxies 
Rubin & Ford 1970



- Non-ideal self-gravitating hydrodynamics

∂ρm

∂t
+ ⃗∇ (ρm ⃗u ) = 0,

∂ρm ⃗u
∂t

+ ⃗∇ (ρm ⃗u ⊗ ⃗u + σ) = ⃗F ext,

∂ρmE
∂t

+ ⃗∇ (ρm ⃗u E + σ ⋅ ⃗u ) = ⃗F ext ⋅ ⃗u ,

Rotation curve of galaxies 
A phase transition to a viscous fluid? 
Taylor-Couette flow

η =
1
2

ρmD +
π

15D
ρ2 ∫

∞

0
ψ2(r)g(r)

dϕint(r)
dr

r3dr

with ϕint(r) = −
Gm2

r
e−r/Δx,

0th, r − component :
−(u0

θ )2

r
=

1
ρ0

m
F0

ext,r

0th, θ − component : 0 = 0,

0th, r − component :
−(u0

θ )2

r
= −

1
ρ0

m

∂P0

∂r
+

1
ρ0

m
F0

ext,r

0th, θ − component : 0 = η0 ( 1
r

∂
∂r (r

∂u0
θ

∂r ) −
u0

θ

r2 ) .



- Non-ideal self-gravitating hydrodynamics

∂ρm

∂t
+ ⃗∇ (ρm ⃗u ) = 0,

∂ρm ⃗u
∂t

+ ⃗∇ (ρm ⃗u ⊗ ⃗u + σ) = ⃗F ext,

∂ρmE
∂t

+ ⃗∇ (ρm ⃗u E + σ ⋅ ⃗u ) = ⃗F ext ⋅ ⃗u ,

Rotation curve of galaxies 
A phase transition to a viscous fluid? 
Impulsion transfer by interactions

Voglis et al. (2006), 
Harsoula & 
Kalapotharakos (2009) 
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- Non-ideal self-gravitating hydrodynamics

Rotation curve of galaxies 
A phase transition to a viscous fluid?


