Phenomenology of LIV in $t\bar{t}$ production 00000

Searches for LIV in $t\bar{t}$ production at CMS 00000000

Searches for Lorentz Invariance Violation (LIV) with $t\bar{t}$ production

Aurélien CARLE encadrants : Nicolas CHANON, Stéphane PERRIES

PhD day 27 Janvier 2021

Phenomenology of LIV in $t\bar{t}$ production 00000

Searches for LIV in $t\bar{t}$ production at CMS 00000000

Lorentz Invariance Violation (LIV) ?

Phenomenology of LIV in $t\bar{t}$ production

Searches for LIV in $t\bar{t}$ production at CMS

Phenomenology of LIV in $t\bar{t}$ production 00000

Searches for LIV in $t\bar{t}$ production at CMS 00000000

Lorentz Invariance Violation (LIV) ?

Phenomenology of LIV in $t\bar{t}$ production

Searches for LIV in $t\bar{t}$ production at CMS

Phenomenology of LIV in $t\bar{t}$ production 00000

Searches for LIV in $t\bar{t}$ production at CMS 00000000

Lorentz Symmetry / Special Relativity

Laws of physics stay unchanged under :

- ▷ <u>rotations</u>
- ⊳ <u>boosts</u>

of the frame in which they are expressed.

Laws of Physics in Particle Physics

It is convenient to use a mathematical object named Lagrangian to represent laws of physics.

 $\mathcal{L} = (\text{kinetic part}) + (\text{interaction part}) + (\text{mass part})$

The previous definition of Lorentz symmetry can be summarized as :

$\mathcal{L}(\Lambda x) = \mathcal{L}(x)$	Follow Lorentz Symmetry
$\mathcal{L}(\Lambda x) \neq \mathcal{L}(x)$	Not Follow Lorentz Symmetry

Phenomenology of LIV in $t\bar{t}$ production 00000

Searches for LIV in $t\bar{t}$ production at CMS 00000000

Standard Model : A Lorentz symmetric quantum field theory

For the top quark, the kinematic part of Standard Model Lagrangian \mathcal{L}^{SM} is :

$$\mathcal{L}^{\mathsf{SM}} \supset \frac{i}{2} \bar{Q}_t \gamma^{\mu} \overset{\leftrightarrow}{D}_{\mu} Q_t + \frac{i}{2} \bar{U}_t \gamma^{\mu} \overset{\leftrightarrow}{D}_{\mu} U_t \tag{1}$$

where :

- $\circ Q_t$, U_t are respectively Left-handed and Right-handed top spinor
- γ^{μ} are Dirac matrices (spin $\frac{1}{2}$)
- $\circ \ D_{\mu}$ is the covariant derivative

Phenomenology of LIV in $t\bar{t}$ production 00000

Searches for LIV in $t\bar{t}$ production at CMS 00000000

The $t\bar{t}$ production

- \triangleright Top mean lifetime of 5×10^{-25} s.
- \triangleright Fully leptonic channel : $t\bar{t} \rightarrow b\ell^+\nu + \bar{b}\ell^-\bar{\nu}$
- \triangleright $t\bar{t}$ is produced with very high cross-section : $\sigma_{t\bar{t}} = 831$ pb at 13TeV.

Models of Lorentz Violation

The Lorentz symmetry is not expected to be necessarily conserved at high energy scale (quantum gravity).

String theory [2].

Loop quantum gravity [3].

Remnants from the symmetry breaking would manifest themselves at a lower energy, and constitute an appealing signature.

Standard Model Extension (SME)

We start from the SM Lagrangian, add fields breaking the Lorentz symmetry, and write all Lorentz-violating terms in the Lagrangian at the lowest order. This effective field theory (EFT) is called Standard Model Extension (SME) [4].

$$\mathcal{L}^{\mathsf{SME}} = \mathcal{L}^{\mathsf{SM}} + (\text{violating part}) \tag{2}$$

Searches for LIV in $t\bar{t}$ production at CMS 00000000

Lorentz Invariance Violation (LIV) for Top Quark

Lorentz violating terms modifying the kinematics of the top quark [1]:

$$\mathcal{L}^{\mathsf{SME}} \supset \frac{i}{2} (c_L)_{\mu\nu} \bar{Q}_t \gamma^{\mu} \stackrel{\leftrightarrow}{D^{\nu}} Q_t + \frac{i}{2} (c_R)_{\mu\nu} \bar{U}_t \gamma^{\mu} \stackrel{\leftrightarrow}{D^{\nu}} U_t \tag{3}$$

Wilson's coefficient $c_{\mu\nu}$ (with μ , ν = T,X,Y,Z) need to be :

- \triangleright constant ($c'_{\mu\nu} = c_{\mu\nu} \rightarrow$ not Lorentz covariant).
- ▷ define in a given reference frame : Sun-centered frame.

- Z-axis : colinear to the Earth rotation axis.
- X-axis : is pointing at vernal equinox point.
- Y-axis : complete the direct basis.

With these $c_{\mu\nu}$ constraints : $\mathcal{L}^{SME'} \neq \mathcal{L}^{SME}$ thus $t\bar{t}$ cross-section is function of sidereal time.

Sidereal time defined one day (24 sidereal hours) as duration between two crossing of a given distant star and Greenwich meridian.

Phenomenology of LIV in $t\bar{t}$ production $_{\odot OOO}$

Searches for LIV in $t\bar{t}$ production at CMS 00000000

Lorentz Invariance Violation (LIV) ?

Phenomenology of LIV in $t\bar{t}$ production

Searches for LIV in $tar{t}$ production at CMS

Phenomenology of LIV in $t\bar{t}$ production 0000

Searches for LIV in $t\bar{t}$ production at CMS 00000000

Previous exploration : $D\emptyset$ experiment [6]

- \triangleright The first ever results of LIV in $t\bar{t}$ production.
- \triangleright Measuring number of $t\bar{t}$ events during time with R ratio.
- \triangleright Found no evidence of LIV with ${\sim}10\%$ absolute uncertainty.

Unprecedented study at CMS

- ▷ LIV with top quark.
- ▷ Time dependent analysis.

Phenomenology of LIV in $t\bar{t}$ production 00000

Searches for LIV in $t\bar{t}$ production at CMS 00000000

Modulation of $t\bar{t}$ cross-section at CMS [1]

We analyze Wilson's coefficients for a couple of non-null $c_{\mu\nu}$.

From the LO cross-section in the SME (known [7]), we compute the modulation of the cross section.

Phenomenology of LIV in $t\bar{t}$ production 00000

Searches for LIV in $t\bar{t}$ production at CMS 00000000

Amplitude evolution with energy [1]

Scenarii for colliders :

$$\triangleright~{\rm Tevatron}~({\cal L}=5.3~{\rm fb}^{-1},~\sqrt{s}=1.96~{\rm TeV})$$

▷ LHC Run II ($\mathcal{L} = 150 \text{ fb}^{-1}$, $\sqrt{s} = 13 \text{ TeV}$)

$$\triangleright$$
 HL-LHC ($\mathcal{L} = 3 \text{ ab}^{-1}$, $\sqrt{s} = 14 \text{ TeV}$)

$$\triangleright$$
 HE-LHC ($\mathcal{L} = 15 \text{ ab}^{-1}$, $\sqrt{s} = 27 \text{ TeV}$)

$$\triangleright$$
 FCC-hh ($\mathcal{L} = 15 \text{ ab}^{-1}$, $\sqrt{s} = 100 \text{ TeV}$)

Phenomenology of LIV in $t\bar{t}$ production 0000 \bullet

Searches for LIV in $t\bar{t}$ production at CMS 00000000

Expected precisions for different colliders [1]

	DØ [6]	LHC (Run II)	HL-LHC	HE-LHC	FCC
$\frac{\Delta c_{LXX}, \Delta c_{LXY}}{\Delta c_{LXZ}, \Delta c_{LYZ}}$	$\begin{array}{c} 1 \times 10^{-1} \\ 8 \times 10^{-2} \end{array}$	$\begin{array}{c} 2 \times 10^{-4} \\ 5 \times 10^{-4} \end{array}$	$\begin{array}{c} 2\times10^{-5}\\ 9\times10^{-5}\end{array}$	$\begin{array}{c} 4\times10^{-6}\\ 2\times10^{-5} \end{array}$	$\begin{array}{c} 1 \times 10^{-6} \\ 4 \times 10^{-6} \end{array}$
$\begin{array}{c} \Delta c_{RXX}, \Delta c_{RXY} \\ \Delta c_{RXZ}, \Delta c_{RYZ} \end{array}$	$9 \times 10^{-2} \\ 7 \times 10^{-2}$	$\begin{array}{c} 4\times10^{-4}\\ 2\times10^{-3} \end{array}$	$\begin{array}{c}9\times10^{-5}\\3\times10^{-4}\end{array}$	$\begin{array}{c} 2\times10^{-5} \\ 6\times10^{-5} \end{array}$	$\begin{array}{c} 5\times10^{-6}\\ 2\times10^{-5}\end{array}$
$\frac{\Delta c_{XX}, \Delta c_{XY}}{\Delta c_{XZ}, \Delta c_{YZ}}$	$7 \times 10^{-1} \\ 6 \times 10^{-1}$	$\begin{array}{c} 2\times10^{-4} \\ 6\times10^{-4} \end{array}$	$\begin{array}{c} 3\times10^{-5}\\ 1\times10^{-4} \end{array}$	$\begin{array}{c} 6\times10^{-6}\\ 2\times10^{-5}\end{array}$	$\begin{array}{c} 1\times10^{-6}\\ 4\times10^{-6} \end{array}$
$ \begin{array}{c} \Delta d_{XX}, \Delta d_{XY} \\ \Delta d_{XZ}, \Delta d_{YZ} \end{array} $	$\begin{array}{c} 1 \times 10^{-1} \\ 7 \times 10^{-2} \end{array}$	$\begin{array}{c} 1 \times 10^{-4} \\ 4 \times 10^{-4} \end{array}$	$\begin{array}{c} 2\times10^{-5} \\ 7\times10^{-5} \end{array}$	$\begin{array}{c} 3\times10^{-6}\\ 1\times10^{-5} \end{array}$	8×10^{-7} 3×10^{-6}

Sensitivity comparaison with $D\emptyset$:

- \triangleright Improvement by a 10^2 - 10^3 factor for Run II.
- \triangleright Improvement by a 10^4 - 10^5 factor for FCC-hh.

Phenomenology of LIV in $t\bar{t}$ production 00000

Lorentz Invariance Violation (LIV) ?

Phenomenology of LIV in $t\bar{t}$ production

Searches for LIV in $t\bar{t}$ production at CMS

Phenomenology of LIV in $t\bar{t}$ production 00000

Searches for LIV in $t\bar{t}$ production at CMS 00000000

Principle of the Analysis [1]

- Binning data in sidereal time bins with study of associated systematic uncertainties.
- ▷ Extraction of the signal by statistical analysis.
- \triangleright Eventually, measure $c_{\mu\nu}$ coefficients.

Phenomenology of LIV in $t\bar{t}$ production 00000

Searches for LIV in $t\bar{t}$ production at CMS 00000000

Relevant Observable

▷ Dilepton mass.

$$m_{\ell\bar{\ell}} = m_{\ell}^2 + m_{\bar{\ell}}^2 + 2(E_{\ell}E_{\bar{\ell}} - \boldsymbol{p}_{\boldsymbol{\ell}} \cdot \boldsymbol{p}_{\bar{\boldsymbol{\ell}}})$$
(4)

▷ b-jets multiplicity.

For each sidereal time bin, we want to get a signal quantity by fit of these observables.

Searches for LIV in $t\bar{t}$ production at CMS 00000000

Analysis in dilepton final state

- ▷ We select events with 1 electron, 1 muon, 1 jet identified as b-jet and apply sequential selection criteria.
- ▷ We correct for data/MC discrepancies in electron and muon reconstruction and identification, b-jet identification.

Data/Monte-Carlo validation

Figure: b-jets multiplicity

Figure: Dilepton mass

Searches for LIV in $t\bar{t}$ production at CMS 00000000

Measuring $c_{\mu\nu}$ coefficient.

 $c_{\mu\nu}$ coefficients will be measured with a likelihood ratio method using CMS software.

Systematics list

- ▷ luminosity
- ▷ electron identification
- electron reconstruction
- electron-muon trigger
- > muon identification
- ▷ muon isolation

Missing Systematics

- ▷ b-tagging
- ⊳ pileup
- ▷ jet energy scale
- \triangleright theory uncertainties

Asimov test: estimate precision on signal measurement from simulation, in the hypothesis of absence of time-dependent signal.

Signal strengh r per time bins

- $\triangleright~$ 24 signal strength $r=\frac{\sigma_{\rm obs}}{\sigma_{\rm SM}}$ fit independantly for each bin of time.
- ▷ Signal strengths fully uncorrelated over bins.
- > Systematic uncertainties fully correlated over bins.

- \triangleright Dilepton mass : r = 1 + 0.035 0.033 (stat + syst)
- \triangleright b-jets multiplicity : r = 1 + 0.038 0.037 (stat + syst)

Phenomenology of LIV in $t\bar{t}$ production 00000

Conclusion

- \triangleright Phenomenology studies were performed [1]. We expect a factor 10^2 , 10^3 improvement relative to DØ on the precision on the Wilson coefficients.
- ▷ Working on adding remaining systematics
- Working on estimating time-dependent systematics (luminosity).
- \triangleright Working on signal extraction of $c_{\mu\nu}$ Lorentz-violating coefficient.

Phenomenology of LIV in $t\bar{t}$ production 00000

Searches for LIV in $t\bar{t}$ production at CMS 00000000

Thanks ! :)

Bibliography

- [1] A. Carle, N. Chanon, and S. Perriès, EPJC 80, no.2, 128 (2020)
- [2] V.A. Kostelecký, S. Samuel, Phys. Rev. D. 39, 683 (1989);
- [3] R. Gambini, J. Pullin, Phys. Rev. D. 59, 124021 (1999);
- [4] V.A. Kostelecký, Phys. Rev. D. 58, 116002 (1998);
- [5] M. Jones, Activity Report, EDMS, 322747 (2005);
- [6] DØ Collaboration, Phys. Rev. Lett. 108, 261603 (2012);
- [7] M.S. Berger, V.A. Kostelecký and Z. Liu, Phys. Rev. D. 93, 036005 (2016);
- [8] A. Carle, N. Chanon, and S. Perriès, arXiv:1909.01990 [hep-ph]
- [9] https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/

BackUp

SME

$$\begin{split} \mathcal{L} \supset \frac{i}{2} (c_Q)_{\mu\nu AB} \bar{Q}_A \gamma^{\mu} \overset{\leftrightarrow}{D^{\nu}} Q_B + \frac{i}{2} (c_U)_{\mu\nu AB} \bar{U}_A \gamma^{\mu} \overset{\leftrightarrow}{D^{\nu}} U_B \\ Q_A : \text{ Left-handed spinor } U_A : \text{ Right-handed spinor } \end{split}$$

$$(c_Q)_{\mu\nu33} = (c_L)_{\mu\nu} \qquad c_{\mu\nu} = \frac{1}{2} \left((c_L)_{\mu\nu} + (c_R)_{\mu\nu} \right)$$
$$(c_U)_{\mu\nu33} = (c_R)_{\mu\nu}$$

$$\frac{|\mathcal{M}|_{\mathsf{SME}}^2}{|\mathcal{M}|_{\mathsf{SM}}^2} = 1 + c_{\mu\nu}A_P^{\mu\nu} + (c_L)_{\mu\nu}A_F^{\mu\nu}$$
$$= 1 + (c_L)_{\mu\nu}\left(\frac{A_P^{\mu\nu}}{2} + A_F^{\mu\nu}\right) + (c_R)_{\mu\nu}\frac{A_P^{\mu\nu}}{2}$$

00000

Cross section

$$\begin{split} \sigma_{\mathsf{SME}} &= \left(1 + c_{\mu\nu} A_{\odot}^{\mu\nu}\right) \sigma_{\mathsf{SM}} \\ &= \left(1 + c_{\mu\nu} R_{\alpha}^{\mu} R_{\beta}^{\nu} A_{\oplus}^{\alpha\beta}\right) \sigma_{\mathsf{SM}} \end{split}$$

Warning !!!

The matrix rotation is from CMS to SCF

 $\oplus \to \odot$

From Sun-centered frame to CMS frame

We will express observables in lab frame. The change of frame, taken to be rotation transformation, uses :

- \triangleright Latitude ($\lambda = 46.31^{\circ}$).
- \triangleright Azimuth ($\theta = 101.28^{\circ}$) [5] angle on LHC ring.
- \triangleright Earth Angular Velocity ($\Omega = 7.29.10^{-5} \text{ rad.s}^{-1}$).

Azimuth θ definition

- In LIV context, rotation of reference frame with top quark gives additional terms to Lagrangian.
- Top quarks have (in average) a direction changing with time. As a result, $\sigma_{t\bar{t}}$ is modulating with time [1].

Amplitude with detector's orientation [8]

Proceeding of CPT'19, Bloomington, IN, United States (C19-05-12.1)

Figure: For $c_{XX} = -c_{YY} = 0.01$ benchmark

- \triangleright At a given energy (here 13 TeV).
- ▷ Azimuth : angle between CMS location on LHC ring and a meridian.

00000

Unix/Sidereal time transformation

$$\Omega_{\text{GMST}} t_{\text{sideral}} = \Omega_{\text{UTC}} (t_{\text{CMS}} - t_0) + \phi_{\text{Unix}} + \phi_{\text{longitude}}$$
(5)

- ▷ Ω_{UTC} is Earth angular velocity : $(\Omega_{\text{UTC}} \simeq 7.2936 \times 10^{-5} \text{rad.s}^{-1} \text{ (UTC)})$
- \triangleright t_{CMS} is time in CMS in second (UTC).
- \triangleright t₀ reference time, 1 January 2017, 12:00am (t₀ = 1483228800 s (UTC))
- $\triangleright \phi_{\text{Unix}}$ is the delay between J2000 and Unix epoch [?] :

 $\phi_{\rm Unix} = 1.7493 \text{ rad} = 100.23^\circ$ Unix epoch : 1 January 1970, 00:00:00 UTC

 $\triangleright~\phi_{\mathsf{longitude}}$ is the phase due to longitude angle, for CMS :

$$\phi_{\text{longitude}} = 1.5336 \text{ rad} = 87.8705^{\circ}$$
 (6)