

# Strategies for reducing greenhouse gases emissions at the CERN LHC experiments

Gianluca Rigoletti Supervisors: R. Guida, P. Nedelec

# CERN

### **Outline**

- Introduction and PhD activities
- → Greenhouse gases at CERN LHC experiments
  - Greenhouses gases usage
  - ◆ Strategies for greenhouse gases reduction
- → Optimization of current technologies
  - Gas Systems overview
  - ◆ Gas Control and Monitoring Systems
- → Alternative gases and Resistive Plate Chambers detectors
  - Characterization of RPCs with eco-friendly gas mixtures and cosmics muons
  - Aging and impurities studies at the Gamma Irradiation Facility
- → Conclusions



## Introduction

### Who am I

- Physics student, master in physics of the matter at the university of Milano-Bicocca, Italy
- CERN based, currently doing my 2nd year (but D3) of PhD
- My interests involved mainly python, pizza and hydroponics systems



### My PhD

**Goal:** <u>find, study, develop strategies to reduce</u> <u>greenhouse gases (GHGs) emissions from gas systems</u> <u>at CERN LHC experiments.</u>

### Main PhD activities

### **Gas Systems for LHC-experiments**

- Upgrades, maintenance and operation of LHCexperiments
- Gas control systems software involvement

### R&D on gas systems

- RPC performance studies with eco-friendly gas mixtures
- Live monitoring tools for dedicated setups
- Data analysis on GHG emission for specific systems

# Greenhouse gases



# Greenhouse gases

A **Greenhouse gas** (GHG) is a gas absorbing and emitting energy in the **infrared range**, causing the greenhouse effect (i.e. warming the earth surface)



**Fluorinated** gases are usually **high-GWP** gases, thus considered **GHGs** 

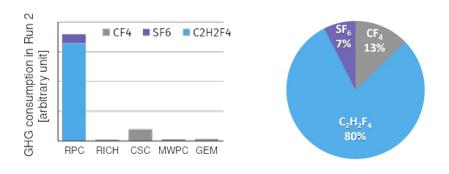
The **global warming potential** (GWP) is a measure to quantify the "strength" of a GHG.

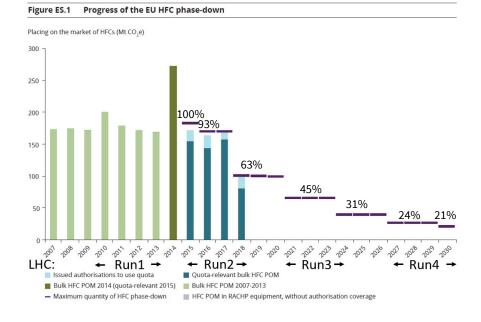
it measures how much energy the emissions of 1 ton of a gas will absorb over a given period of time, relative to the emissions of 1 ton of CO2.

| Gas    | GWP[100] | Lifetime [years] |  |
|--------|----------|------------------|--|
| CO2    | 1        | *                |  |
| CH4    | 28       | 12.4             |  |
| N2O    | 265      | 121              |  |
| C2H2F4 | 1430     | 14               |  |
| CF4    | 7390     | 50000            |  |
| SF6    | 22800    | 3200             |  |



# Greenhouse gases at CERN


At **CERN**, several gaseous detectors use **gas mixtures** with at least one **GHG**.

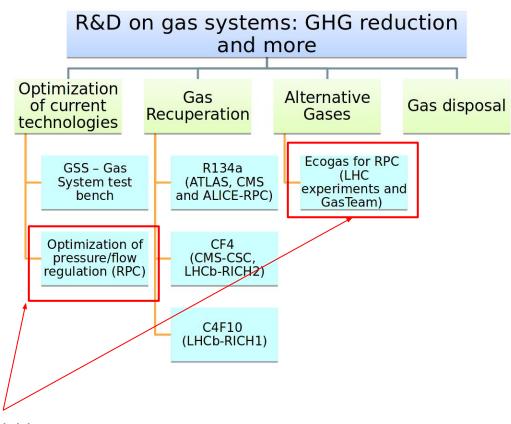

The main **GHG emissions** from particle detectors are due to **fluorinated** compounds.

The main emission is coming from **C2H2F4** (R-134a), used in ATLAS, CMS and ALICE experiments

European union **F- regulation** aims at reduce the F-gas availability

<u>PhD goal: find, study, develop strategies to reduce</u> <u>GHGs emission from particle detectors at CERN</u> <u>LHC experiments</u>





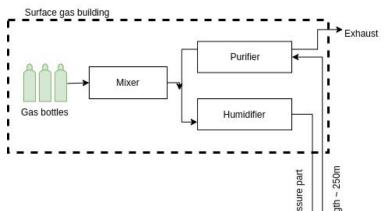



# Strategies to reduce GHG emissions

### Four different strategies defined:

- Optimization of current technologies: gas recirculation, pressures and flow fine regulation
- Gas recuperation: extract GHGs from gas mixtures and reuse them
- Alternative gases: study the effects of eco-friendly gas on detectors performance
- Gas disposal: abatement of the gas if possible




Main PhD activities

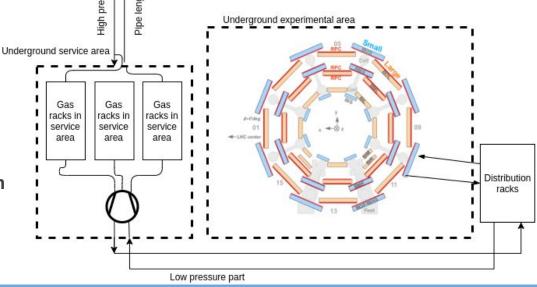
# Optimization of current technologies



# **Gas System overview**

Schematic view of an LHC gas system




Gas systems for particle detectors were designed to operate under **gas recirculation**. Average 90% gas recirculation.

### Pros:

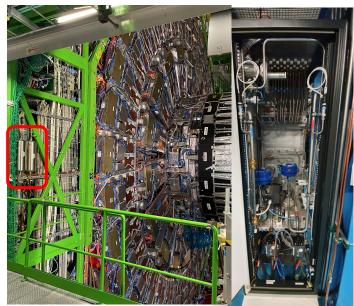
- Gas consumption reduction
- Up to 90% of emissions reduction, depending on the system

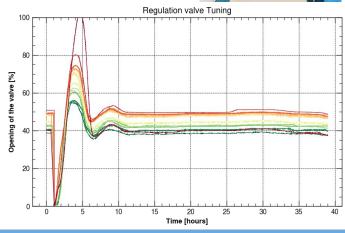
### Cons:

- System complexity increase
- Gas needs to be purified from impurities and air intake



# Layout of a distribution racl


# Optimization of current technologies


## Hardware optimization

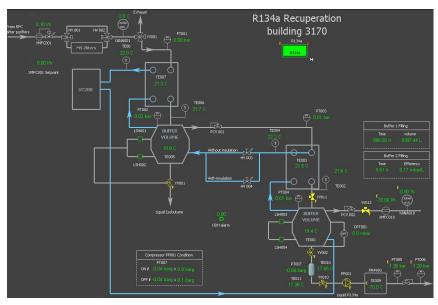
- Optimization of single modules:
  - o Drawings, CADs collection
  - Piping, layout organization
- Proper checks and maintenance on existing equipment
  - Ex: pump membranes and mass flow controllers check
- Installation of new components in the gas systems
  - o E.g. regulation valves for pressure control
  - o E.g. filters for dust, micro particles

### **Software optimization**

- Parameters tuning:
  - P.I.D. values of regulation valves
  - Flow and pressure setpoints
- Alarms and notifications to the operator:
  - o Thresholds
  - Severity levels
  - o Timers, hysteresis and so on
- Archiving and data retrieval
  - Optimize the number of stored data point
  - o Improve offline and online data retrieval tools








# Gas Control and monitoring Systems

**Gas control systems** (GCS) allow to monitor and control the plant providing gas to detectors.

### Main features:

- Built on by CERN industrial control + Siemens SCADA software
- Common Human Machine Interface for operators -> Ease of use



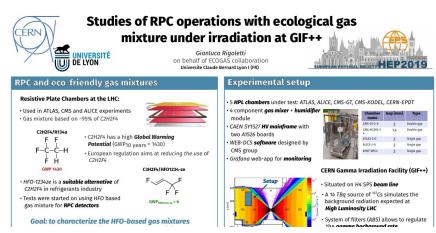
WinCC-OA: monitor and control

### Monitoring systems: technologies involved

- SCADA: WinCC-OA
- PLC programming: Schneider electric
- Web
  - Devops: Openshift
  - o Time series databases: InfluxDB
  - Dashboarding: Grafana
- Analysis: python with its ecosystem



Grafana: monitor


# Alternative gases and Resistive Plate Chambers detectors



# Alternative gases

Detector **performance** characterization with of **eco-friendly** gas mixtures.

Few detectors are studied: mainly <u>Resistive Plate</u> <u>Chambers</u> (RPCs) because of their emissions and <u>Gas Electron Multipliers</u> (GEM).



https://indico.cern.ch/event/577856/contributions/3420164/

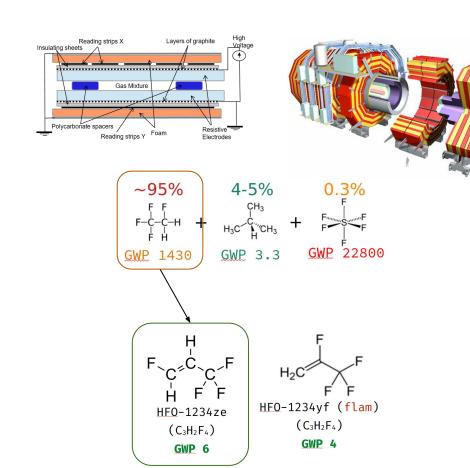
### **Pros**

- Reduction in GHGs emissions
- Gas system complexity remains the same
- Possibility to operate detectors at higher flow rates if needed

#### Cons

- Long term studies are required to validate detectors operation
- Eco-friendly gas price and availability
- Performance gains/loss still not clear



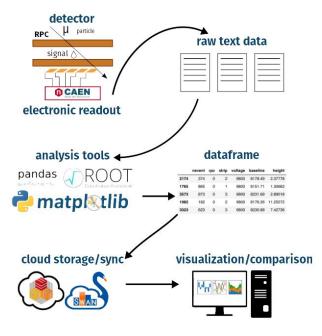

## Resistive Plate Chambers (RPCs) at LHC

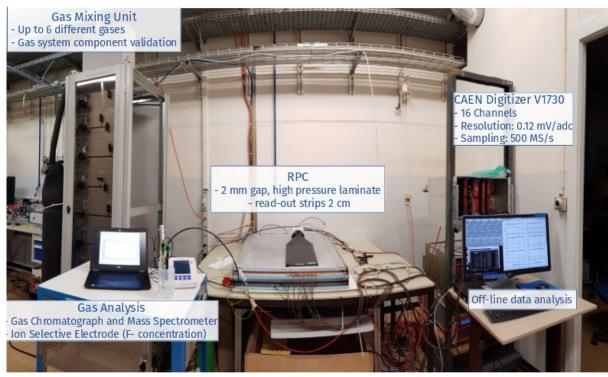
RPCs: gaseous particle detectors employed in **ATLAS**, **CMS** and **ALICE** experiments

The gas mixtures is made out of 2 or 3 main components:  $C_2H_2F_4(R-134a)$ ,  $i-C_4H_{10}$  and  $SF_6$  with a gas mixture of  $GWP_{[100]} \sim 1400$ 

The **presence of leaks** at detector level in ATLAS and CMS results in a considerable **GHG emissions** due to **R-134a**.

The refrigerant industry started using Hydro-Fluoro-Olefins (**HFO**s) gases as **R-134a** alternative.





Goal: find and eco-friendly gas mixture compatible with the current ATLAS and CMS RPC systems (i.e. requires no change in the HV cables, FE electronics, gas system etc.)



# **Eco-friendly gases performance studies**

RPCs **performance** studied with **eco-friendly** gas mixtures and **cosmics muons** on a dedicated setup

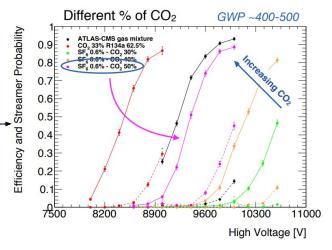


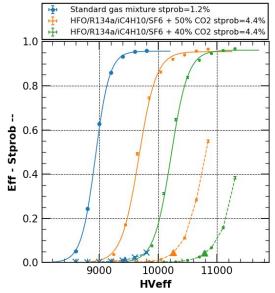


Dedicated **data acquisition system** and **Data analysis pipeline** written for studying the detectors



## Alternatives to R-134a: HFO-1234ze


The **working point** of the detector with HFO replaced to R-134a is > 12 kV, **not suitable for LHC** 

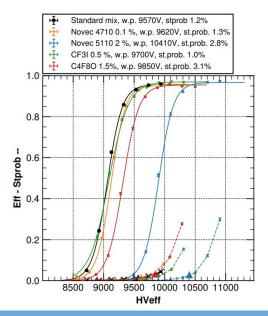

An addition of a gas lowering the working point is \_\_\_\_\_\_ required: **4-components gas mixtures** with **CO**<sub>2</sub> were studied

A small fraction of **R-134a** is needed to mitigate streamer fractions and stabilize the detector performance -> **5-component gas mixtures** 

2 selected **HFO-based** gas mixtures:

| Gas mixture                               | Workin<br>g point<br>[V] | St. Prob.<br>[%] | Pulse<br>charge av<br>[pC] | Pulse<br>charge st<br>[pC] | Cluster<br>size<br>[#/2cm] | Time<br>resolutio<br>n [ns] |
|-------------------------------------------|--------------------------|------------------|----------------------------|----------------------------|----------------------------|-----------------------------|
| Standard                                  | 9440                     | 1.2              | 0.8                        | 10.1                       | 2                          | 1.9                         |
| HFO/<br>R134a/<br>iC4H10/SF6<br>+ 50% CO2 | 10260                    | 4.4              | 1.1                        | 14.7                       | 2.3                        | 2                           |
| HFO/<br>R134a/<br>iC4H10/SF6<br>+ 40% CO2 | 10790                    | 4.4              | 1.1                        | 11.8                       | 2.2                        | 1.8                         |








### **Alternatives to SF6**

**Alternatives to SF**<sub>6</sub> were tested and they are still under study:

- CF<sub>3</sub>I: GWP = 0, good performance but toxic
- Novec 5110: GWP < 1, discrete performance but boiling point at 26 °C
- Novec 4710: GWP 4700, excellent performance but may react with water
- $C_4F_8O$ : GWP ~ 8000, poor performance



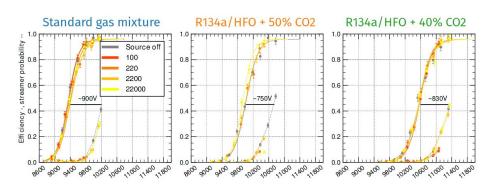
| Novec 5110 gas (CF <sub>3</sub> ) <sub>2</sub> CFCCF <sub>3</sub> |               |                                                                         |  |  |
|-------------------------------------------------------------------|---------------|-------------------------------------------------------------------------|--|--|
| Rain Out                                                          | $\rightarrow$ | Water Solubility<br>very low water solubility<br>(1 ppmw)               |  |  |
| Oxidation                                                         | $\rightarrow$ | Reactivity with ●OH unreactive w/ ●OH radicals                          |  |  |
| Photolysis                                                        | $\rightarrow$ | UV Absorbance<br>strong absorbance in near UV<br>(wavelengths ≥ 300 nm) |  |  |

| vovec 47 io g | as (C         | 13/2CTC=14                                                  |
|---------------|---------------|-------------------------------------------------------------|
| Rain Out      | $\rightarrow$ | Water Solubility<br>very low water solubility<br>(272 ppbw) |
| Oxidation     | $\rightarrow$ | Reactivity with ●OH reactive w/ ●OH radicals                |
| Photolysis    | $\rightarrow$ | UV Absorbance<br>transparent in near UV                     |

Novos 4710 cos (CE ) CEC=NI

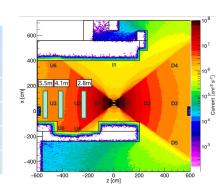
John G. Owens, 3M, Greenhouse Gas Emission Reductions from Electric Power Equipment through Use of Sustainable Alternatives to SF6

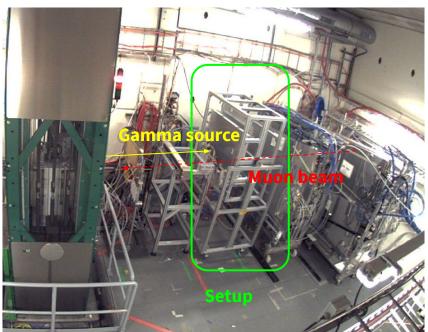



# **Gamma Irradiation Facility**

**Long term study** of RPCs performance with eco-friendly gas mixture started.

### **Goal: characterize performance with**


- eco-friendly gas mixtures
- LHC-like conditions:
  - Background radiation
  - Gas recirculation


RPCs studied with both muon beam and gamma irradiation during test beam



https://doi.org/10.1088/1748-0221/15/05/c05004

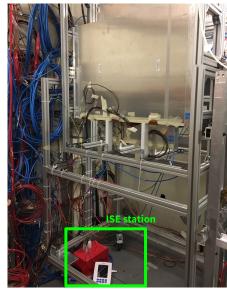
| ABS   | Gamma Rate<br>[kHz/cm²] |
|-------|-------------------------|
| 100   | 55.3                    |
| 220   | 41.2                    |
| 2200  | 3.75                    |
| 22000 | 0.774                   |

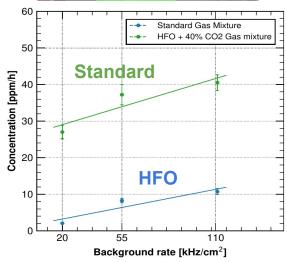




# Impurities study

Under the effect of high background radiation and electric fields **Freons** (HFO, R-134a) **molecules break** into **fluorine radicals**.


F- radicals may react with water vapour contained in the RPC gas mixtures and could form **fluoridric acid** (HF)


**HF could damage surface of the electrodes** of the detectors

A dedicated test was conducted to measure the **rate of HF production** by irradiating 2 RPC and measuring the HF with Ion Selective Electrodes (ISE) stations.

We found out that HFO molecules are breaking ~10 times more easily than R-134a molecules







https://doi.org/10.1088/1748-0221/15/11/C11003



## **Conclusions**

**Several strategies** for GHG emissions reductions **Different activities** involvement

### LHC Gas Systems upgrades:

- Mechanical and software upgrades,
  maintenance, operation and optimization of gas systems
- Several LHC gas systems to operate on (~ 30 systems)

# Thank you!

### **R&D on Gas Systems**

- Lot of RPC detectors and gas mixtures to test
- Long term studies progressing
- Several challenges posed by new gases under test



# Backup



# Optimization of current technologies

### **Hardware optimization**

- Fine tuning of flow and pressure on the detectors and in the gas system
- Proper checks and maintenance on existing equipment
- Installation of new components in the gas systems

### **Software optimization**











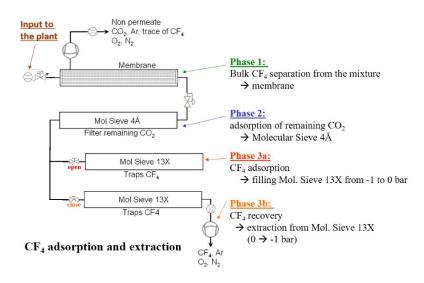











# Gas recuperation systems

Several detectors using **expensive** or **GHGs** in their gas mixture: RPCs, ALICE-TRD, ATLAS-TRT, CMS-CSC, LHCB-RICH1, etc.

**Gas components** can be **extracted** from the gas mixture and **stored** in the bottles

### Pros:

- Cost reduction, GHGs reduction
- Reduce impurities that can't be purified by recirculation systems (mostly N2)
- Allows to operate the gas system with a high "fresh" flow



CMS-CSC CF4 recuperation

#### Cons:

- Increase in system complexity
- It works only under particular conditions (pressure, flow, etc.)
- Different recovery techniques are required for different gas and gas mixtures (membrane separation, pressure swing, cyogenic distillation, etc.)