UV Completion of Composite Higgs Model

Plan

Motivations

Les Modèles Higgs Composite

1ère approche

• 2ème approche

• Le Modèle Standard , un **succès** théorique et expérimental (confirmation avec la découverte du Higgs)

 Le Modèle Standard , un succès théorique et expérimental (confirmation avec la découverte du Higgs)

Mais reste incomplet

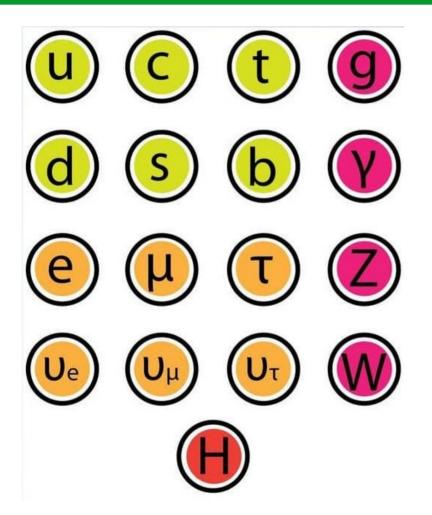
Absence d'une théorie de la Gravitation

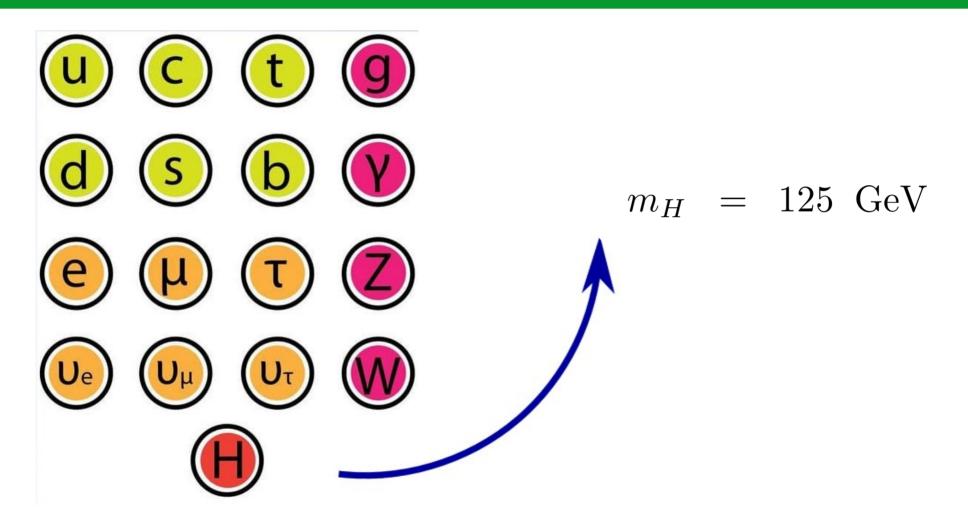
Matière Noire

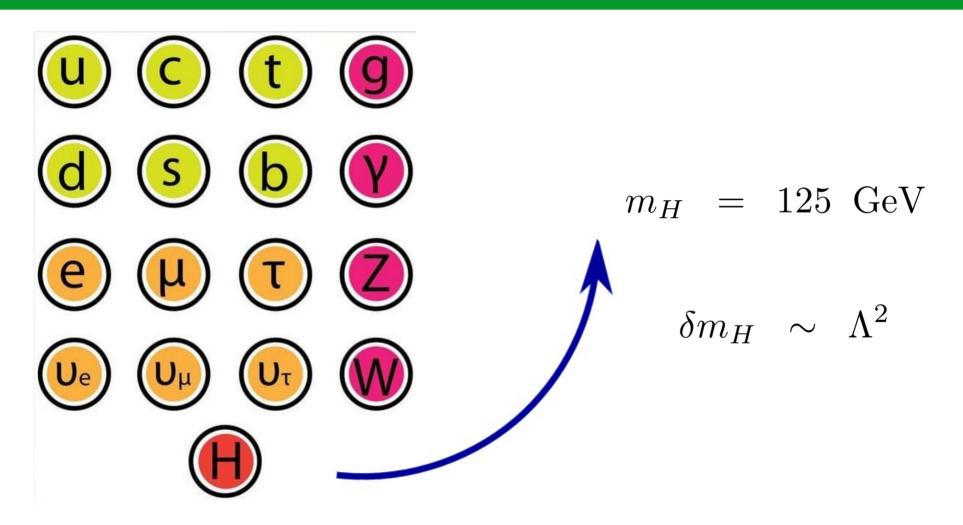
Masse des neutrinos

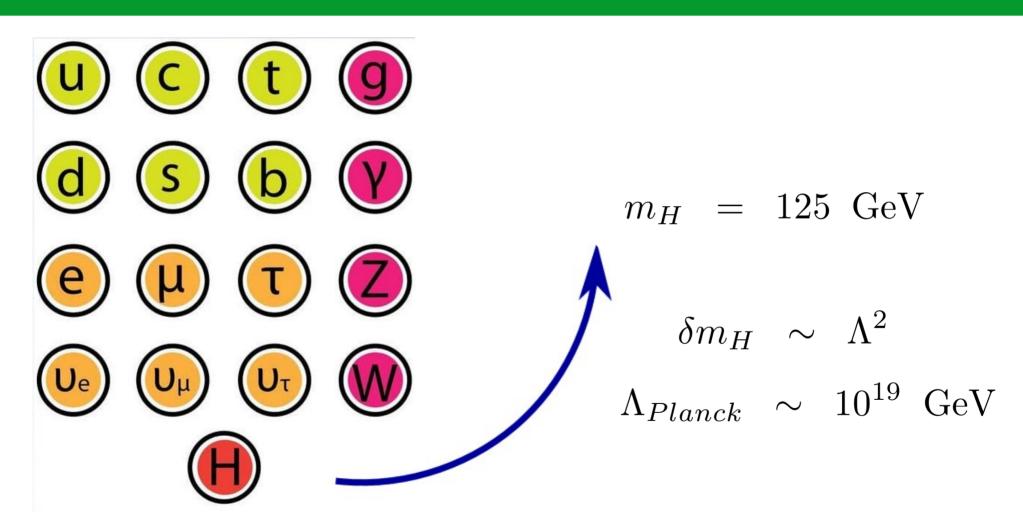
Secteur de Higgs

 Le Modèle Standard , un succès théorique et expérimental (confirmation avec la découverte du Higgs)

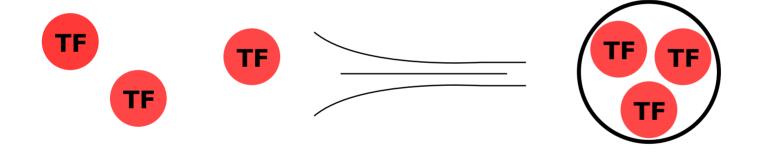

Mais reste incomplet


Absence d'une théorie de la Gravitation


Matière Noire

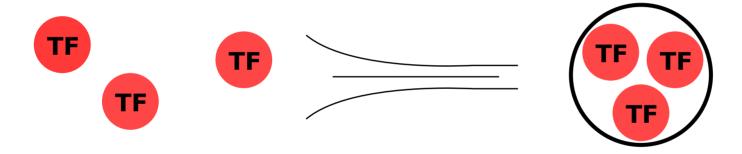

Masse des neutrinos

Secteur de Higgs



► Secteur de Higgs ⇒ Nouveaux Fermions/groupe de jauge

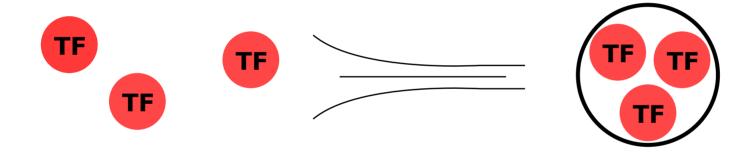
HyperColor (HC) ~ QCD : **TechniFermions**


► Secteur de Higgs ⇒ Nouveaux Fermions/groupe de jauge

HyperColor (HC) ~ QCD : **TechniFermions**

► Secteur de Higgs ⇒ Nouveaux Fermions/groupe de jauge

HyperColor (HC) ~ QCD : **TechniFermions**



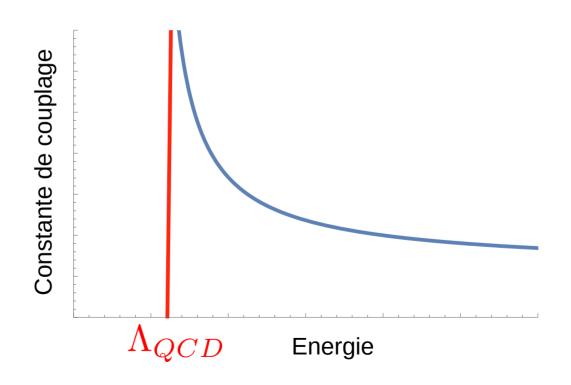
► Symétries Globales sont dynamiquement brisées

Pions (higgs, candidat matière noire...)

► Secteur de Higgs ⇒ Nouveaux Fermions/groupe de jauge

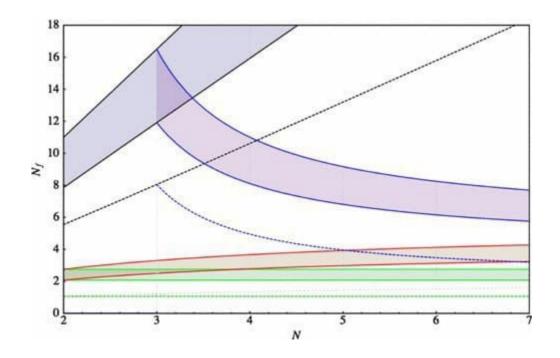
HyperColor (HC) ~ QCD : **TechniFermions**

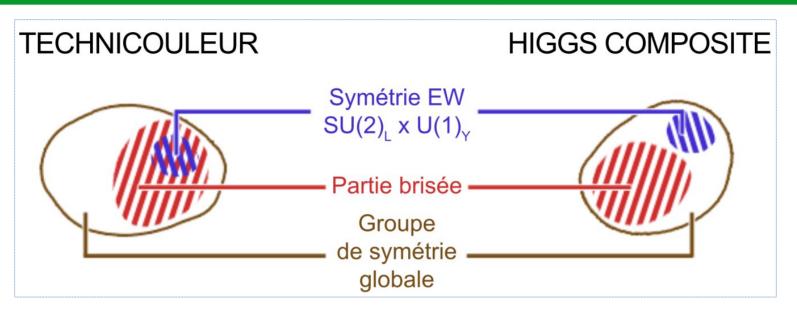
► Symétries Globales sont dynamiquement brisées

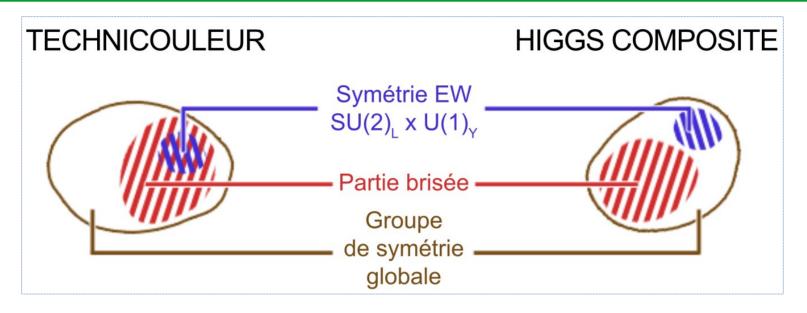

Pions (higgs, candidat matière noire...)

▶ Évite le problème de la masse

▶ Contraintes sur le groupe de jauge HC ?


► Contraintes sur le groupe de symétrie globale G ? (et le sous groupe conservé H ?)

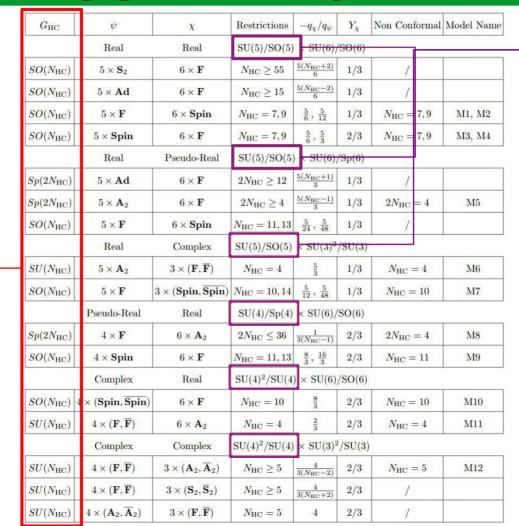

► HC ~ QCD , l'intéraction doit former des états liés



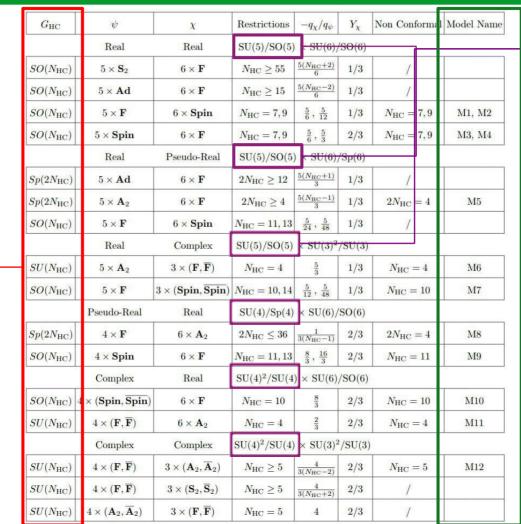
- ▶ Groupe de Lie : SU(N), SO(N), Sp(N)
- ► Une (ou +) Représentation
- lacktriangle Une multiplicité N_f

- ► Groupe de Lie : SU(N), SO(N), Sp(N)
- ► Une (ou +) Représentation
- ightharpoonup Une multiplicité N_f

- TechniCouleur : L'échelle de confinement est la même que celle de la brisure électrofaible
- ► Higgs Composite : Les Pions se transforment sous la symétrie restante
 - ► Le Higgs est un Pion


$G_{ m HC}$	ψ	χ	Restrictions	$-q_\chi/q_\psi$	Y_{χ}	Non Conformal	Model Name
	Real	Real	SU(5)/SO(5)	× SU(6)/	/SO(6)		
$SO(N_{ m HC})$	$5 \times \mathbf{S}_2$	$6 \times \mathbf{F}$	$N_{ m HC} \geq 55$	$\tfrac{5(N_{\rm HC}+2)}{6}$	1/3	1	
$SO(N_{ m HC})$	$5 \times \mathbf{Ad}$	$6 \times \mathbf{F}$	$N_{ m HC} \geq 15$	$\tfrac{5(N_{\rm HC}-2)}{6}$	1/3	1	
$SO(N_{ m HC})$	$5 \times \mathbf{F}$	6 × Spin	$N_{ m HC}=7,9$	$\frac{5}{6}$, $\frac{5}{12}$	1/3	$N_{ m HC}=7,9$	M1, M2
$SO(N_{ m HC})$	$5 \times \mathbf{Spin}$	$6 \times \mathbf{F}$	$N_{ m HC}=7,9$	$\frac{5}{6}$, $\frac{5}{3}$	2/3	$N_{ m HC}=7,9$	M3, M4
	Real	Pseudo-Real	SU(5)/SO(5) × SU(6),	/Sp(6)		
$Sp(2N_{ m HC})$	$5 \times \mathbf{Ad}$	$6 \times \mathbf{F}$	$2N_{ m HC} \ge 12$	$\tfrac{5(N_{\rm HC}+1)}{3}$	1/3	1	
$Sp(2N_{ m HC})$	$5 \times \mathbf{A}_2$	$6 \times \mathbf{F}$	$2N_{ m HC} \ge 4$	$\tfrac{5(N_{\rm HC}-1)}{3}$	1/3	$2N_{\mathrm{HC}} = 4$	M5
$SO(N_{ m HC})$	$5 \times \mathbf{F}$	6 × Spin	$N_{ m HC}=11,13$	$\frac{5}{24}$, $\frac{5}{48}$	1/3	1	
	Real	Complex	SU(5)/SO(5)	$\times SU(3)^2$	/SU(3)		MA MA
$SU(N_{ m HC})$	$5 imes \mathbf{A}_2$	$3 \times (\mathbf{F}, \overline{\mathbf{F}})$	$N_{ m HC}=4$	53	1/3	$N_{ m HC}=4$	M6
$SO(N_{ m HC})$	$5 \times \mathbf{F}$	$3 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$N_{ m HC}=10,14$	$\frac{5}{12}$, $\frac{5}{48}$	1/3	$N_{ m HC}=10$	M7
	Pseudo-Real	Real	SU(4)/Sp(4)	× SU(6)/	SO(6)		
$Sp(2N_{ m HC})$	$4 \times \mathbf{F}$	$6 \times \mathbf{A}_2$	$2N_{ m HC} \le 36$	$\frac{1}{3(N_{\mathrm{HC}}-1)}$	2/3	$2N_{ m HC}=4$	M8
$SO(N_{ m HC})$	$4 \times \mathbf{Spin}$	$6 \times \mathbf{F}$	$N_{ m HC}=11,13$	$\frac{8}{3}$, $\frac{16}{3}$	2/3	$N_{ m HC}=11$	M9
	Complex	Real	$SU(4)^2/SU(4)$) × SU(6)	/SO(6)		56t
$SO(N_{ m HC})$	$4 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$6 \times \mathbf{F}$	$N_{ m HC} = 10$	8/3	2/3	$N_{ m HC} = 10$	M10
$SU(N_{ m HC})$	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$6 \times \mathbf{A}_2$	$N_{ m HC}=4$	$\frac{2}{3}$	2/3	$N_{ m HC}=4$	M11
	Complex	Complex	$SU(4)^2/SU(4)$	$\times \mathrm{SU}(3)^2$	SU(3)		
$SU(N_{ m HC})$	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$3 \times (\mathbf{A}_2, \overline{\mathbf{A}}_2)$	$N_{ m HC} \geq 5$	$\frac{4}{3(N_{\rm HC}-2)}$	2/3	$N_{ m HC}=5$	M12
$SU(N_{ m HC})$	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$3 \times (\mathbf{S}_2, \overline{\mathbf{S}}_2)$	$N_{ m HC} \geq 5$	$\frac{4}{3(N_{\rm HC}+2)}$	2/3	1	
$SU(N_{ m HC})$	$4 \times (\mathbf{A}_2, \overline{\mathbf{A}}_2)$	$3 \times (\mathbf{F}, \overline{\mathbf{F}})$	$N_{\mathrm{HC}} = 5$	4	2/3	1	

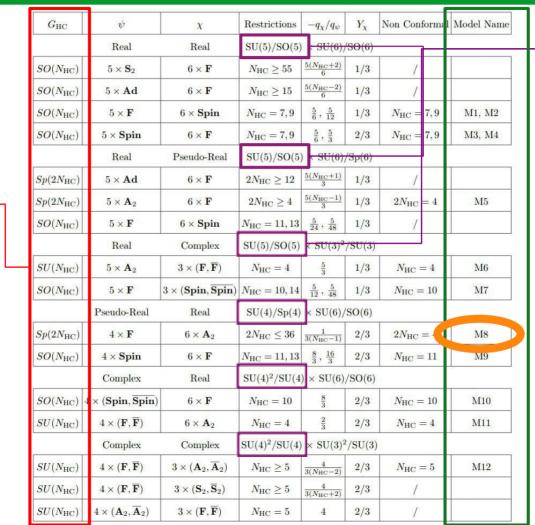
$G_{ m HC}$	ψ	χ	Restrictions	$-q_\chi/q_\psi$	Y_{χ}	Non Conformal	Model Name
	Real	Real	SU(5)/SO(5)	× SU(6),	/SO(6)		
$SO(N_{ m HC})$	$5 \times \mathbf{S}_2$	$6 \times \mathbf{F}$	$N_{ m HC} \geq 55$	$\frac{5(N_{\rm HC}+2)}{6}$	1/3	1	ii.
$SO(N_{ m HC})$	$5 \times \mathbf{Ad}$	$6 \times \mathbf{F}$	$N_{\mathrm{HC}} \geq 15$	$\frac{5(N_{\rm HC}-2)}{6}$	1/3	1	
$SO(N_{ m HC})$	$5 \times \mathbf{F}$	6 × Spin	$N_{ m HC}=7,9$	$\frac{5}{6}$, $\frac{5}{12}$	1/3	$N_{ m HC}=7,9$	M1, M2
$SO(N_{ m HC})$	$5 \times \mathbf{Spin}$	$6 \times \mathbf{F}$	$N_{ m HC}=7,9$	$\frac{5}{6}$, $\frac{5}{3}$	2/3	$N_{ m HC}=7,9$	M3, M4
	Real	Pseudo-Real	SU(5)/SO(5) × SU(6)	/Sp(6)		
$Sp(2N_{ m HC})$	$5 \times \mathbf{Ad}$	$6 \times \mathbf{F}$	$2N_{ m HC} \ge 12$	$\frac{5(N_{\rm HC}+1)}{3}$	1/3	1	
$Sp(2N_{ m HC})$	$5 \times \mathbf{A}_2$	$6 \times \mathbf{F}$	$2N_{ m HC} \geq 4$	$\frac{5(N_{\rm HC}-1)}{3}$	1/3	$2N_{\mathrm{HC}} = 4$	M5
$SO(N_{ m HC})$	$5 \times \mathbf{F}$	6 × Spin	$N_{\mathrm{HC}} = 11, 13$	$\frac{5}{24}$, $\frac{5}{48}$	1/3	1	
	Real	Complex	SU(5)/SO(5)	\times SU(3) ²	/SU(3)		for
$SU(N_{ m HC})$	$5 \times \mathbf{A}_2$	$3 \times (\mathbf{F}, \overline{\mathbf{F}})$	$N_{ m HC}=4$	5/3	1/3	$N_{ m HC}=4$	M6
$SO(N_{ m HC})$	$5 \times \mathbf{F}$	$3 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$N_{ m HC}=10,14$	$\frac{5}{12}$, $\frac{5}{48}$	1/3	$N_{ m HC}=10$	M7
	Pseudo-Real	Real	SU(4)/Sp(4)	× SU(6)/	'SO(6)		
$Sp(2N_{ m HC})$	$4 \times \mathbf{F}$	$6 \times \mathbf{A}_2$	$2N_{ m HC} \le 36$	$\frac{1}{3(N_{\rm HC}-1)}$	2/3	$2N_{\mathrm{HC}} = 4$	M8
$SO(N_{ m HC})$	$4 imes \mathbf{Spin}$	$6 \times \mathbf{F}$	$N_{\mathrm{HC}} = 11, 13$	$\frac{8}{3}$, $\frac{16}{3}$	2/3	$N_{ m HC}=11$	M9
-	Complex	Real	$SU(4)^2/SU(4)$) × SU(6)	/SO(6)		Sir
$SO(N_{ m HC})$	$4 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$6 \times \mathbf{F}$	$N_{ m HC}=10$	8 3	2/3	$N_{ m HC} = 10$	M10
$SU(N_{ m HC})$	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$6 \times \mathbf{A}_2$	$N_{ m HC}=4$	$\frac{2}{3}$	2/3	$N_{ m HC}=4$	M11
	Complex	Complex	$SU(4)^2/SU(4)$	$\times SU(3)^2$	² /SU(3)		
$SU(N_{ m HC})$	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$3 \times (\mathbf{A}_2, \overline{\mathbf{A}}_2)$	$N_{ m HC} \geq 5$	4 3(N _{HC} -2)	2/3	$N_{ m HC} = 5$	M12
$SU(N_{ m HC})$	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$3 \times (\mathbf{S}_2, \overline{\mathbf{S}}_2)$	$N_{ m HC} \geq 5$	$\frac{4}{3(N_{\rm HC}+2)}$	2/3	1	
$SU(N_{ m HC})$	$4 \times (\mathbf{A}_2, \overline{\mathbf{A}}_2)$	$3 \times (\mathbf{F}, \overline{\mathbf{F}})$	$N_{ m HC} = 5$	4	2/3	1	


Groupe de

jauge HC

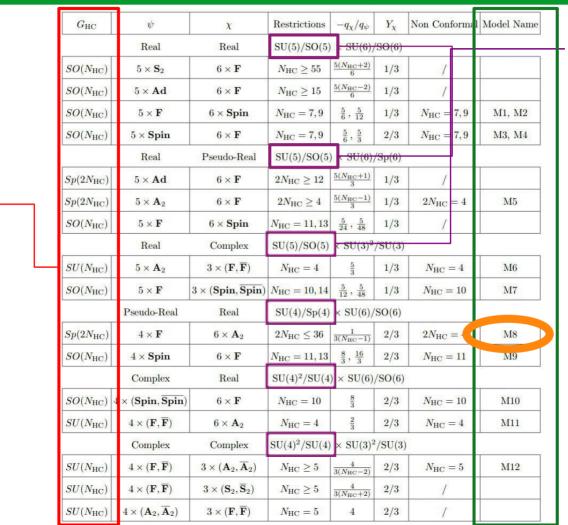
G/H

Groupe de jauge HC



Groupe de

jauge HC


G/H

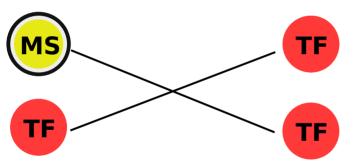
G/H

Groupe de

jauge HC

Groupe de

jauge HC


G/H

G=SU(4) H=Sp(4) HC=Sp(4)

Comment relier ça au reste du Modèle Standard?

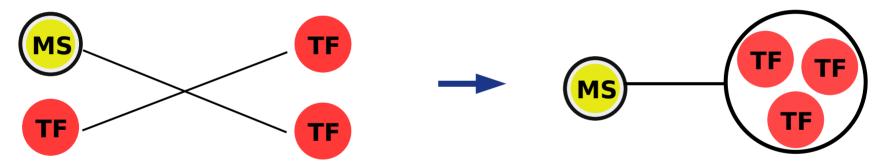
Comment relier ça au reste du Modèle Standard?

▶ Interaction **effective** à 4 fermions (MS et nouveaux)

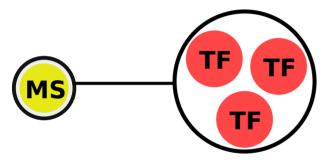
Comment relier ça au reste du Modèle Standard?

▶ Interaction **effective** à 4 fermions (MS et nouveaux)

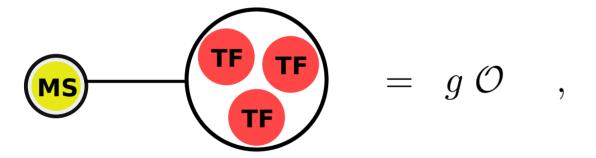
Comment relier ça au reste du Modèle Standard?


▶ Interaction **effective** à 4 fermions (MS et nouveaux)

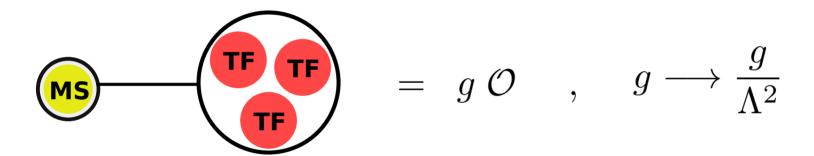
▶ Permet aux fermions MS de ressentir la brisure électrofaible et d'obtenir une masse


Comment relier ça au reste du Modèle Standard?

▶ Interaction **effective** à 4 fermions (MS et nouveaux)



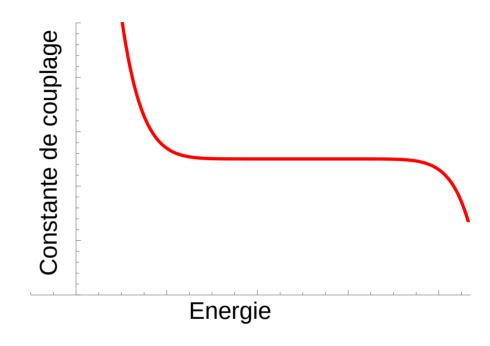
- ▶ Permet aux fermions MS de ressentir la brisure électrofaible et d'obtenir une masse
- ▶ Problème avec le couplage ...


Si on génère l'interaction à une échelle Λ :

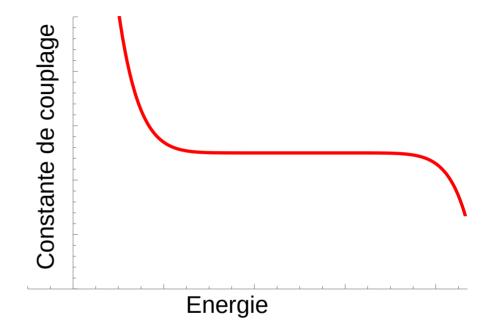

Si on génère l'interaction à une échelle Λ :

Si on génère l'interaction à une échelle Λ :

Si on génère l'interaction à une échelle Λ :



On a une suppression trop importante...


Il faut une théorie presque conforme!

► Théorie presque conforme :

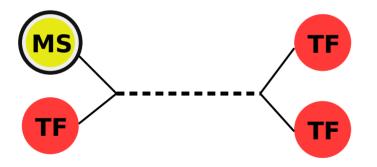
► Théorie presque conforme :

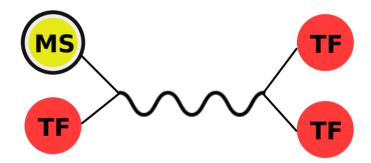
► Théorie presque conforme :

- ightharpoonup dimension anormale : d
- ► Impacte l'évolution du couplage $g \longrightarrow \frac{g}{\Lambda^{2-a}}$
- ► Il faut passer beaucoup de temps dans ce régime

► Plusieurs modèles effectifs développés

➤ Prédictions directes (nouvelles particules)


► Prédictions indirectes (corrections sur des paramètres)


Les Défis

► Générer les interactions effectives

Les Défis

► Générer les interactions effectives



Les Défis

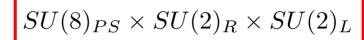
► Générer les interactions effectives

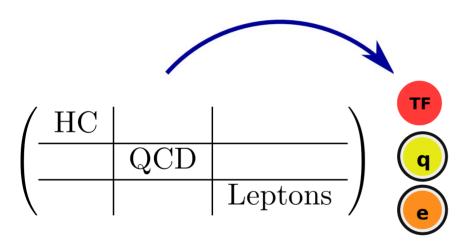
► S'assurer du « bon » comportement du nouveau secteur de jauge

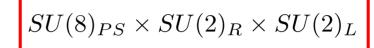
G=SU(4)

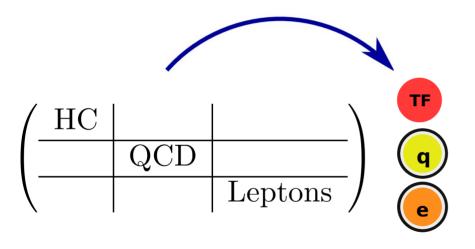
H=Sp(4)

HC=Sp(4)

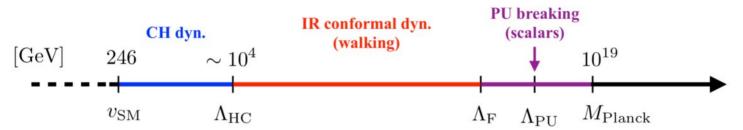

Groupe de

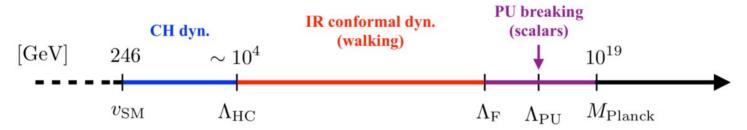

jauge HC


$$SU(8)_{PS} \times SU(2)_R \times SU(2)_L$$

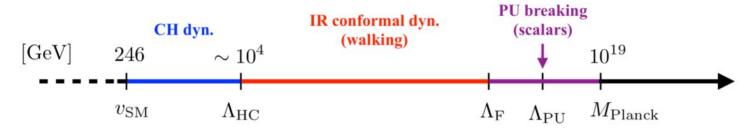

$$SU(8)_{PS} \times SU(2)_R \times SU(2)_L$$

HC			
	QCD		
		Leptons	

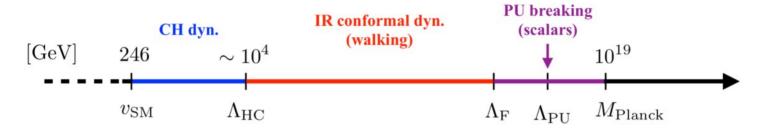



Step	Breaking Pattern		
PS	$SU(8)_{PS} \times SU(2)_R \to SU(7)_{EHC} \times U(1)_E$		
EHC	$SU(7)_{EHC} \rightarrow SU(4)_{CHC} \times SU(3)_c \times U(1)_X$		
CHC	$SU(4)_{CHC} \times U(1)_X \times U(1)_E \to Sp(4)_{HC} \times U(1)_Y$		

Fermion Content


Notation : $(4,3)_{1/6} \Rightarrow (Sp(4),SU(3)_c)_{U(1)_Y}$

	$SU(8)_{PS}$	$SU(2)_R$	$SU(2)_L$
$\Omega^p = \begin{pmatrix} L_{u/d}^p \\ q_L^p \\ l_L^p \end{pmatrix}$	8	1	2
$\Upsilon^p = \begin{pmatrix} \frac{\boldsymbol{U_d}}{d_R^c} & \frac{\boldsymbol{D_u}}{u_R^c} \\ d_R^c & u_R^c \\ e_R^c & \nu_R^c \end{pmatrix}$	8	2	1
$\Xi = \left(egin{array}{cccc} oldsymbol{U_u} & \chi & ho & oldsymbol{\eta} & \omega \ oldsymbol{D_d} & ilde{\chi} & ilde{ ho} & oldsymbol{ ilde{\eta}} & ilde{\omega} \end{array} ight)$	$70 = A_4$	1	1
N^p	1	1	1



Symétrie Globale
$$\Rightarrow SU(4)/Sp(4)$$

Symétrie Globale
$$\Rightarrow \; SU(4)/Sp(4)$$

► Comment effectuer la brisure ?

Symétrie Globale
$$\Rightarrow \; SU(4)/Sp(4)$$

- ► Comment effectuer la brisure ?
- ➤ À l'aide de nouvelles particules scalaires ... It's allright!

$$\mathcal{L} = \mathcal{L}_G + \mathcal{L}_F + \mathcal{L}_S + \mathcal{L}_Y + \mathcal{L}_V$$
 \downarrow
Gauge Kinetic Yukawa Potential

$$\mathcal{L} = \mathcal{L}_G + \mathcal{L}_F + \mathcal{L}_S + \mathcal{L}_Y + \mathcal{L}_V$$
 \downarrow
Gauge Kinetic Yukawa Potential

- Minimiser $\mathcal{L}_V \Rightarrow ext{ PS, EHC and CHC breaking}$
- $M_{\rm scalars}$ and $\Lambda_{CHC} \ge 10^{16} GeV$

$$\mathcal{L} = \mathcal{L}_G + \mathcal{L}_F + \mathcal{L}_S + \mathcal{L}_Y + \mathcal{L}_V$$
 \downarrow
Gauge Kinetic Yukawa Potential

- Minimiser $\mathcal{L}_V \Rightarrow ext{ PS, EHC and CHC breaking}$
- $M_{\rm scalars}$ and $\Lambda_{CHC} \ge 10^{16} GeV$

$$\mathcal{L}_{F} \supset \frac{(\bar{D}_{u}^{3}\bar{\sigma}^{\mu}t_{R}^{c})(\bar{\chi}\bar{\sigma}_{\mu}\eta), (\bar{U}_{d}^{3}\bar{\sigma}^{\mu}b_{R}^{c})(\bar{\chi}\bar{\sigma}_{\mu}\eta), (\bar{L}\bar{\sigma}^{\mu}q_{L})(\bar{\eta}\bar{\sigma}_{\mu}\chi)}{(\bar{D}_{u}^{3}\bar{\sigma}^{\mu}t_{R}^{c})(\bar{U}_{u}\bar{\sigma}_{\mu}\chi), (\bar{U}_{d}^{3}\bar{\sigma}^{\mu}b_{R}^{c})(\bar{U}_{u}\bar{\sigma}_{\mu}\chi), (\bar{L}\bar{\sigma}^{\mu}q_{L})(\bar{\chi}\bar{\sigma}_{\mu}U_{u})} \\ \mathcal{L}_{F} \supset \frac{(\bar{D}_{u}^{3}\bar{\sigma}^{\mu}t_{R}^{c})(\bar{\chi}\bar{\sigma}_{\mu}D_{d}), (\bar{U}_{d}^{3}\bar{\sigma}^{\mu}b_{R}^{c})(\bar{\chi}\bar{\sigma}_{\mu}D_{d}), (\bar{L}\bar{\sigma}^{\mu}q_{L})(\bar{D}_{d}\bar{\sigma}_{\mu}\tilde{\chi})}{(\bar{D}_{u}^{3}\bar{\sigma}^{\mu}t_{R}^{c})(\bar{\eta}\bar{\sigma}_{\mu}\tilde{\chi}), (\bar{U}_{d}^{3}\bar{\sigma}^{\mu}b_{R}^{c})(\bar{\eta}\bar{\sigma}_{\mu}\tilde{\chi}), (\bar{L}\bar{\sigma}^{\mu}q_{L})(\bar{\chi}\bar{\sigma}_{\mu}\tilde{\eta})} \\ (\bar{D}_{u}^{3}\bar{\sigma}^{\mu}\nu_{\tau R}^{c})(\bar{\eta}\bar{\sigma}_{\mu}\chi), (\bar{U}_{d}^{3}\bar{\sigma}^{\mu}\tau_{R}^{c})(\bar{\eta}\bar{\sigma}_{\mu}\chi), (\bar{L}\bar{\sigma}^{\mu}l_{L})(\bar{\chi}\bar{\sigma}_{\mu}\tilde{\eta})}{(\bar{D}_{u}^{3}\bar{\sigma}^{\mu}\nu_{\tau R}^{c})(\bar{\chi}\bar{\sigma}_{\mu}\eta), (\bar{U}_{d}^{3}\bar{\sigma}^{\mu}\tau_{R}^{c})(\bar{\chi}\bar{\sigma}_{\mu}\eta), (\bar{L}\bar{\sigma}^{\mu}l_{L})(\bar{\eta}\bar{\sigma}_{\mu}\tilde{\chi})}$$

$$\mathcal{L} = \mathcal{L}_G + \mathcal{L}_F + \mathcal{L}_S + \mathcal{L}_Y + \mathcal{L}_V$$
 \downarrow
Gauge Kinetic Yukawa Potential

- Minimiser $\mathcal{L}_V \Rightarrow ext{ PS, EHC and CHC breaking}$
- $M_{\rm scalars}$ and $\Lambda_{CHC} \ge 10^{16} GeV$

$$\mathcal{L}_{F} \supset \begin{array}{c} (\bar{D}_{u}^{3}\bar{\sigma}^{\ell}t_{R}^{c})(\bar{\chi}\bar{\sigma}_{\mu}\eta), (\bar{U}_{d}^{3}\bar{\sigma}^{\ell}b_{R}^{c})(\bar{\chi}\bar{\sigma}_{\mu}\eta), (\bar{L}\bar{\sigma}^{\ell}q_{L})(\bar{\eta}\bar{\sigma}_{\mu}\chi) \\ (\bar{D}_{u}^{3}\bar{\sigma}^{\ell}t_{R}^{c})(\bar{U}_{u}\bar{\sigma}_{\mu}\chi), (\bar{U}_{d}^{3}\bar{\sigma}^{\ell}b_{R}^{c})(\bar{U}_{u}\bar{\sigma}_{\mu}\chi), (\bar{L}\bar{\sigma}^{\ell}q_{L})(\bar{\chi}\bar{\sigma}_{\mu}U_{u}) \\ (\bar{D}_{u}^{3}\bar{\sigma}^{\ell}t_{R}^{c})(\bar{\chi}\bar{\sigma}_{\mu}D_{d}), (\bar{U}_{d}^{3}\bar{\sigma}^{\ell}b_{R}^{c})(\bar{\chi}\bar{\sigma}_{\mu}D_{d}), (\bar{L}\bar{\sigma}^{\ell}q_{L})(\bar{D}_{d}\bar{\sigma}_{\mu}\tilde{\chi}) \\ (\bar{D}_{u}^{3}\bar{\sigma}^{\ell}t_{R}^{c})(\bar{\eta}\bar{\sigma}_{\mu}\tilde{\chi}), (\bar{U}_{d}^{3}\bar{\sigma}^{\ell}b_{R}^{c})(\bar{\eta}\bar{\sigma}_{\mu}\tilde{\chi}), (\bar{L}\bar{\sigma}^{\ell}q_{L})(\bar{\chi}\bar{\sigma}_{\mu}\tilde{\eta}) \\ (\bar{D}_{u}^{3}\bar{\sigma}^{\ell}\nu_{\tau_{R}}^{c})(\bar{\eta}\bar{\sigma}_{\mu}\chi), (\bar{U}_{d}^{3}\bar{\sigma}^{\ell}\tau_{R}^{c})(\bar{\eta}\bar{\sigma}_{\mu}\chi), (\bar{L}\bar{\sigma}^{\ell}l_{L})(\bar{\chi}\bar{\sigma}_{\mu}\tilde{\eta}) \\ (\bar{D}_{u}^{3}\bar{\sigma}^{\ell}\nu_{\tau_{R}}^{c})(\bar{\chi}\bar{\sigma}_{\mu}\eta), (\bar{U}_{d}^{3}\bar{\sigma}^{\ell}\tau_{R}^{c})(\bar{\chi}\bar{\sigma}_{\mu}\eta), (\bar{L}\bar{\sigma}^{\ell}l_{L})(\bar{\eta}\bar{\sigma}_{\mu}\tilde{\chi}) \end{array}$$

Résumé

- Théorie valable aux hautes énergies
- Toutes les particules du MS obtiennent une masse
- Hierarchie de masse
- Une grande fenêtre pour une dynamique conforme
- Candidat à la matière noire