Implementation of the biological dose in hadrontherapy using Gate : application with MMKM and NanOx models

Yasmine Ali

PhD subject

Implementation of the biological dose in hadrontherapy using Gate : application with MMKM and NanOx models

A pluridisciplinary subject

A collaboration between laboratories

PhD supervisors : Michael Beuve (ip2i), Lydia Maigne (LPC), Etienne Testa (ip2i), Jean Michel Letang (CREATIS)

Problematics in hadrontherapy

MMKM and NanOx cell survival predictions

Biodose actor implementation in Monte Carlo platform GATE

Biological dose and RBE calculation for clinical beams

Conclusion

Problematics in hadrontherapy

MMKM and NanOx cell survival predictions

Biodose actor implementation in Monte Carlo platform GATE

Biological dose and RBE calculation for clinical beams

Conclusion

Radiotherapy

Radiation therapy technique using X rays to kill tumoral cells.

Figure – Dose distribution in function of the depth for X rays beams

The quantity used for treatment planification is the energy imparted to the irradiated cells : the dose.

Treatment planification

Figure – Example of treatment optimization for prostate cancer

The beams are arranged as several irradiation fields with different angles in order to reduce the dose imparted to healthy tissues

Hadrontherapy

Radiation therapy technique using heavy ions to kill tumoral cells.

Dose deposition in depth

Spread out Bragg peak (SOBP)

Figure – Dose distribution in function of the depth for a SOBP

The dose deposition profiles are inverted. Pristine Bragg peaks are stacked into a SOBP. The biological consequences must be taken into account. **Biological dose in Hadrontherapy**

RBE x Physical Dose = Biological dose

Figure – Physical dose, biological dose and RBE in function of the depth

$$RBE = \frac{D_X}{D_R}$$

 D_X is a reference absorbed dose of radiation of a standard type X D_R is the absorbed dose of radiation of type R that causes the same amount of biological damage

Problematics in hadrontherapy

MMKM and NanOx cell survival predictions

Biodose actor implementation in Monte Carlo platform GATE

Biological dose and RBE calculation for clinical beams

Conclusion

Problematics in hadrontherapy

MMKM and NanOx cell survival predictions

Biodose actor implementation in Monte Carlo platform GATE

Biological dose and RBE calculation for clinical beams

Conclusion

Multiscale approach in Hadrontherapy

Kanai approximation

The pre calculated α and β tables will be used with the Kanai approximation.

α, **β**: coefficients of the linear-quadratic model

For each type i of particle we estimate α_i and β_i

CALCULATION OF $\,\alpha$ MIX AND β MIX

For a SOBP

(Kanai et al., 1997)

The α values are combined in a linear way while the square root β values are combined.

FRACTION OF DOSES

The field contains primary ions and nuclear fragments of different kinetic energies.

We estimate the fractions of dose f_k .

Alpha beta tables Biophysics models predictions database

helium,2:0,0.646;0.00618733; helium,2:2;1.01;0.00743869; helium,2:6;1.268;0.00997782;

example : HSG data table

- The name of the ion
- The charge of the ion
- The kinetic energy
- The α value
- The β value

IONS	HSG	CHO-K1	V79	SQ20B
PROTON (0 to 400MeV)	\checkmark	\checkmark	\checkmark	\checkmark
HELIUM (0 to 400MeV/n)	\checkmark	\checkmark	\checkmark	\checkmark
CARBON (0 to 400MeV/n)	\checkmark	\checkmark	\checkmark	
OXYGEN (0 to 400MeV/n)	\checkmark	\checkmark	\checkmark	
NEON (0 to 100MeV/n)	\checkmark	\checkmark	\checkmark	

α values in function of the LET for HSG cells

Problematics in hadrontherapy

MMKM and NanOx cell survival predictions

Biodose actor implementation in Monte Carlo platform GATE

Biological dose and RBE calculation for clinical beams

Conclusion

Problematics in hadrontherapy

MMKM and NanOx cell survival predictions

Biodose actor implementation in Monte Carlo platform GATE

Biological dose and RBE calculation for clinical beams

Conclusion

GATE

Geant4 platform

Gate is a Geant4 platform that offers ease and accessibility to simulations using the monte carlo code.

Medical applications

Its use has been validated for various medical applications as well as hadronic processes simulation.

Biodoseactor implementation

We develop a tool in Gate named the Biodose Actor that will use the pre calculated predictions of the models to estimate the biological dose and RBE.

BioDose Actor

The actor methodology

Is retrieved from each step :

- The particle type
- The kinetic energy
- The energy deposition

An histogram of the cumulative deposited energy is created for each type of particle as a function of the kinetic energy.

α and β MIX CALCULATION

We weight each α and β values with the deposit energy fraction according to obtain the α mix and β mix values.

BioDose Actor

Input parameters

/gate/actor/addActor /gate/actor/myBioDose/attachTo	BioDoseActor myBioDose Phantom	_		
/gate/actor/myBioDose/setSize	200 300 1000 mm	<	The matrix volume	
<pre>/gate/actor/myBioDose/setResolution</pre>	1 1 1000			
/gate/actor/myBioDose/setCellLine	HSG	<	We select the cell line and the biophysics model we want to use the pre calculated α and β tables.	
/ gate/ actor/ mybrobose/ setModer				
/gate/actor/myBioDose/save	output/output.txt	▲	The name and the format of the desired output txt, root, mhd or py	

Problematics in hadrontherapy

MMKM and NanOx cell survival predictions

Biodose actor implementation in Monte Carlo platform GATE

Biological dose and RBE calculation for clinical beams

Conclusion

Problematics in hadrontherapy

MMKM and NanOx cell survival predictions

Biodose actor implementation in Monte Carlo platform GATE

Biological dose and RBE calculation for clinical beams

Conclusion

Beam line modeling in Gate

We reproduce the geometry of clinical beams in order to simulate the energy deposition with a SOBP

Figure – HIMAC dose deposition simulated with Gate

Figure - Geometry of HIMAC simulated in Gate

HIMAC LINE Chiba, Japan

For each position of the voxelized volume, the actor delivers the physical dose, biological dose, RBE and survival fraction.

ARRONAX BEAM LINE

Nantes, France

For each position of the voxelized volume, the actor delivers the physical dose, biological dose, RBE and survival fraction.

Problematics in hadrontherapy

MMKM and NanOx cell survival predictions

Biodose actor implementation in Monte Carlo platform GATE

Biological dose and RBE calculation for clinical beams

Conclusion

Problematics in hadrontherapy

MMKM and NanOx cell survival predictions

Biodose actor implementation in Monte Carlo platform GATE

Biological dose and RBE calculation for clinical beams

Conclusion

Conclusion and perspectives

BIODOSE ACTOR DEVELOPMENT

Benchmark of the monte carlo codes G4-DNA and LPCHEM for biophysics input data

RESULTS

- Estimation of the cell survival coefficients with Nanox and MMKM
- Development of the first version of the Biodose actor
- First calculations of biological dose, RBE and cell survival fraction for the ARRONAX and HIMAC lines

Clinical beam lines Proteus one, France MediCyc, France ° 1 Antoine Lacassagne Antoine Lacassagne **Biophysics models** More models to our database : LEM, LEM IV **Cell lines** More experimental data and cell lines **Biodose actor optimization** An optimized version of the biodose actor

CLINICAL PERSPECTIVES

Patient images

Patient images as input for the biodose actor

Comparision with TPS

Benchmarking a TPS and the biodose actor for biological dose calculation

Thank you.