

PhD Day

Studying the effect of the environment properties on the luminosity of the Type Ia Supernovae and its impact on cosmology

Martin BRIDAY - <u>m.briday@ipnl.in2p3.fr</u>

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement n°759194 - USNAC)

Type la Supernovae – standard candles –

Type la Supernovae – standard candles –

$$\mu = m - M = 5 \log_{10} \left(\frac{d}{10 \text{ pc}} \right)$$
A priori known for a standard candle

Unknown production process:

- Single degenerate
- Double degenerateEtc.

Type la Supernovae – standardizable candles –

$$\mu = m - M = 5 \log_{10} \left(\frac{d}{10 \text{ pc}} \right)$$

$$A \text{ priori known for}$$
a standard candle
$$M = M_0 - \alpha x_1 + \beta c$$

Type la Supernovae

Type la Supernovae

Type la Supernovae

SNe la Cosmology

PhD Day, 27/01/21 - Martin BRIDAY - m.briday@ipnl.in2p3.fr

SNe la Cosmology

PhD Day, 27/01/21 - Martin BRIDAY - m.briday@ipnl.in2p3.fr

SNe la Cosmology | Ho

SNe la Cosmology | Ho

Type la Supernovae – calibration –

Type la Supernovae – calibration –

Type la Supernovae – calibration –

Type la Supernovae – direct measurement of H₀ –

Type la Supernovae – direct measurement of H₀ –

H_0 prediction from Λ CDM | Planck – indirect measurement of H_0 –

PhD Day, 27/01/21 - Martin BRIDAY - m.briday@ipnl.in2p3.fr

H_0 prediction from Λ CDM | Planck – indirect measurement of H_0 –

PhD Day, 27/01/21 - Martin BRIDAY - m.briday@ipnl.in2p3.fr

(lsSFR : local specific Star Formation Rate) Accurate tracer for the age of a stellar environment

Astrophysical bias & Ho

Rigault et al. 2015, 2020

Astrophysical bias & H₀

Rigault et al. 2015, 2020

Astrophysical bias & Ho

Credits : Mickael Rigault

Astrophysical bias & Ho

Credits : Mickael Rigault

Different environmental tracers... Different results...

21

Mock data – perfect tracer –

Mock data – medium tracer –

Mock data

poor tracer —

Mock data – step evolution –

Mock data – step evolution –

Concept of Contamination

Misclassification = tracer inaccuracy —> contamination

Credits : Mickael Rigault

26

Concept of Contamination

Misclassification = tracer inaccuracy —> contamination

Credits : Mickael Rigault

Concept of Contamination

Misclassification = tracer inaccuracy —> contamination

Credits : Mickael Rigault

Environmental tracers

SNeIa sample : The Nearby Supernova factory (SNf)

Environmental tracers —> reference choice

SNeIa sample : The Nearby Supernova factory (SNf)

Comparing the tracers – Global mass vs. LsSFR –

Preliminary Briday et al. in prep

Comparing the tracers – contamination process –

Preliminary Briday et al. in prep

Comparing the tracers – contamination process –

Are all tracers probing the same things ? every tracers vs. LsSFR —

local sSFR [spectro.]

PhD Day, 27/01/21 - Martin BRIDAY - m.briday@ipnl.in2p3.fr

The contamination diagonal

The contamination diagonal

The contamination diagonal — changing the reference tracer —

Conclusions

- Our model of the two SN Ia populations is explaining well the observed variations of the magnitude offset;
- Among the available tracers, the spectroscopic local sSFR is the most able to explain all the observations;

Conclusions

- Regarding the observations and this work, we confirm the existence of an astrophysical bias which has an impact on the luminosity of the Type Ia Supernovae;
- It tends to confirm that we can take into account a magnitude offset between two SN Ia populations about 0.15 mag that:
 - reduces the gap between the direct and indirect measurements of *H*₀;
 - impacts on every other cosmological parameters derived from the SNe Ia (such as the dark energy equation of state parameter *w*).

Thank you for your attention!