A v_{τ} appearance search analysis in DUNE (Deep Underground Neutrino Experiment)

1

DUNE (Deep Underground Neutrino Experiment)

Long-baseline experiment between Fermilab (~Chicago, Illinois) and Sanford Underground Research Facility (South Dakota, ~Far West).

Neutrinos produced at Fermilab are showat ~5° downard, run over 1285 km in Earth, and come out at Sanford (1.5 km underground, actually).

They first travel through a « near detector y, installed at Fermilab.

Four 10-kTon detector modules at Sanford to detect neutrino events. Size = 66 x 19 x 18 m³. (~1 Dirac building)

LBNE	LBNE->DUNE	Site excavation starts	ProtoDUNEs (CERN) start operating	FD site complete	Beam data taking	
2010	2015	2017	2019/2020	2024	2026	

eclerateraterat

LArTPC (Liquid Argon Time Projection Chamber) in a nutshell

Idea originated from 1977, C. Rubbia (Nobel Prize, but not for that): argon described as a promising target for future neutrino experiments.

Allows **precise energy** reconstruction of charged particles.

IP2I team involved in the deployment of the novel doublephase LArTPC technology. The anode plane is in a thick layer of gas, allowing for signal gain increase.

Currently, ProtoDUNEs (far detector prototypes, 6x6x6 m³) at CERN testing the O(10.000 tons) scaling detector mass and deepening charged hadron energy deposition in matter.

1°/ Charged particles ionise argon.

2°/ Free electrons derive thanks to a strong external electrical field.

3°/ Electrons are detected/captured by several planes of stripes, allowing for 2-D projection views of the same events.

4°/ Event reconstruction process uses the time of flight of electrons as the third coordinates.

DUNE scientific program

BUT: non-trivial appearance search ; cross-section killed because of τ mass

Detecting v_{τ} **physics at DUNE - 1**

- Neutrino flavour identification: charged-current interaction (i.e coupling with the charged lepton). Look for the presence of a charged lepton in the final state. $e^- \rightarrow$ electromagnetic shower, $\mu^- \rightarrow$ long straight track. What about the τ ? DUNE:ProtoDUNE-SP Run 5770 Ex 5250 **τ** half-life **DUNE** v energies O(1 GeV) Doing the math 5000 4750 [≚] 4500 4250 = τ mean length of flight before decay O(100 μ m) < detector spatial resolution (~3 mm) 4000 3750 Wire Number Without special care, the v_{τ} (b) A 6 GeV/c electron candidate. sample is lost https://arxiv.org/pdf/2007.06722.pdf τ^- DECAY MODES 5 pages long... • Idea: rely on the τ decay products ! au^+ modes are charge conjugates of the modes below. " h^{\pm} " stands for or K^{\pm} . " ℓ " stands for e or μ . "Neutrals" stands for γ 's and/or π^0 's Scale factor/ Mode Fraction (Γ_i/Γ) Confidence level Particle Data Group
- Solution: develop a specific S/B analysis for "as many as" decay modes possible. In reality try to cover as many branching ratio as possible, pickink most promising decay modes.

Detecting v_{τ} **physics at DUNE - 1**

Going through the kinematics of veCC like events

• Get back home with numbers: 3.5 years, expected to select ~20 v_{τ} events while having ~220 v_{e} background contamination. Note: DUNE has the possibility of using a higher neutrino energy beam (after some years of running) that would increase the v_{τ} statistics.

DUNE is the only long-baseline neutrino experiment sensitive to the three active neutrino falvours. Good potentialities for physic measurements (3-flavour phenomenology).

I developped kinematical selection methods to identify τ neutrino events, each specific to the τ decay channel (namely τ —>e (17.8%) competing with v_eCC and τ —>p (25.5%) competing with NC). Branching ratios in brackets.

Good knowledge of neutrino interaction, final state kinematics reconstruction and cross-required

Question ?

