

Υ production as a function of charged-particle multiplicity in pp collisions at 13 TeV with ALICE

Yanchun DING^{1,2} for the ALICE Collaboration

Central China Normal University¹, Institut de Physique des Deux Infinis de Lyon²

PhD Day

Supervisors:

Brigitte CHEYNIS (IP2I), Antonio URAS (IP2I)

Daicui ZHOU (CCNU), Xiaoming ZHANG (CCNU)

Introduction

Quarkonium(Q): bound states of a $c\bar{c}$ pair [J/ Ψ , Ψ (2S) ...] or a $b\bar{b}$ pair [Υ (1S), Υ (2S), Υ (3S) ...]

Charged-particle multiplicity(ch) dependence on quarkonium production in pp collisions:

- ➡ Understand particle production mechanisms (such as Multiple Parton Interactions (MPI))
- Provide insight into the interplay between soft and hard processes

The ALICE detector

 $J/\Psi \rightarrow e^+e^-$, HF \rightarrow e (|y| < 0.9)

 J/Ψ , $\Psi(2S)$, $\Upsilon(nS) \rightarrow \mu^+\mu^-$, HF $\rightarrow \mu$ (2.5 < y < 4)

Inner Tracking System

Tracking, vertexing and multiplicity estimation

Time Projection Chamber

Tracking and PID

Time-of-Flight detector

• PID

Electromagnetic Calorimeter

• Trigger and PID

V0 detectors

• Trigger and event characterisation

Muon spectrometer

- Muon tracking and muon triggering
- Heavy flavours, W/Z bosons and low mass resonance measurement

y.ding@ipnl.in2p3.fr

Analysis strategy

<u>Multiplicity estimation — SPD tracklets</u> (the two innermost ITS layers)

1) $N_{\text{trk}} \rightarrow N_{\text{trk}}^{\text{corr}}$

- The multiplicity estimation is affected by the detector inefficiency: strong effect as a function of primary vertex *z* position
- Correct for the detector inefficiency

(Un)corrected *N*_{trk} distribution

Analysis strategy

<u>Multiplicity estimation — SPD tracklets</u> (the two innermost ITS layers)

- 2) $N_{\text{trk}}^{\text{corr}} \rightarrow N_{\text{ch}}$
- Tracklet-to-charged particle conversion: $\langle N_{ch} \rangle = f(\langle N_{trk}^{corr} \rangle)$

➡ The correlation between the corrected tracklet multiplicity N^{corr}_{trk}, and the number of primary charged particles N_{ch} is determined via a Monte Carlo simulation based on the PYTHIA8 generator

Analysis strategy

Signal extraction

- ➡ Clear Y(nS) signal peaks are observed at forward rapidity in the dimuon invariant mass distribution
- A combined fit is applied to disentangle signals and background

$\Upsilon(1S)$ and $\Upsilon(2S)$ production vs. multiplicity

- ➡ Self-normalised yield of Y(1S) and Y(2S) at forward rapidity (only 2016 data sample): compatible with linear dependence on multiplicity with uncertainties
- ➡ Full LHC RUN2 Y(nS) (including 3S state) results coming soon

Multiplicity dependent quarkonium measurements

<u>Multiplicity</u>: measured at mid-rapidity $(|\eta| < 1)$

► J/Ψ and Ψ(2S) self-normalised yield at forward rapidity: compatible with linear dependence on multiplicity within uncertainties (consistent with bottomonium)

- ➡ J/Ψ self-normalised yield at mid-rapidity: stronger than linear with multiplicity
- ➡ The trend of data is fairly described by model predictions
- Good agreement with CPP, CGC and 3-Pomeron CGC models

Self-normalised yield ratio vs. multiplicity

- $\Psi(2S)/J/\Psi$: maximum deviation from unity is around 2.2 σ related to the first multiplicity bin
- The suppression is stronger in comover approach than in data at high multiplicity
- Υ(2S)/Υ(1S) and Υ(1S)/J/Ψ: compatible with unity within uncertainties (indicating no dependence on resonance mass and quark component)

HFe and $HF\mu$ production vs. multiplicity

<u>Multiplicity</u>: measured at mid-rapidity $(|\eta| < 1)$

$\underline{\text{HF}} \rightarrow \underline{e}$

- → A steeper increase at high $p_{\rm T}$
- ➡ PYTHIA 8.2 including MPI effects well reproduces ALICE data in all p_T intervals

- → Stronger than linear increase of open heavyflavour hadrons decay leptons [HF → e (midrapidity), HF → μ (forward rapidity)]
- ➡ Unlike J/Ψ measurement

Summary

Multiplicity dependence on quarkonia production:

- Rapidity dependence for J/Ψ production
- Compatible behaviour between charmonium and bottomonium at forward rapidity

Multiplicity dependence of excited state suppression:

- Predictions based on comovers approach tend to overestimate the $\Psi(2S)$ at high multiplicity
- Incoming more significant $\Upsilon(nS)$ results will improve the charmonium/bottomonium comparison

Multiplicity dependence on open heavy flavours production:

• Stronger than linear enhancement with charged-particle multiplicity

Υ production as a function of charged-particle multiplicity in pp collisions at 13 TeV

- Full LHC RUN 2 data sample is analysed
- Paper proposal has been accepted
- Paper will be published this year

