The status of cosmological tensions after Planck

Silvia Galli IAP-Institut d'Astrophysique de Paris

Niels Bohr Institute 14/1/2021

Outline

- 1. Short recap on Planck results
- 2. Post-Planck Issue 1: Comparison with other probes. The H_0 problem
- 3. Post-Planck Issue 2: Internal "curiosities" in the Planck data (A_L, curvature etc..)
- 4. Are Issue 1 and Issue 2 related?

Hu & White (2004); artist: B. Christie/SciAm; available at http://background.uchicago.edu

Hu & White (2004); artist: B. Christie/SciAm; available at http://background.uchicago.edu

CMB Polarization

Polarization generated by local quadrupole in temperature. Sources of quadrupole:

- Scalar: E-mode
- Tensor: E-mode and B-mode

The Planck satellite

3rd generation full sky satellites (COBE, WMAP) Launched in 2009, operated till 2013. 2 Instruments, 9 frequencies.

LFI:

 22 radiometers at 30, 44, 70 Ghz.

HFI:

50 bolometers (32 polarized) at 100, 143, 217, 353, 545, 857 Ghz.
30-353 Ghz polarized.

- 1st release 2013: Nominal mission, 15.5 months, Temperature only (large scale polarization from WMAP).
- 2nd release 2015: Full mission, 29 months for HFI, 48 months for LFI, Temperature + Polarization, large scale pol. from LFI.
 Intermediate results 2016: low-l polarization from HFI
- 3nd release 2018: Full mission, improved polarization, low/high-l from HFI. Better control of systematics specially in pol., still systematics limited.

2018 Power spectra

TT, TE, EE: different likelihoods at low-I (<30) and high-I (>30).

6 ACDM parameters

• Initial conditions A_s, n_s:

- Acoustic scale of sound horizon $\boldsymbol{\theta}$
- Reionization τ
- Dark Matter density $\Omega_c h^2$
- Baryon density $\Omega_{b}h^{2}$

Assumptions:

- Adiabatic initial conditions
- Neff=3.046

- 1 massive neutrino 0.06eV.
- Tanh reionization ($\Delta z=0.5$)

Baseline ACDM results 2018

(Temperature+polarization+CMB lensing)

	Mean	σ	[%]
$\Omega_b h^2$ Baryon density	0.02237	0.00015	0.7
$\Omega_c h^2$ DM density	0.1200	0.0012	1
1000 Acoustic scale	1.04092	0.00031	0.03
au Reion. Optical depth	0.0544	0.0073	13
<pre>In(A_s 10¹⁰) Power Spectrum amplitude</pre>	3.044	0.014	0.7
N _s Scalar spectral index	0.9649	0.0042	0.4
H ₀ Hubble	67.36	0.54	0.8
$\Omega_{\rm m}$ Matter density	0.3153	0.0073	2.3
O ₈ Matter perturbation amplitude	0.8111	0.0060	0.7

 Λ CDM is a good fit to the data No evidence of preference for classical extensions of Λ CDM

- Most of parameters determined at (sub-) percent level!
- Best determined
 parameter is the
 angular scale of sound
 horizon θ to 0.03%.
- τ lower and tighter due to HFI data at large scales.
- n_s is 8σ away from scale invariance (even in extended models, always >3σ)
- Best (indirect) 0.8% determination of the Hubble constant to date.

Outline

- 1. Short recap on Planck results
- 2. Post-Planck Issue 1: Comparison with other probes. The H_0 problem
- 3. Post-Planck Issue 2: Internal "curiosities" in the Planck data (A_L, curvature etc..)
- 4. Are Issue 1 and Issue 2 related?

Good consistency with BAO, RSD, SnIa, BBN

Strong tension between early and late universe probes of the Hubble constant H₀

- A type Ia supernova is a star explosion of a white dwarf which reaches the Chandrasekhar limit by accreting mass from a companion.
- It is a standard candle because it's peak luminosity, after some correction, is always the same. It can thus be used to measure distances. However, it's distance-luminosity relation must be calibrated.

o https://github.com/shsuyu/H0LiCOW-public/tree/ master/H0_tension_plots

Indirect measurement of the Hubble constant from the CMB (and BAO)

See also Knox and Millea 2019 for a review Calculate the **physical dimension of sound horizon** assumes model for sound speed and expansion of the universe before recombination (after measuring ω_m and ω_b)

Model dependent!

H₀ Tension

Direct measurements Planck Riess+ 2011 <u>2013</u> 2.5σ Planck 1st release : H₀=73.8±2.4 **H**₀=67.3±1.2 (TT+WMAP lowIP) Freedman+ 2012 $H_0 = 74.3 \pm 2.5$ <u>2015</u> 2.5σ Planck 2nd release : H₀=67.26 ± 0.98 (TT+LFI lowIP) $[H_0 = 67.51 \pm 0.64(+TEEE+lensing)]$ 2016 **Riess+ 2016** 2.8σ H₀=73.02±1.79 2016 Planck intermediate results : 3.2σ $H_0 = 66.93 \pm 0.62$ Riess+ 2018 <u>2018</u> 3.8σ (TTTEEE+HFI lowIP) $H_0 = 73.52 \pm 1.62$ Planck 3nd release : **201**8 3.6σ $H_0 = 67.36 \pm 0.54$ Reid+ 2019 (TTTEEE+HFI lowP+lensing) 2019 4.1σ $H_0 = 73.5 \pm 1.4$ Freedman+ 2019 [km/s/Mpc] **1.2\sigma!** $H_0 = 69.8 \pm 1.9$ 2020 Riess+ 2020 4.2σ $H_0 = 73.2 \pm 1.3$

flat – ΛCDM

More late time measurements in agreement with Shoes

Note:

- Some of these are correlated
- All late have larger error bars then SNIA

And others:

•Cosmic Chronometers from stellar ages $H_0=71\pm2.8~(H_0=69.3\pm2.7)~{\rm km}~{\rm s}^{-1}~{\rm Mpc}^{-1}$ from globular clusters (very-low-metallicity stars) (Jimenez+ 2019).

•Gravitational waves $H_0=68^{+14}_{-7}$ km s⁻¹Mpc⁻¹ (Ligo and Virgo collabs. 2019)

U https://github.com/shsuyu/H0LiCOW-public/tree/ master/H0_tension_plots

Systematics in the time delay measurements?

$$egin{aligned} \Delta t_{ij} &= rac{D_{\Delta t}}{c} \left[rac{(m{ heta}_i - m{eta})^2}{2} - \psi(m{ heta}_i) - rac{(m{ heta}_j - m{eta})^2}{2} + \psi(m{ heta}_j)
ight] \ D_{\Delta t} &\equiv ig(1 + z_{
m d}) rac{D_{
m d} D_{
m s}}{D_{
m ds}}, \end{aligned}$$

Courtesy: Martin Millon

H₀ measurements in flat ACDM - performed blindly

- Need lens potential reconstruction to infer ${\rm H}_{\rm 0}$
- Mass-sheet degeneracy: degeneracy between source position and lensing convergence profile. It can be broken assuming a deflector mass density profile or using stellar kinematics.
- Not making assumption about the mass profile increases error bars by a factor of ~4.

Birrer+2020. See also Kochanek 2019, Blum+ 2020

So what's wrong?

- Statistical fluctuation unlikely
- Systematics in distance ladder?
 - Many reanalysis of the dataset have confirmed high H₀ value
 - However, need strong confirmation from another probe at the same level of accuracy/precision.
 - Still some open debates (cepheid crowding, TRGB reddening, consistency of anchors, environmental effects on SN etc..).
 Many already addressed by Sh0es team.
- Systematics in CMB and BAO?
 - Planck data have been reanalyzed, finding consistent results.
 Multiple pipelines, consistency checks all point towards same results.
 - Other CMB experiments and BAO in agreement. However, none yet with the same accuracy.
 - Planck has an internal consistency test deviation (A_L) , which however cannot explain as of now the H0 problem.
- New physics?

So what's wrong?

- New physics?
- Caveat: what people mean when they say that a model "works" (or not) to solve the H₀ tensions is very arbitrary. Some would say that a model "works" if you reduce the difference from 4σ to ~2- 3σ (so that you still need a large statistical fluctuation to explain the rest.)
- Most (all?) of these models do not manage to move the CMB H_0 value all the way to exactly match the Sh0es results, even when combining CMB+ H_0 .

Indirect measurement of the Hubble constant from the CMB (and BAO)

See also Knox and Millea 2019 for a review Calculate the **physical dimension of sound horizon** assumes model for sound speed and expansion of the universe before recombination (after measuring ω_m and ω_b)

Model dependent!

Change in the late universe θ_{s} $P_{A}(z = 1100) = \int_{0}^{z} dz'/H(z')$

Late-time dynamics of dark matter and/or dark energy, e.g. dynamical dark energy (e.g. Planck collaboration 2015, 2018), decaying DM (Poulin + 2018, Vattis+ 2019,Clark+2020, Haridasu+2020) interacting dark matter-dark energy (Di Valentino+ 2019)), Modified gravity (Raveri 2019), H(z) reconstruction (Bernal+2016, Lemos+ 2018, Raveri 2019 etc...)

=> highly constrained by BAO, Supernovae and other probes.

Other: e.g. Modified gravity changes to Cepheid period-luminosity relation (Desmond+ 2019)=> but cannot explain time delay H_0 measurement.

Late time solutions: change in H(z)

- The CMB is only sensitive to the integral of the expansion history till decoupling, and so cannot constrain the detailed redshift evolution of H(z).
- However, **BAO and SN cover z~0.01-2**, tightly constraining the evolution of H(z).
- If one tries to solve the tensions with a sharp transition at z < 0.01, one cannot just use an H₀ gaussian prior at z=0! The H₀ constraint come from using supernovae at z=0.01-0.15calibrated with cepheids at z < 0.01! A more viable solution is to use the Pantheon SN dataset with the cepheid calibration.
- The tension is on the Supernovae calibration M_b!

$$\mu(z) = m_B(z) - M_B$$
$$m_B(z) = 5 \log_{10} \left[\frac{d_L(z)}{10 \text{pc}} \right] + M_B$$

See also Aylor+ 2018, Poulin+ 2018, Benevento+ 2020, Wang 2019, Raveri+ 2019, Dhawan+ 2020, Camarena and Marra 2021.

Changes in the early universe

Outline

- 1. Short recap on Planck results
- 2. Post-Planck Issue 1: Comparison with other probes. The H_0 problem
- 3. Post-Planck Issue 2: Internal "curiosities" in the Planck data (A_L, curvature etc..)
- 4. Are Issue 1 and Issue 2 related?

Residuals TT with respect to ACDM

Well behaved residuals, very good χ^2 (unbinned coadded* at I=30-2508 PTE=16% dof=2478).

TT+lowITT+lowE

(lowITTnot shown in this plot)

*[χ^2 can vary depending on binning]

Separate ACDM fits to low and high-l

CMB lensing and A_{Lens}

- Lensed CMB power spectrum is a convolution of unlensed CMB with lensing potential power spectrum=>smoothing of the peaks and throughs.
- A_L is a consistency parameter, which rescales the amplitude of the lensing potential which smooths the power spectrum.

 $C^{\Psi}_{\ell}
ightarrow A_L C^{\Psi}_{\ell}$ Calabrese+ 2008

 $[L(L+1)]^2/(2\pi)\,C_L^{\phi\phi}\,[10^{-7}]$

 Lensing is better measured taking the 4point correlation function of the CMB maps, since lensing breaks isotropy of the CMB, giving a non-gaussian signal.

See e.g. Lewis & Challinor 2006

Peak smoothing in the power spectra

- A₁ is an unphysical parameter used for consistency check.
- Since 2013 preference for high value, TT spectrum prefers 2.4σ deviation from 1.
- $A_{\rm L} = 1.243 \pm 0.096$ (68 %, *Planck* TT+lowE),
- Not really lensing, not preferred by CMB lensing reconstruction.
- Preference for higher lensing projects into small deviations in extensions which have analogous effect on lensing (Ω_k , w, Σm_v).
- Adding polarization, A_L degenerate with systematics corrections and thus likelihood used.

 $A_{\rm L} = 1.180 \pm 0.065$ (68 %, *Planck* TT,TE,EE+lowE) $A_{\rm L} = 1.149 \pm 0.072$ (68 %, TT,TE,EE+lowE [CamSpec])

Different treatments of systematics in polarization (as done in our two likelihoods) can impact extensions of Λ CDM at ~0.5 σ level.

Residuals TT

 A_L is a phenomenological parameter which allows to better fit both the high and low-ell by $\Delta\chi^2 = 5.3$ ($A_L = 1.24 \pm 0.1$) (plus $\Delta\chi^2 = 2.3$ from lowl TT)

• The features which lead the the high Alens could just be due to statistical fluctuations! In other words, Alens might just be fitting noise/cosmic variance.

Alens, modified gravity, curvature etc....

The difference between low and high-I, the deviation in A_L , Ω_k , w, MG, mass of the electron (see e.g. Hart et al. 2019) etc... with Planck power spectra alone all fit similar features in the power spectra at the 2-3 σ level.

Planck collaboration 2018 VI. Cosmological parameters

Is this a systematic effect?

- 1. Planck tested for many different sources of systematics, without finding a good culprit
 - a. Galactic foregrounds
 - b. Extra-galactic foregrounds
 - c. Pointing errors
 - d. Aberration
 - e. Beam errors

The features which drive the Alens excess in temperature are consistent across frequencies, i.e. across detectors. If this is a systematic, it must affect different detectors in a similar way. Not easy!

Systematics in polarization?

• High A_L driven by TT spectrum (2.4 σ).

$$A_{\rm L} = 1.243 \pm 0.096$$
 (68%, *Planck* TT+lowE),

• Adding polarization data in the baseline likelihood gives a 2.8σ deviation from one.

$$A_{\rm L} = 1.180 \pm 0.065$$
 (68%, *Planck* TT,TE,EE+lowE)

 However, a different treatment of polarization systematics can change the evidence of this!It can bring it down to 2.1σ.

$$A_{\rm L} = 1.140 \pm 0.066$$
 (68%, *Planck* TT,TE,EE+lowE, alternative polarization efficiencies)

Polarization calibration

Intensity I and Polarization Q and U Stokes parameters

 $Q \cos 2(\psi(t)) + U \sin 2(\psi(t))] + n(t),$

Detector gain

Detector polarization efficiency

- In Planck, polarization efficiencies measured on the ground at the 0.1-0.3% level. Found in flight to have much larger uncertainties, at a few % level.
- 2. A wrong estimate of polarization efficiency can bias cosmology.
- 3. All current and future ground-based experiments observing small scales rely on Planck to calibrate their polarization efficiencies!
- 4. We need to find an alternative if we want these new experiments to provide an independent look at tensions and curiosities from Planck!

Effective polarization calibration

- Uncorrected polarization efficiencies can be **modeled at the map** level with an effective parameter (**Pcal**).
- We define **Pcal** as the polarization calibration parameter adjusting theoretical power spectra at each frequency:

TE'=TE/T_{cal}² P_{cal} EE'=EE/T_{cal}² P_{cal}²
 Just using the combination of EE and TE, without any external information, one can measure polarization efficiencies directly from the data in a model dependent way.

Current and future can break degeneracies between cosmological parameters and systematic errors from polarization efficiencies with this modeling.

Galli, Wu et al, appearing today

The future is bright and full of new data!

- Current ground-based CMB experiments such as ACT and SPT are exploring the small scale polarization of the CMB.
- They will be able to set constraint on H₀ and other parameters as tight as Planck, and in combination with it potentially to improve by a factor of 2.

— Planck 2018

- Planck 2018+SPT-3G TT,TE,EE+ τ -prior
- SPT-3G TT,TE,EE+ τ -prior
 - SPT-3G TT, TE, EE+ τ -prior+ $\phi\phi$
- ----- Planck 2018+SPT-3G TT,TE,EE+ τ -prior+ $\phi\phi$

Planck

SPT-3G

66.0

