Recent results from T2K and plans for T2K-II and Hyper-K

Claudio Giganti

CPPM Seminar - 08/02/2020

Neutrinos in the SM

Neutrinos are standard model particles → neutral cousin of the electron and of the other charged leptons

They interact only through weak interactions → Neutral current or Charged current

In the Standard Model neutrinos are massless particles → current limit on the sum of the neutrino masses ~I eV → order of magnitudes lighter than the other fermions

Discovery of voscillations

Neutrino oscillations

- ***First introduced by Bruno Pontecorvo in 1957**
- *Neutrinos are produced in flavor eigenstates (ν_{μ} , ν_{e} , ν_{τ}) that are linear combination of mass eigenstates (ν_{1} , ν_{2} , ν_{3})
- *Neutrino propagate as mass eigenstates
- *At the detection a flavor eigenstate is detected → it can be different from the one that was produced

Neutrino oscillation implies massive neutrinos

$$P(\nu_e \to \nu_\mu) = \sin^2(2\theta) \sin^2(\Delta m_{12}^2 L/E)$$

Neutrino oscillations

 $e \rightarrow e (\delta m^2, \theta_{12})$

Survival Probability

 $e \rightarrow e (\Delta m^2, \theta_{13})$

 $e \rightarrow e (\delta m^2, \theta_{12})$

3-y best-fit oscillation

 $L_0/E_{\overline{v}}$ (km/MeV)

 $\mu \rightarrow \mu \left(\Delta m^2, \frac{\theta_{23}}{23} \right)$

 $\mu \rightarrow e (\Delta m^2, \theta_{13}, \theta_{23})$

 $\mu \rightarrow \tau \left(\Delta m^2, \frac{\theta_{23}}{23} \right)$

PMNS matrix

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{+i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

- 3 mixing angles
- 2 independent mass differences
- ▶ 1 CP violation phase

Solar (SNO, KamLand) $\rightarrow \theta_{12}, \Delta m_{12}$ $\begin{array}{c} \text{KamLAND} \\ 95\% \text{ C.L.} \\ 99\% \text{ C.L.} \\ 99.73\% \text{ C.L.} \\ \\ \text{best fit} \\ \\ 10^{-1} \\ \\ \text{tan}^2\theta_{12} \\ \end{array}$

 θ_{13} is precisely known, some indications also for δ_{CP}

Artificial sources of neutrinos

- ***Oscillations** were discovered with solar and and atmospheric neutrinos
- *****Great sources of neutrinos → they come for free, just need to build a detector
 - ***** Ideal for discoveries (span different ranges of △m2)
 - ***** Cannot be tuned → not the best sources for precision measurements
- *Reactors \rightarrow reactor spectrum is fixed but the distance can be tuned (KamLAND for θ_{12} , DB/DC/RENO for θ_{13} , Juno for mass ordering)
- *****Accelerators → can tune energy and distance
 - ***** Well defined L/E → maximize oscillation probability (knowing Δm2)
 - * Sensitive to 5 oscillation parameters (θ_{23} , θ_{13} , Δm^2_{23} , δ_{CP} , and mass ordering)
 - ***** Can produce beam of ν_{μ} of $\overline{\nu}_{\mu} \rightarrow$ study CP violation

$$P(\nu_{\mu} \rightarrow \nu_{\mathsf{x}}) = \sin^2(2\theta) \sin^2(\Delta m_{12}^2 L/E)$$

Open questions

- *Still many open questions related to neutrino oscillations → "guaranteed" measurements
- *But we also don't know the nature of neutrinos (Dirac or Majorana) → 0νββ experiments
- *****Absolute mass of neutrinos → Katrin, Project-8, Cosmology
- *****Multi-messenger astronomy with neutrinos is starting → Far Detectors for LBL experiments

T2K experiment

- High intensity ~600 MeV ν_μ beam produced at J-PARC (Tokai)
- Neutrinos detected at the Near Detector (ND280) and at the Far Detector (Super-Kamiokande) 295 km from J-PARC
- Run in ν or $\overline{\nu}$ mode by changing the horn polarity
- Physics goals:
 - $\mathbf{v}_{\mathbf{e}}$ and $\overline{\mathbf{v}}_{\mathbf{e}}$ appearance \rightarrow determine θ_{13} and δ_{CP}
 - Precise measurement of v_{μ} disappearance $\rightarrow \theta_{23}$ and $|\Delta m^2_{32}|$

T2K collaboration

~500 members, 69 institutes, 12 countries

Asia	117
Japan	114
Vietnam	3

Americas	96
Canada	26
USA	70

Europe	262
France	40
Germany	5
Italy	24
Poland	27
Russia	19
Spain	14
Switzerland	34
UK	99

A long journey

T2K starts data taking

Take data in $\overline{\nu}$ -mode

T2K phase-II + ND280 upgrade

Hyper-K

2010 2012 2014 2016 2018 2020 2022 2024 2026 2028

Hints of ν_e appearance (θ₁₃≠0@2.5σ)

Phys.Rev.Lett. 107 (2011) 041801

10

Observation of v_e appearance $(\theta_{13}\neq 0@7.3\sigma)$

Phys.Rev.Lett. 112 (2014) 061802

Hints of CP violation

→ sin(δ_{CP})=0

excluded at 95%

Nature Vol. 580, pp. 339-344

0.6 0.8 1 1. Reconstructed Energy (GeV) 2022: T2K-II + Near Detector Upgrade

2027: Hyper-K (8xSuper-K)

Neutrino beam

- 30 GeV proton beam from J-PARC Main Ring extracted onto a graphite target
- p+C interactions producing hadrons (mainly pions and kaons)
- Hadrons are focused and selected in charge by 3 electromagnetic horns
- * v_{μ} mainly produced by pion decay $\pi^+ \rightarrow \mu^+ + v_{\mu}$
 - * $\overline{\nu}_{\mu}$ produced by changing the direction of the horn current
- All charged particles stopped by beam-dump

T2K beamline

- In the case of T2K we use the off-axis technique
- Detectors are placed off-axis with respect to center of the beam
- Narrow band beam centered at the oscillation maximum

ND280 on-axis (INGRID)

- ***On-axis Near Detector (INGRID)**
 - **★ Monitor the beam stability day-by-day looking at** v (\overline{v}) interactions
 - *16 cubic modules: 1 module is a sandwich of 10 iron and 11 scintillator layers

INGRID interaction rate and beam direction

ND280 off-axis

Tracker

- **▶Detectors installed inside the UA1/NOMAD magnet (0.2 T field)**
- **▶**Dedicated π⁰ detector (P0D)

Tracker

- ▶2 Fine-Grained Detectors (target for neutrino interactions)
- ▶3 Time Projection Chambers: reconstruct momentum and charge of the particles produced in v interactions, PID based on ionization
- **▶**Electromagnetic Calorimeter to distinguish tracks from showers
- **▶**Side Muon Range Detector (SMRD) installed inside the magnet yokes

Super-Kamiokande

- 50 kton water Cherenkov detector
 - ~11000 20" PMT inner detector (~2000 8" PMT outer detector used as veto)
- ~1000 meters underground in the Kamioka mine, operated since 1996

Very good PID capabilities to distinguish electrons from muons

Neutrinos and anti-neutrinos

$$P(\nu_{\mu} \to \nu_{e}) = 4C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \sin^{2}\Delta_{31} \quad \text{Leading term} \to \theta_{13} \\ + 8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23}) \cdot \cos\Delta_{32} \cdot \sin\Delta_{31} \cdot \sin\Delta_{21}$$

$$\text{CPV term} \quad -8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta \cdot \sin\Delta_{32} \cdot \sin\Delta_{31} \cdot \sin\Delta_{21} \\ + 4S_{12}^{2}C_{13}^{2}(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta) \cdot \sin^{2}\Delta_{21} \\ -8C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \frac{aL}{4E_{\nu}}(1 - 2S_{13}^{2}) \cdot \cos\Delta_{32} \cdot \sin\Delta_{31} \quad \text{Matter effects} \\ +8C_{13}^{2}S_{13}^{2}S_{23}^{2} \frac{a}{\Delta m_{31}^{2}}(1 - 2S_{13}^{2}) \cdot \sin^{2}\Delta_{31}, \quad \text{\sim distance}$$

Experimentally we measure an appearance probability

sinδ and **a** change sign from neutrino to antineutrino

In case of T2K where the baseline is short we have:

δ_{CP} effect ±30% MH effect ~10%

Neutrinos and anti-neutrinos

$$P(\nu_{\mu} \to \nu_{e}) = 4C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \sin^{2}\Delta_{31} \quad \text{Leading term} \to \theta_{13} \\ +8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23}) \cdot \cos\Delta_{32} \cdot \sin\Delta_{31} \cdot \sin\Delta_{21}$$

$$\text{CPV term} \quad -8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta \cdot \sin\Delta_{32} \cdot \sin\Delta_{31} \cdot \sin\Delta_{21} \\ +4S_{12}^{2}C_{13}^{2}(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta) \cdot \sin^{2}\Delta_{21} \\ -8C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \frac{aL}{4E_{\nu}}(1 - 2S_{13}^{2}) \cdot \cos\Delta_{32} \cdot \sin\Delta_{31} \quad \text{Matter effects} \\ +8C_{13}^{2}S_{13}^{2}S_{23}^{2} \frac{a}{\Delta m_{31}^{2}}(1 - 2S_{13}^{2}) \cdot \sin^{2}\Delta_{31}, \quad \text{\sim distance}$$

Experimentally we measure an appearance probability

 $\sin\delta$ and **a** change sign from neutrino to antineutrino

NOVA sensitive to MH and CPV but with some degeneracies

DUNE breaks the degeneracy between MH and CPV

increasing baseline

Recent T2K results

Data Set

- ***Beam power up to 500 kW**
- *1.97E21 POT in ν -mode, 1.63E21 POT in $\overline{\nu}$ -mode

Flux prediction:
Proton beam measurement
Hadron production (NA61
2009 replica target data)

Neutrino interactions:
Cross-section models
External data

Flux prediction:

Proton beam measurement Hadron production (NA61 2009 replica target data)

ND280 measurements: v_{μ} and $\overline{\nu}_{\mu}$ selections to constrain flux and crosssections

Neutrino interactions:
Cross-section models
External data

Flux prediction:
Proton beam measurement

Hadron production (NA61 2009 replica target data)

Prediction at the Far Detector:
Combine flux, cross section
and ND280 to predict the
expected events at SK

ND280 measurements: v_{μ} and $\overline{\nu}_{\mu}$ selections to constrain flux and crosssections

Neutrino interactions:
Cross-section models
External data

Flux prediction:
Proton beam measurement

Hadron production (NA61 2009 replica target data)

Prediction at the Far Detector:
Combine flux, cross section
and ND280 to predict the
expected events at SK

ND280 measurements: v_{μ} and $\overline{\nu}_{\mu}$ selections to constrain flux and crosssections

Neutrino interactions:
Cross-section models
External data

SK measurements: Select CC v_{μ} , \overline{v}_{μ} , v_{e} , \overline{v}_{e} candidates after the oscillations

Flux prediction:

Proton beam measurement Hadron production (NA61 2009 replica target data) Prediction at the Far Detector:
Combine flux, cross section
and ND280 to predict the
expected events at SK

ND280 measurements: v_{μ} and $\overline{\nu}_{\mu}$ selections to constrain flux and crosssections

Extract oscillation parameters!

Neutrino interactions:
Cross-section models
External data

SK measurements: Select CC v_{μ} , \overline{v}_{μ} , v_{e} , \overline{v}_{e} candidates after the oscillations

NA61/SHINE - flux prediction

- * Multipurpose detector @ CERN → precision hadron production measurements for T2K (and FNAL) neutrino fluxes predictions
- Took data for T2K in 2007, 2009, 2010 with thin and replica target
- * Inclusion of data with replica target allowed to reduce flux uncertainties to ~5%

Neutrino interaction modelling

- ***T2K** mean energy 0.6 GeV → CCQE dominates but significant multinucleon (2p2h) and resonant production
- *Neutrino interaction modelling has been updated to use Spectral function, better treatment of binding energy, 2p2h contributions, ...

Why this matter...

- *****Oscillations depends on L/E → L is fixed so only E matters
- ***E** is the true neutrino energy but in experiments we have access to the reconstructed one

*At SK only the lepton is visible and we reconstruct the energy with the quasi-elastic formula based on reconstructed lepton momentum and angle

*****Erec is a good proxy for Etrue for CCQE interactions

- *For 2p2h (or any other interaction)
 Erec underestimates Etrue → if that's
 not taken into account it will bias the
 extraction of oscillation parameters
- *Need to characterize these channels as well as possible or find new ways to reconstruct the neutrino energy

ND280 selections

- ***ND280** magnetized detector
- *Select interactions on CH (FGD1) and CH/Water (FGD2)
- *Precise measurement of Pμ and θμ with the TPCs
- *****Distinguish ν from $\overline{\nu}$ interactions thanks to the reconstruction of the charge of the lepton
- *Separate samples based on number of reconstructed pions (CC0 π , CC1 π , CCN π)

Prefit systematics uncertainties on the rate of single ring e-like events at SK ~14%

ND280 selections

- ***ND280** magnetized detector
- *****Select interactions on CH (FGD1) and CH/Water (FGD2)
- *Precise measurement of Pμ and θμ with the TPCs
- *Distinguish ν from $\overline{\nu}$ interactions thanks to the reconstruction of the charge of the lepton
- *Separate samples based on number of reconstructed pions $(CC0\pi, CC1\pi, CCN\pi)$

Postfit systematics uncertainties on the rate of single ring e-like events at SK ~4.7%

Flux and x-sec constraint

	Pre- ND FIT	Post- ND FIT
Sample	error	error
FHC $1R\mu$	11.1%	3.0%
RHC 1R μ	11.3%	4.0%
FHC 1Re	13.0%	4.7 %
RHC 1Re	12.1%	5.9%
FHC 1R <i>e</i> 1d.e.	18.7%	14.3%

Super-Kamiokande

- ***Single ring events selected at SK**
- **★**Separated between e-like and µ-like according to the PID
- *Additional cuts to reject NC producing $\pi 0 \rightarrow \gamma \gamma$ background

θ_{23} and Δm^2_{23}

- *Slight preference for non maximal mixing with θ₂₃ in the second octant
- *Still compatible with maximal mixing

v_e and \overline{v}_e appearance

sin²(θ₂₃)=0.5, Normal Hierarchy

	v-mode	⊽-mode
Data	108	16
δ _{CP} =-π/2	106.8	16.7
δ _{CP} =0,π	90.4	19.0
$\delta_{CP}=+\pi/2$	74.1	20.9

θ_{13} and δ_{CP}

- ***T2K** only data compatible with reactor measurements of θ13
- *When the reactor constraint is used 35% of the values of δ_{CP} are excluded at >3 σ
- *CP conserving values $(0,\pi)$ excluded at 90% CL

T2K/NOvA comparison

- *T2K and NOvA both released new results at Neutrino 2020
- *Mild tension on δ_{CP}
 - * Reinforce the need of collecting more data for both experiments!

The future: T2K-II and Hyper-K

T2K phase-II

- *****Upgrade of J-PARC Main Ring (1.3 MW beam)
 - *Approved and funded, will be ready for beam in Fall 2022
- *****Goal: collect >10x10²¹ POT by 2026 → 3σ measurement of CP violation if δ_{CP} ~- π /2
- *Near Detector upgrade to reduce systematics from ~7% to ~4%
 - *We will install the new detectors in 2022
 - Use the ND280 Upgrade detector also as initial Near Detector for HK
- *Improvements of the Far Detector thanks to the SK-Gd project

ND280 Upgrade

- *****One horizontal highly segmented target (Super-FGD) → Improve reconstruction of hadronic part of the interaction and of low momentum leptons
- *****Two new High Angle TPCs → Improve reconstruction of high angle leptons
- *****6 Time Of Flight planes → Reduce backgrounds entering from outside the Super-FGD
- *After the upgrade ND280 will be a full acceptance fine grained detector with magnetic field → Measure momentum and charge of all leptons emitted in neutrino and antineutrino interactions

Improved angular acceptance

- *Main strength of ND280 : magnetized detector \rightarrow separate ν from $\overline{\nu}$ (cannot be done in SK or HK)
- *Main limitation of ND280 : reduced angular acceptance → only forward going muons are selected with high efficiency
- *****An analysis dedicated to select tracks with high polar angles → 20% efficiency
- *****We can do better with an upgrade → Horizontal target and horizontal TPCs

New detectors

- New concept of detectors, 2x10⁶
 1cm³ cubes
 - >1x10⁶ cubes already delivered
 - All cubes will be produced by Dec 2020
- Each cube is read by 3 WLS

High-Angle TPCs

- New TPCs instrumented with Encapsulated Resistive Anode MicroMegas (ERAM)
- Design validated with first prototype
- DESY and CERN Test beams results
 - ♣ Spatial resolution ~200 µm
 - dE/dx resolution ~7% for 70 cm tracks

Super-FGD

- *****2 millions 1cm³ cubes → assembled in 56 x-y layers at INR
- *Light in each cube is collected by 3 WLS (3 views)
- *Light carried by the WLS is read by 56k MPPCs mounted on PCB

sFGD Test Beam

- ***CERN Test Beam with a prototype in 2018**
- ***Published on 2020 JINST 15 P12003**
- *Excellent performances for light yield and particle separation

0.04

Super-FGD protons and neutrons

Reduce threshold from ~500 to ~300 MeV → access to most of the protons produced in ND280

 $\bar{\nu} + p \rightarrow \mu + n$

Reconstructing neutrons would open a new window to exploit nuclear effect Measurements on-going with a test beam at LANL

HA-TPC

- Two field cage prototypes tested → first field cage expected in May 2021
- *Resistive MM modules have been satisfactory tested and production started
- ***Front End electronics** (FEC+FEM) prototypes have been validated → production of the cards have been launched

Field Cages

- Dielectric, low-Z materials
- Composite materials techniques
- Thin walls laminated on a mold

Resistive MM principles

$$ho(\mathbf{r},t) = \frac{RC}{2t} \exp[-\frac{-\mathbf{r}^2RC}{4t}]$$

R- surface resistivity C- capacitance/unit area

$$r_r = \sqrt{\frac{2t}{RC}} \quad \begin{cases} t \approx sho \\ RC_{[n]} \end{cases}$$

$$\sigma_r = \sqrt{\frac{2t}{RC}} \quad \begin{cases} t \approx shaping time (few 100 ns) \\ RC_{[ns/mm^2]} = \frac{180 R_{[M\Omega/\blacksquare]}}{d_{[\mu m]}/175} \end{cases}$$

- *Encapsulated Resistive Anode Micromegas (ERAM)
- ***Charge spread over several pads**
 - * Spreading depends on RC value

- *Main advantages:
 - Better spatial resolution (even with larger pads)
 - Reduced risk of sparks
 - **Mesh at Ground** → **better** electrostatic integration with TPC drift volume

HA-TPC Test Beams

- *2 Test beam campaigns (CERN in 2018, DESY in 2019)
- *****Spatial resolution:
 - *~200 μm for horizontal tracks (vs 600 μm for existing TPCs)
 - ***** <600 µm for all angles (vs 1 mm for existing TPCs)</p>
- *dE/dx resolution < 9% for one module (<7% expected for tracks crossing 2 modules)

ND280 Upgrade motivations

- * Exploit μ + p to reconstruct the ν energy in a complementary way (E_{had})
- * Exploit lepton-nucleon correlations to isolate kinematic regions dominated by non-QE interactions (2p2h, π abs)
- *Reconstruct neutrons using time of flight between neutrino interaction and neutron scattering in the SFGD

T2K-II

- *ND280 Upgrade will be installed at J-PARC in Summer 2022
- *At the same time the J-PARC neutrino beam will be upgraded to reach a beam power of 1.3 MW (500 kW today)
- *This will allow to collect > 10e21 POT by the beginning of HK (3 times more than the statistics we have today)
 - ***** CP violation > 3σ @ δ_{CP} =- $\pi/2$
 - * $\delta\theta_{23}$ <1.7° (for maximal mixing)
 - * $\delta(\Delta m^2_{32})/\Delta m^2_{32} < 1\%$
- ***Bridge to Hyper-K**

Water Cherenkov Detectors

Kamiokande (1983-1996)

- Atmospheric and solar ν anomaly
- Supernova 1987A

Super-Kamiokande (1996-ongoing)

- World best limit on proton decay
- Discovery of ν oscillations
- Measurement of oscillations (atm/solar/LBL)

Hyper-Kamiokande (Start in 2027)

- Extended search of proton decay
- Search for CPV in leptonic sector
- Neutrino astrophysics

Hyper-Kamiokande

- ***Extremely well established Water Cherenkov technology**
 - *190 kton FV (SK 22.5), instrumented with up to 40k PMTs
- *HK will be the most sensitive observatory for rare events (proton decay, SN neutrinos, ...)
- *****Search for CP violation in lepton sector
 - **Upgrade of J-PARC neutrino beam (1.3 MW)**
 - * Near and Intermediate detector complex
- *February 2020 → HK budget approved by Japanese governement (~500 M€, 80% of the total cost with 40k PMTs)
 - *~20% of the budget expected to be covered by international contributions
- *****Construction started in April 2020 → start operation in 2027

Hyper-Kamiokande proto-collaboration

18 countries, 82 institutes, ~390 people Currently transitioning to HK collaboration

HK: Where

- *Same off-axis angle as SK but at different location (10 km away)
- *Possibility for a 2nd detector in Korea being explored

HK: When

- ***Started Construction in 2020**
- **★**Start data taking in JFY 2027
- *Japanese part of the budget approved
 - * International contributions being formalized

Physics case

Hyper-K photo-detection system

- *HK will be instrumented with "box-and-line" 20" PMTs
- *At least 20k modules
- *31% QE (2 times better than SK)
- *Better transit time spread and charge resolution

Multi-PMT module:

(ref. KM3NeT)

High resolution Cherenkov ring imaging essential for IWCD

Prototype at TRIUMF

Electronics at INFN

- *Array of 19 3" PMTs
- *Add 5k or 10k m-PMTs in HK (depending on funding) to improve vertex and energy resolution
- *Synergies with KM3Net and with JUNO small PMTs

Proton-decay

Sensitivity to many different modes Surpass SK by ~1 order of magnitude in the leading p \rightarrow e⁺ + π^0

$$p \rightarrow e^+ + \pi^0$$

Supernovae neutrinos

- *** IBD:** huge statistics → SN model
- * ES: directionality

- * ~80k IBD and ~3k ES for SN explosions in the galactic center
- Sensitive also to SN explosions in Andromeda

- *****SRN not yet observed → could be observed before 2025 by SK-Gd or JUNO
- *HK will make a high statistics measurement → Constraints on cosmic star history

Long-baseline physics

δCP=-π/2	Sig	nal	BCG	Total
11/2	$\nu_{\mu} ightarrow u_{e}$	$\bar{ u}_{\mu} ightarrow \bar{ u}_{e}$	Вос	rotar
v-mode	1643	15	400	2058
$\overline{ u}$ -mode	206	1183	517	1906

Huge statistics → sensitivity to CP violation
Need to control systematics!

Systematics and Near Detectors

- NA61 hadron-production experiment @CERN
- T2K → uncertainties on the neutrino flux ~5% thanks to NA61
- New measurements planned for HK

Intermediate WC detector

Scintillator

- Instrumented with ~500 multi-PMTs
- Movable position to scan different off-axis angles

Hyper-K sensitivity

- *Great discovery potential : 5σ observation of CP violation if δ CP=- π /2 in <3y (4y if systematics are not improved with respect to today)
 - *DUNE will require 8y for the same CP value
- **★**5σ sensitivity for 60% of the CP values assuming MH known
 - *If MH not known it can be determined by HK by combining beam and atmospheric ν

French contributions in HK

IRFU LLR LPNHE OMEGA

- ***French groups working on the electronics for the large PMTs**
 - ***** Clock distribution and PMT synchrohnization
 - * PMT readout (new chip being developed by OMEGA)
- *ND280 Upgrade (and interest in further upgrades for HK)

Conclusions

- *Neutrino physics is an extremely active field of research
- *****Japan is engaged to host a seamless ~30y program of LBL experiments T2K → T2K-II → Hyper-K
 - **♣** Discovery of *v*e appearance
 - ***** Most precise measurement of θ23 and Δm232
 - * First hints of CP violation in the leptonic sector
- *We hope to confirm these hints with T2K-II \rightarrow 5 σ discovery of CPV in the first years of Hyper-K
- *Hyper-K will also be the most sensitive detector for rare events (proton decay) and an observatory of ν from different sources (Sun, SN, ...)
 - *Data taking in 2027, little risk of delays thanks to the use of a well known techonology
- *French groups are fully involved in this programme
 - *R&D for front-end electronics and time synchronization system
 - * More contributions and new collaborators are welcome!

Back up Slides

The Experiments

T2K

- Baseline: 295 km
- Peak E_{ν} : ~0.6 GeV (off-axis)
- Near detector: ND280 (~2 T C/O targets, TPC tracking, magnetised)
- Far detector: Super-K, 50 kT, Water-Cherenkov

- Baseline: 810 km
- Peak E_{ν} : ~2 GeV (off-axis)
- Near detector: Scintillator tracker (300 T)
- Far detector: Scintillator tracker (14 kT)

T2K

- Identify neutrino interactions without any mesons observed in the final state
- Reconstruct E_ν assuming the interaction is CCQE on a stationary nucleon with fixed nuclear binding energy
 - Only use lepton kinematics to get E_v!
- Bias from nuclear effects (e.g. Fermi motion) and from nonQE backgrounds (e.g. 2p2h, π abs. FSI)

$$E_{\nu}^{\text{QE}} = \frac{m_p^2 - (m_n - E_b)^2 - m_{\mu}^2 + 2(m_n - E_b)E_{\mu}}{2(m_n - E_b - E_{\mu} + p_{\mu}cos \theta_{\mu})}$$

NOVA

- Identify all CC interactions
- Reconstruct E_ν by summing the lepton and extra calorimetric energy deposits
 - Use all particles to get E_ν!
- Bias mostly from FSI and neutron multiplicity mismodelling
 - Significantly harder to model

$$E_{\nu}^{calo} = E_{\ell} + E_{had.} = E_{\ell} + \Sigma T_{p} + \Sigma T_{\pi^{\pm}} + \Sigma E_{\gamma}$$

T2K

	$\delta_{\rm CP} = -\pi/2$	$\delta_{\mathrm{CP}} = 0$	$\delta_{\rm CP} = \pi/2$	$\delta_{\mathrm{CP}} = \pi$	Data
FHC 1Re	97.62	82.44	67.56	82.74	94
RHC 1Re	16.69	18.96	20.90	18.63	16
FHC 1R ν_e CC1 π^+	9.20	8.01	6.51	7.71	14

NOvA

Total Observed	82	Range
Total Prediction	85.8	52-110
Wrong-sign	1.0	0.6-1.7
Beam Bkgd.	22.7	
Cosmic Bkgd.	3.1	
Total Bkgd.	26.8	26-28

Total Observed	33	Range
Total Prediction	33.2	25-45
Wrong-sign	2.3	1.0-3.2
Beam Bkgd.	10.2	
Cosmic Bkgd.	1.6	
Total Bkgd.	14.0	13-15

 $>4\sigma$ evidence of \bar{v}_e appearance

T2K

Note: these show the uncertainty on the event rate, this is not the same as uncertainty on the oscillation parameters (which isn't easy to make for T2K)

After ND constraint

	11	Rμ			1Re	
Error source	FHC	RHC	FHC	RHC	FHC CC1π ⁺	FHC/RHC
Flux	2.9	2.8	2.8	2.9	2.8	1.4
Xsec (ND constr)	3.1	3.0	3.2	3.1	4.2	1.5
Flux+Xsec (ND constr)	2.1	2.3	2.0	2.3	4.1	1.7
2p2h Edep	0.4	0.4	0.2	0.2	0.0	0.2
BG_A^{RES} low- p_w	0.4	2.5	0.1	2.2	0.1	2.1
$\sigma(\nu_e)$, $\sigma(\bar{\nu}_e)$	0.0	0.0	2.6	1.5	2.7	3.0
NC 7	0.0	0.0	1.4	2.4	0.0	1.0
NC Other	0.2	0.2	0.2	0.4	0.8	0.2
SK	2.1	1.9	3.1	3.9	13.4	1.2
Total	3.0	4.0	4.7	5.9	14.3	4.3

Large reduction of previously dominant binding energy uncertainty thanks to updated nuclear model

Before ND constraint

Error source		RHC	FHC	RHC	$^{1\mathrm{Re}}_{\mathrm{FHC~CC1}\pi^{+}}$	FHC/RHC
Flux Cross-section (all) SK+SI+PN	5.1% 10.1% 2.9%	10.1%	4.8% 11.9% 3.3%	4.7% 10.3% 4.4%	4.9% 12.0% 13.4%	2.7% 10.4% 1.4%
Total	11.1%	11.3%	13.0%	12.1%	18.7%	10.7%

Combination of atmospheric + beam v

- Even if MH is not known when HK starts
- → Sensitivity to CPV is little affected if we add atmosph
- •MH would be determined by :
- → HK after ≥ 6-10 years via atmospheric.
- •→ <u>DUNE</u>: after 1-2 years.

Precision of δ_{CP} measurement

	5 years HK & DUNE	10 years HK & DUNE
CP conserved $\delta_{CP} = 0$	8° & 13°	6° & 9°
$\delta_{CP} = -\pi/2$	25° & 29°	19° & 24°

- •HK sensitivity δ_{CP} highly improved with syst. error updates.
- → World-leading sensitivity together with DUNE full config.

Front-end development

- Propose a new Front-end for HK
- \rightarrow Start from existing Ω CATIROC.
- Installed test bench at LLR in July.

Charge linearity

High-gainLow-gain

•Charge (<0.05 p.e) and time resolution (<300ps) comply w/ HK requirements.

Time linearity

+ High-gain**■** Low-gain

•Major issues :

- 1. Chip deadtime : $3\mu s \rightarrow 9\mu s$
- 2. Charge dynamic range smaller by factor 5: developed for 3" PMTs operating at 10⁶ gain
- \rightarrow HK PMT will likely operate at gain = 10^7 . 23

The GNSS and clock distribution system

•France is working both on :

1. GNSS system: Provides local time to synchronize w beam / other detectors.

 \rightarrow Is being developed with SYRTE.

2. Full clock distribution chain (down to PMT Front-End) → Focus of today.

Several options are being studied for clock distributions:

35

Intermediate Water Cherenkov Detector

•2.b. New Intermediate Water Cherenkov Detector located @750m - 2km:

- 3. WC => Excellent v_e / v_u separation => $(v_e / v_u) / (v_e / v_u)$.
- → ND280&IWCD necessary & complementary to reach systematics ≤ 3 %.