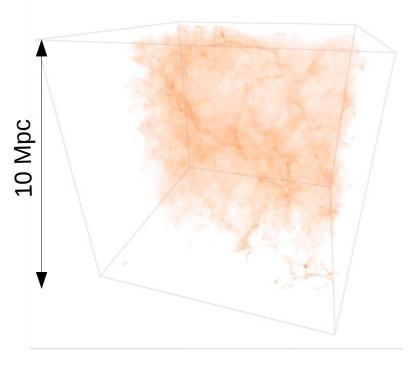


Encoding large scale cosmological structure with Generative Adversarial Networks

Marion Ullmo (IAS) Nabila Aghanim (IAS) – Aurélien Decelle (LRI, UCM)

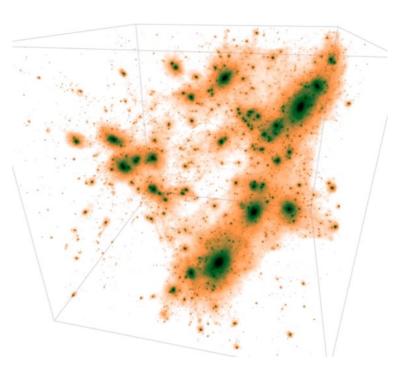
Initial Conditions : quasi-homogeneous matter distribution



Gravitational collapse

Structures form through

Current state : virialized overdense halos have formed



Redshift: z =10

Time since Big Bang: 0.5 billion years

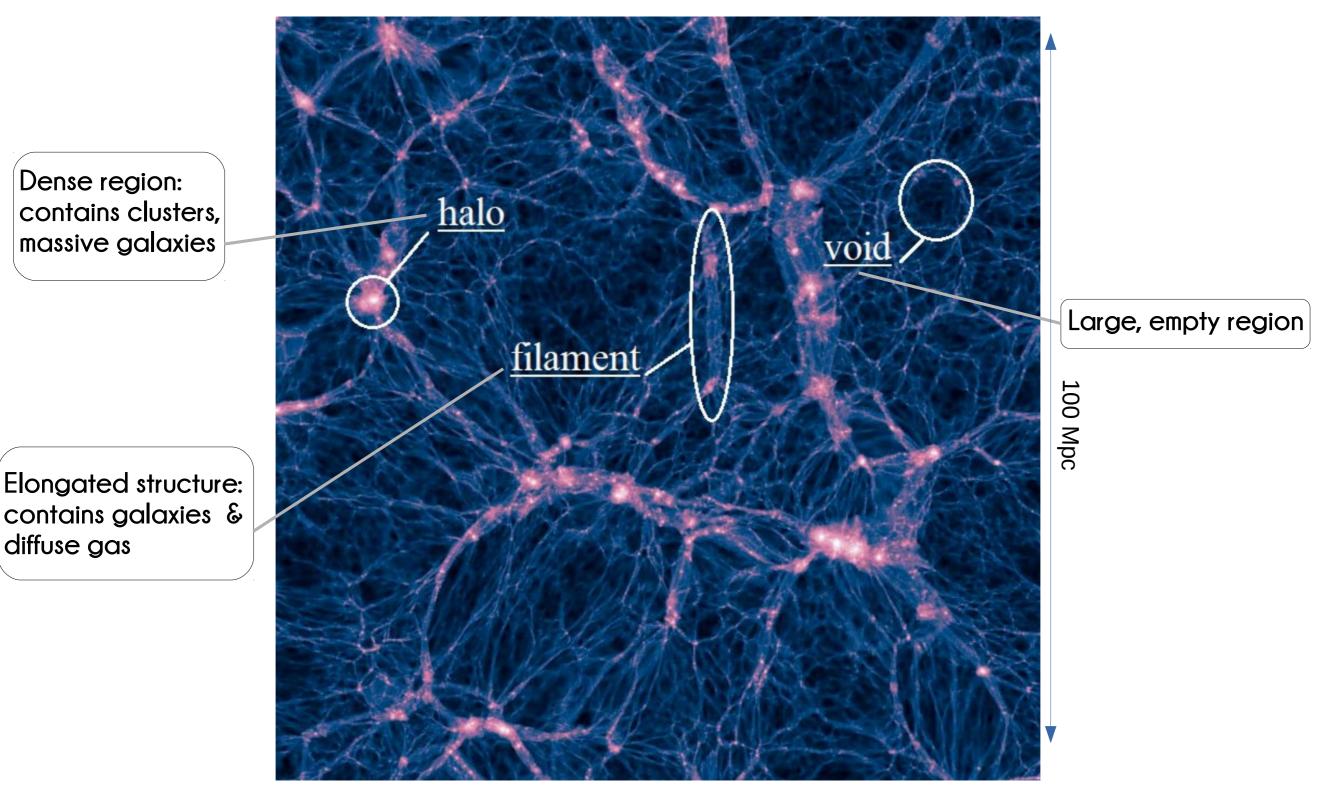
z=5

0.9 billion years

13.8 billion years

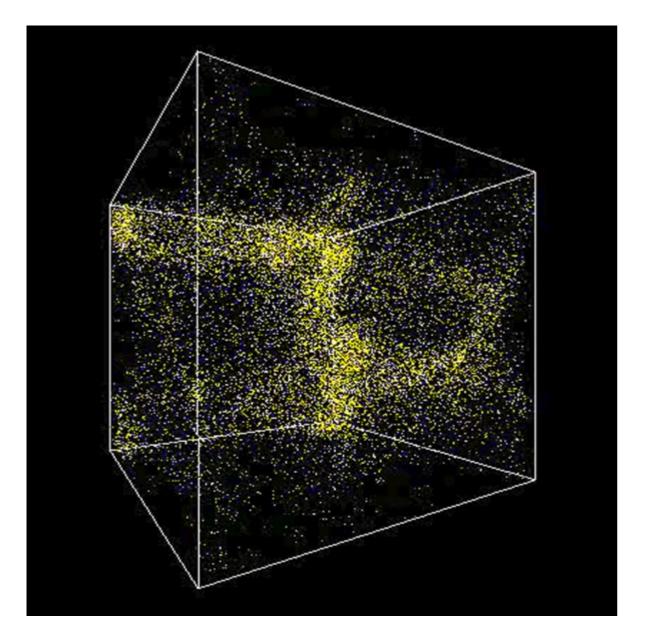
Illustris Simulations - (10 Mpc)³ snapshot Vogelsberger *et al*, 2014

The Cosmic Web and Large Scale Structures



Illustris simulations – (100Mpc)² - Vogelsberger et al, 2014

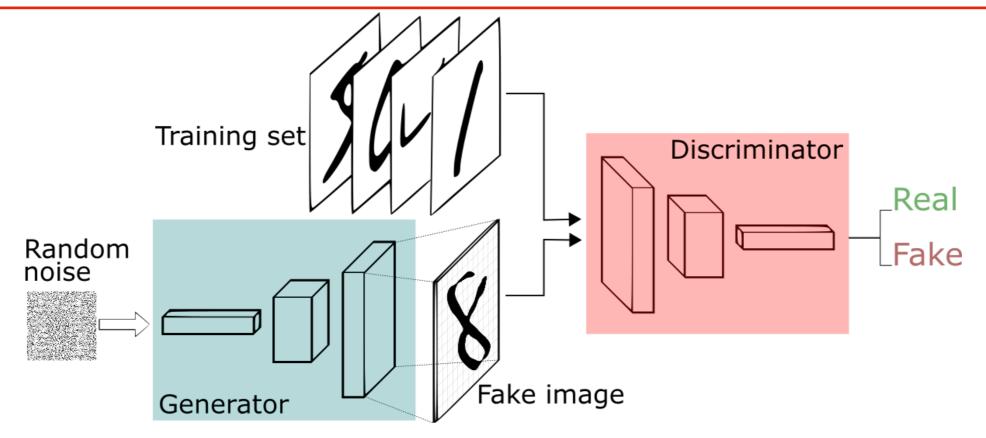
Simulations - a costly necessity



- Simulations →an essential tool to compute the non-linear structuration of matter
- Typically N-body simulations with 10⁶-10¹⁰ particles
 - A few examples:
 - Gravitation only: Millenium, 250 000 CPU hours, 28 days runtime
 - Hydrodynamical: Illustris, 19 million CPU hours, 3 months runtime
- Tradeoff between large structures and fine detail

- We build and train a network for fast generation of simulation-like datasets
- •We make use of this trained network to construct a simple autoencoder (AE) as a first step towards building a predictive model

GANs* in a nutshell

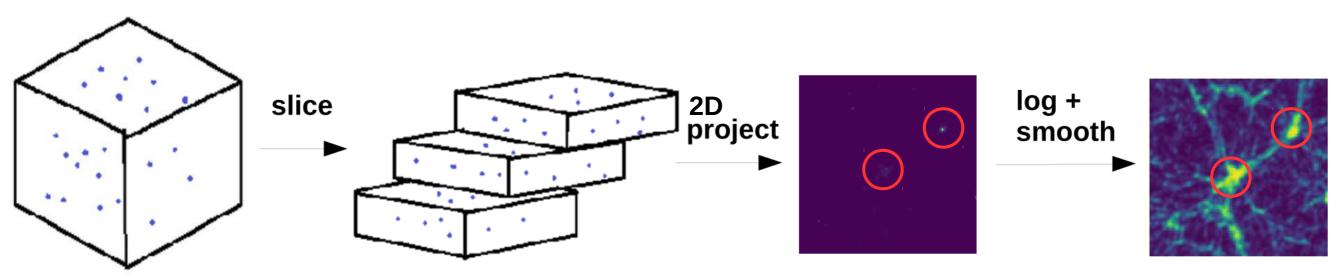


- GAN : Generative Adversarial Network
- Two competing networks :
 - the generator, generates new images
 - the discriminator, outputs the certainty (0 to 1) with which it believes an image is from the training set (rather than from the generator)
- A simple loss function!

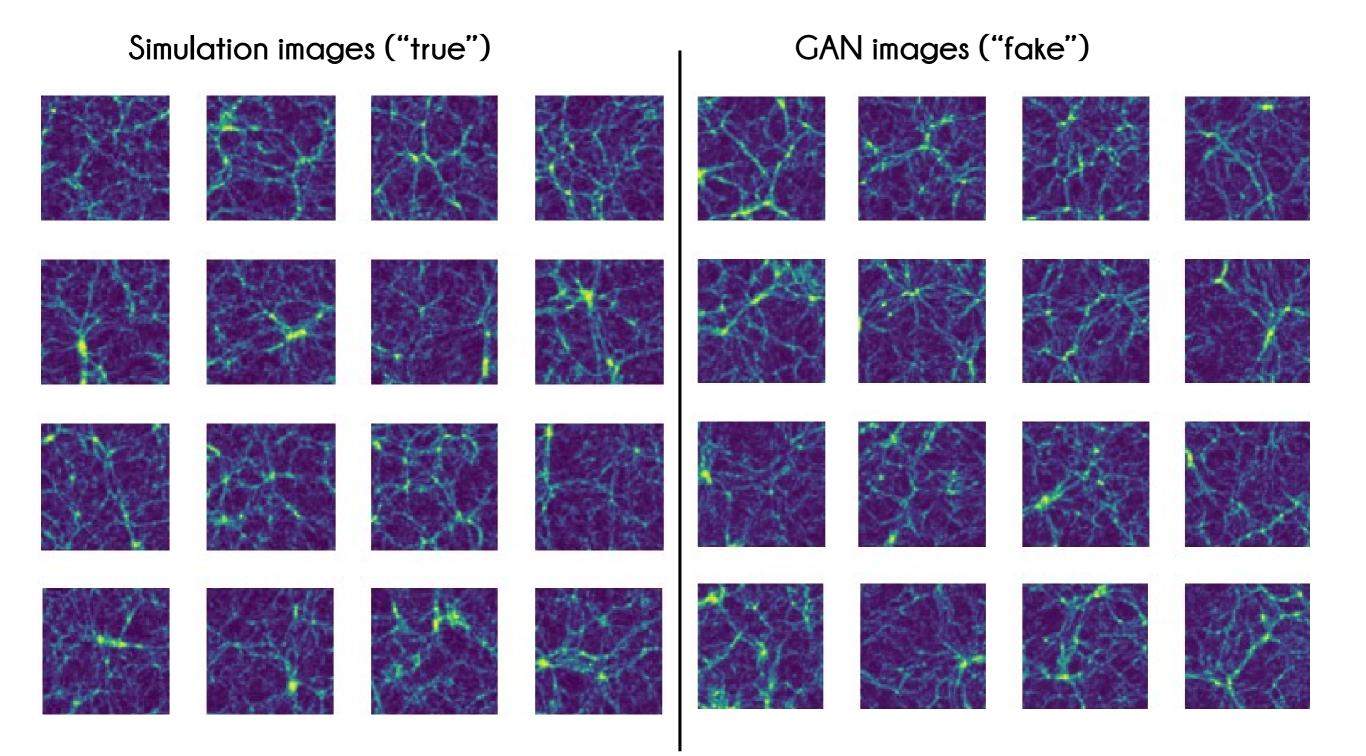
$$L_D = -\frac{1}{2}\mathbb{E}(log D(I_R) + log(1 - D(I_G)))$$

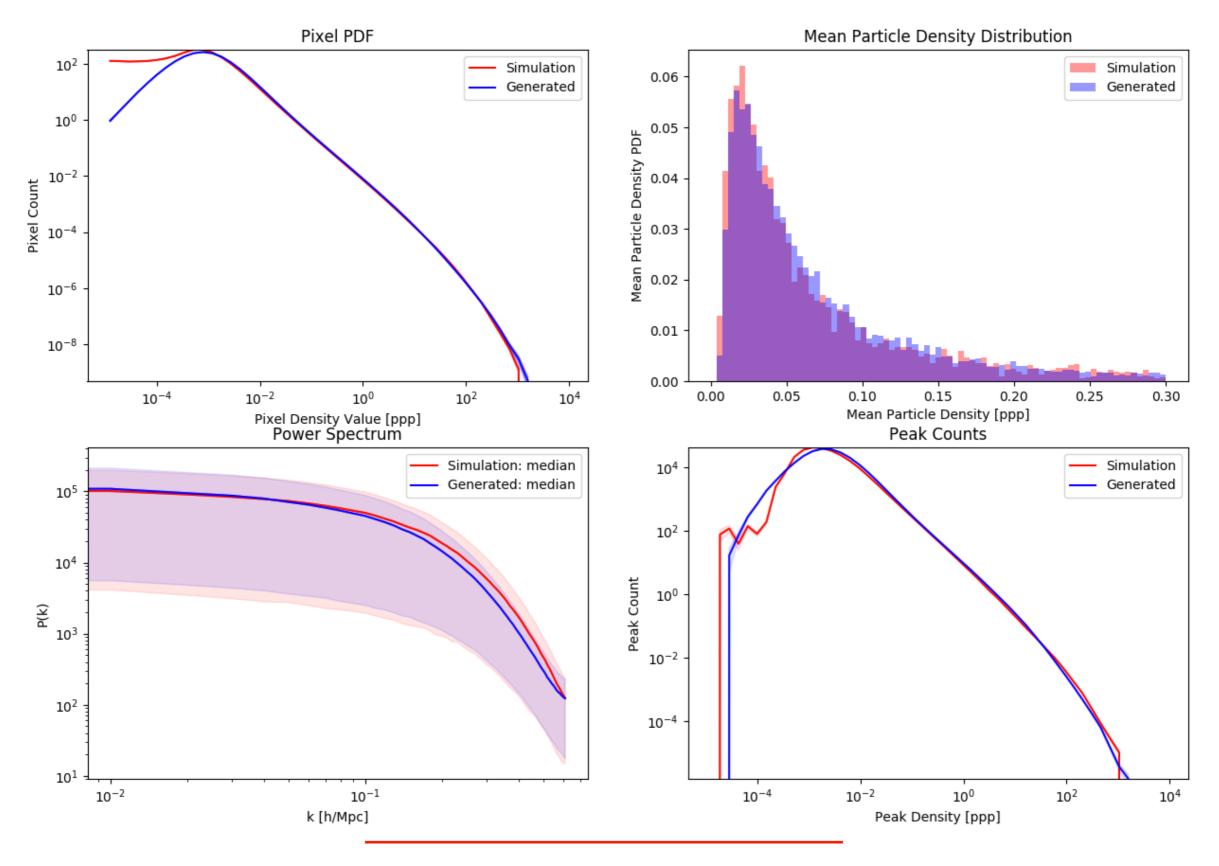
Datasets

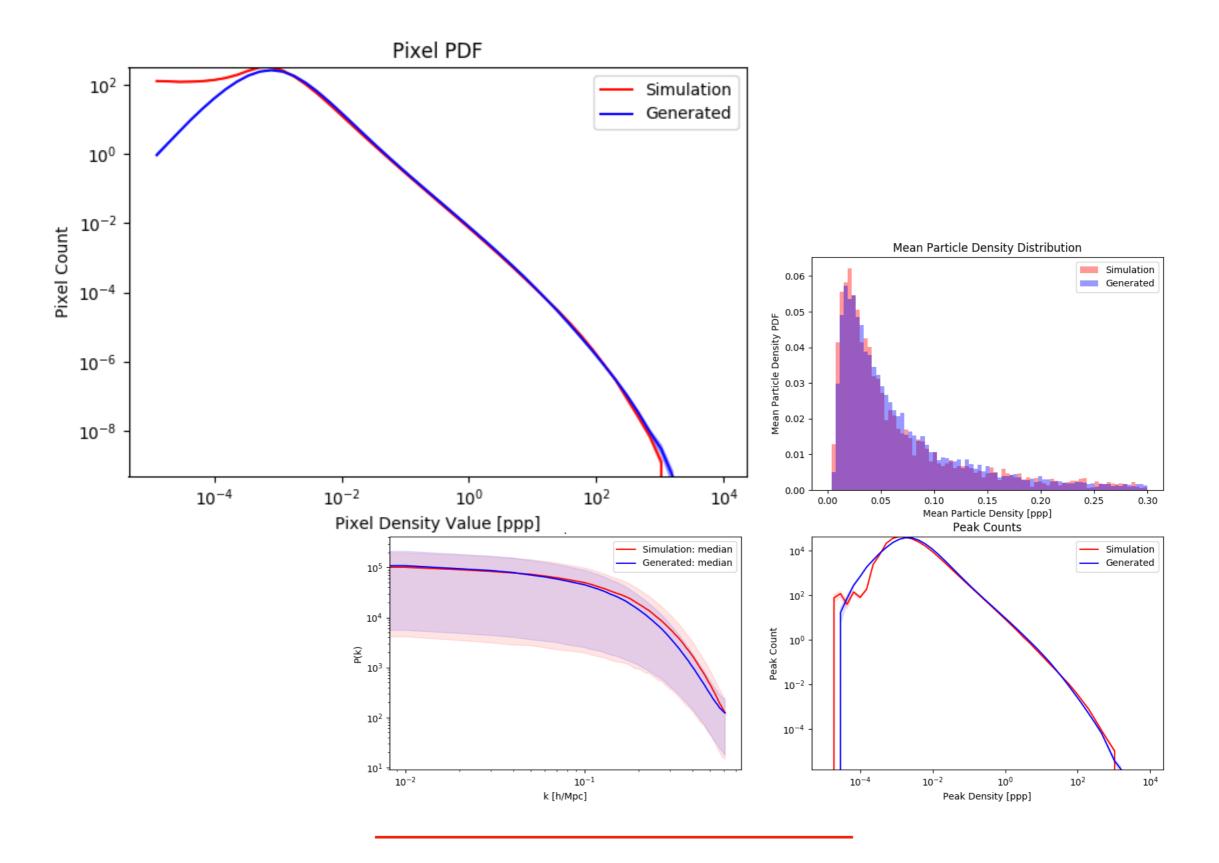
2 types of datasets : 3D & 2D simulations

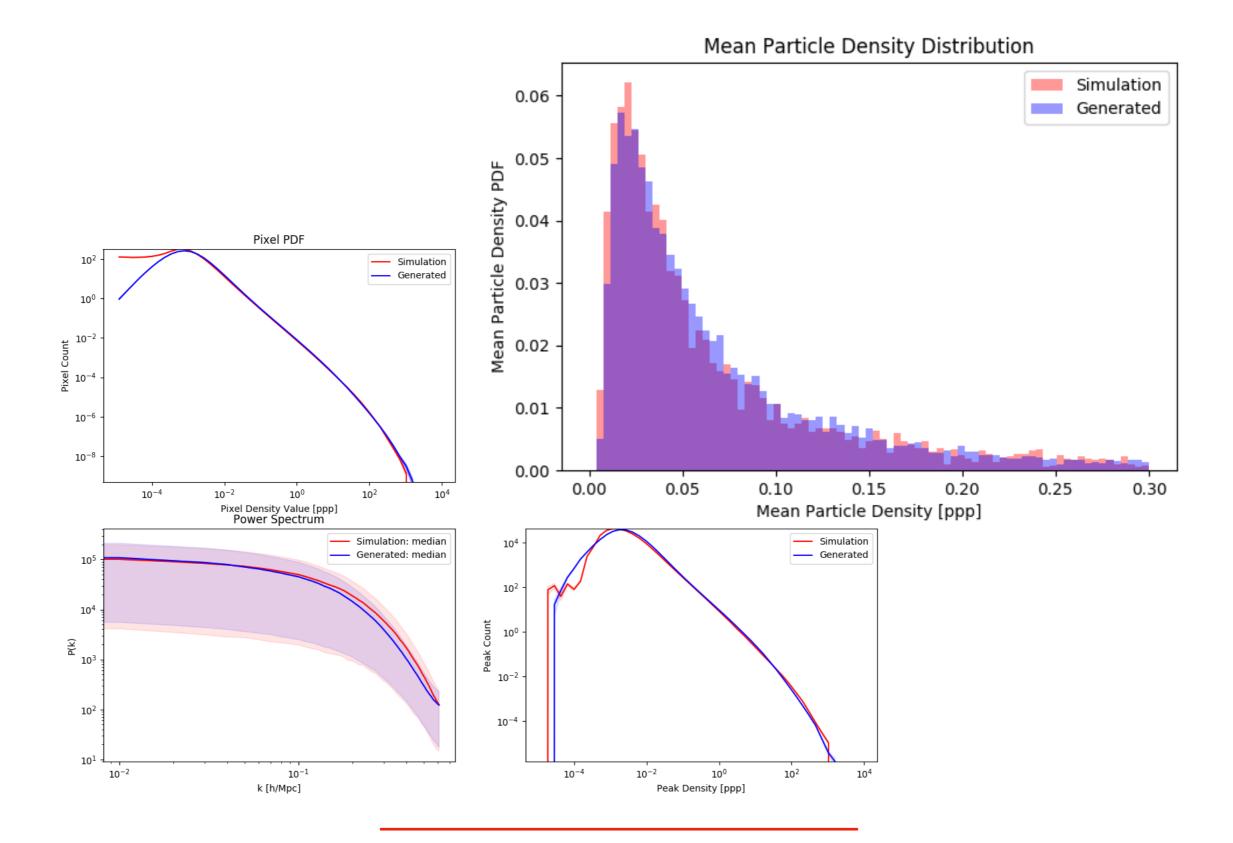


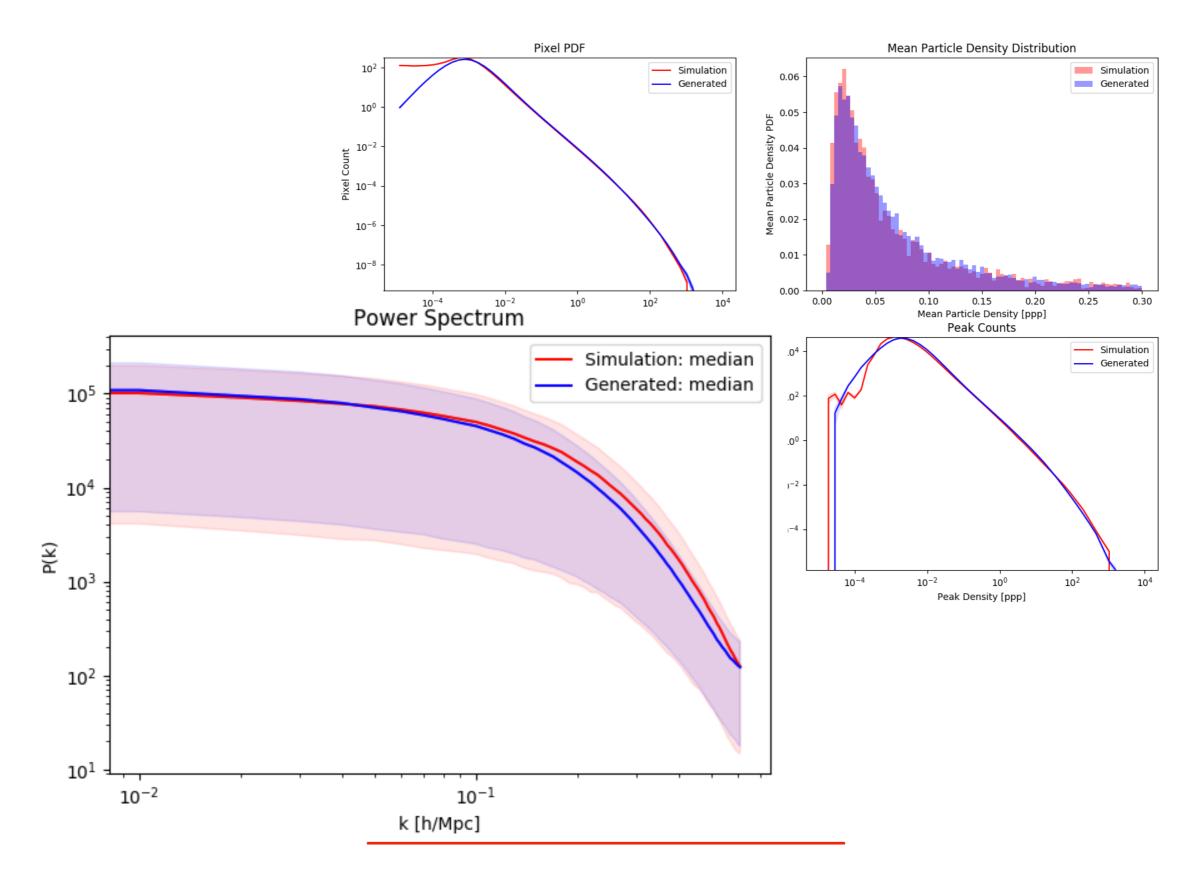
- 3D simulations :
 - Run with GADGET2
 - Box size (100 Mpc)³, (512)³ particles
 - Snapshot is divided into slices, from which we estimate a set of 2D log-density maps (76 000 images, size (50 Mpc)², 128² pixels) after augmentation
- 2D simulations :
 - Run with a 2D particle-mesh N-body code *
 - 1000 simulations, size (100 Mpc)², 512² particles each
 - From them, estimate 2D log-density maps (76 000 images, size (50 Mpc)², 128² pixels) after augmentation
 - \rightarrow We show GAN results for 3D simulations

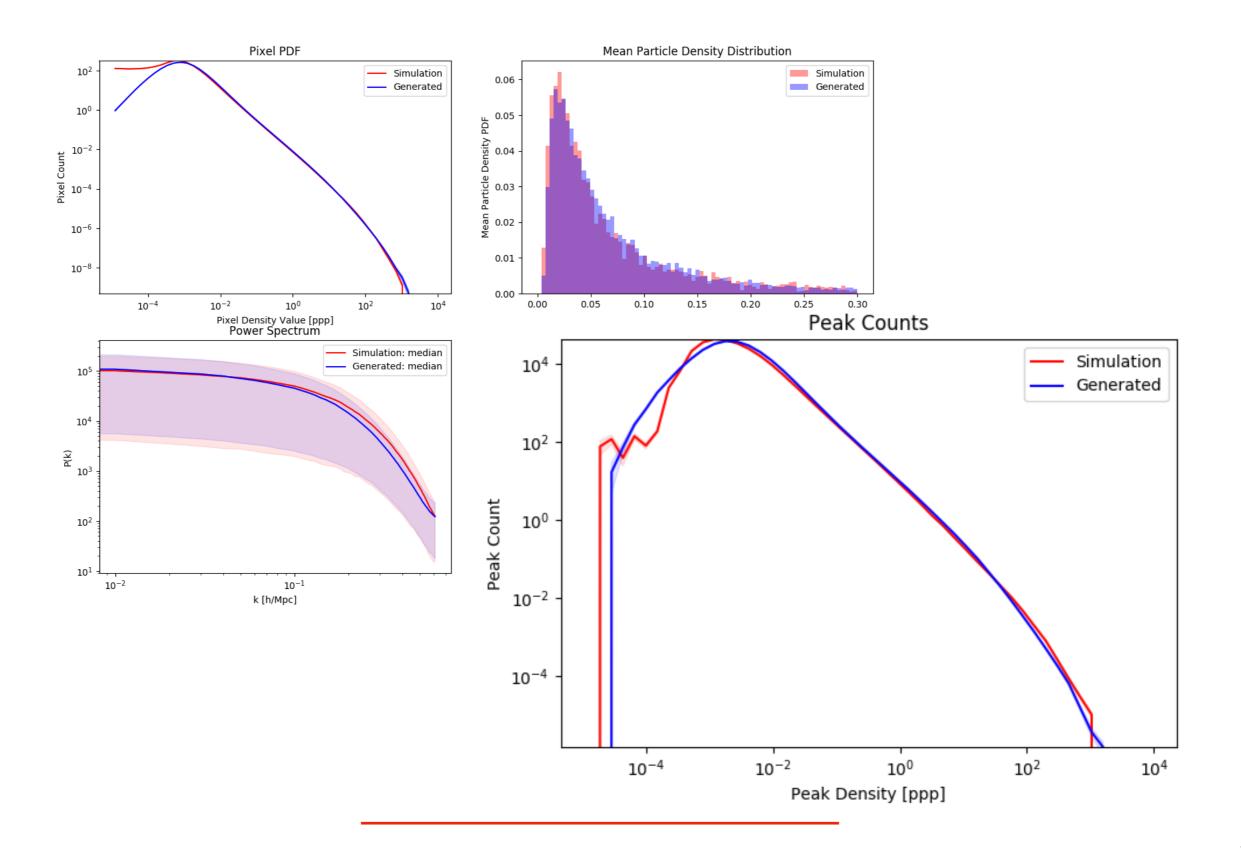




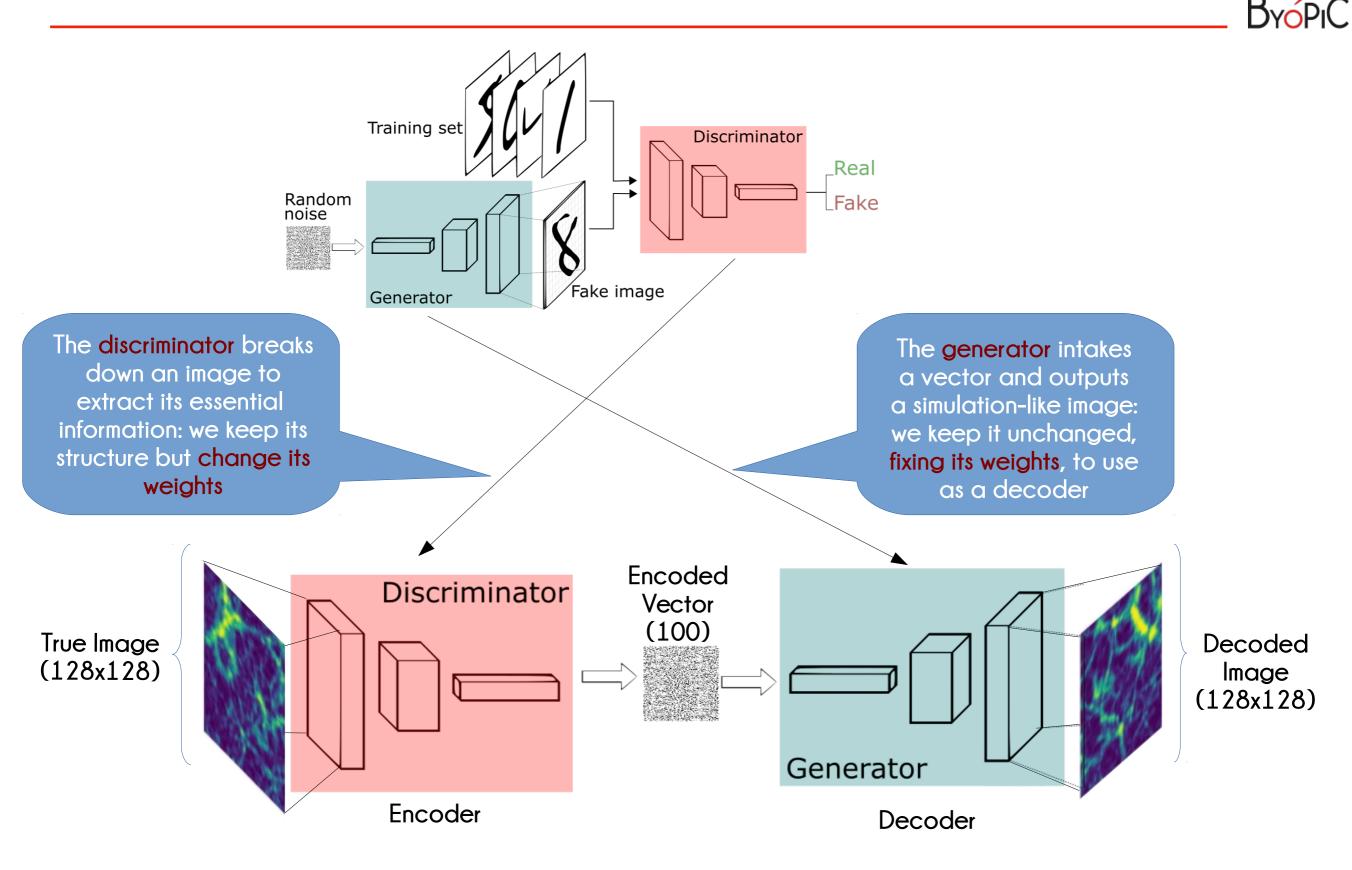








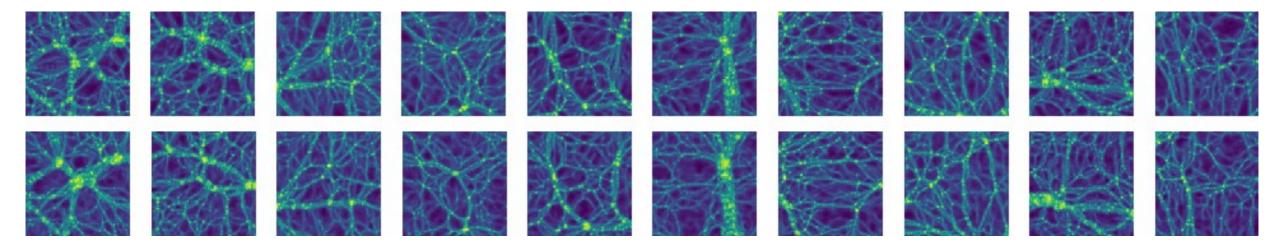
From GAN to Autoencoder



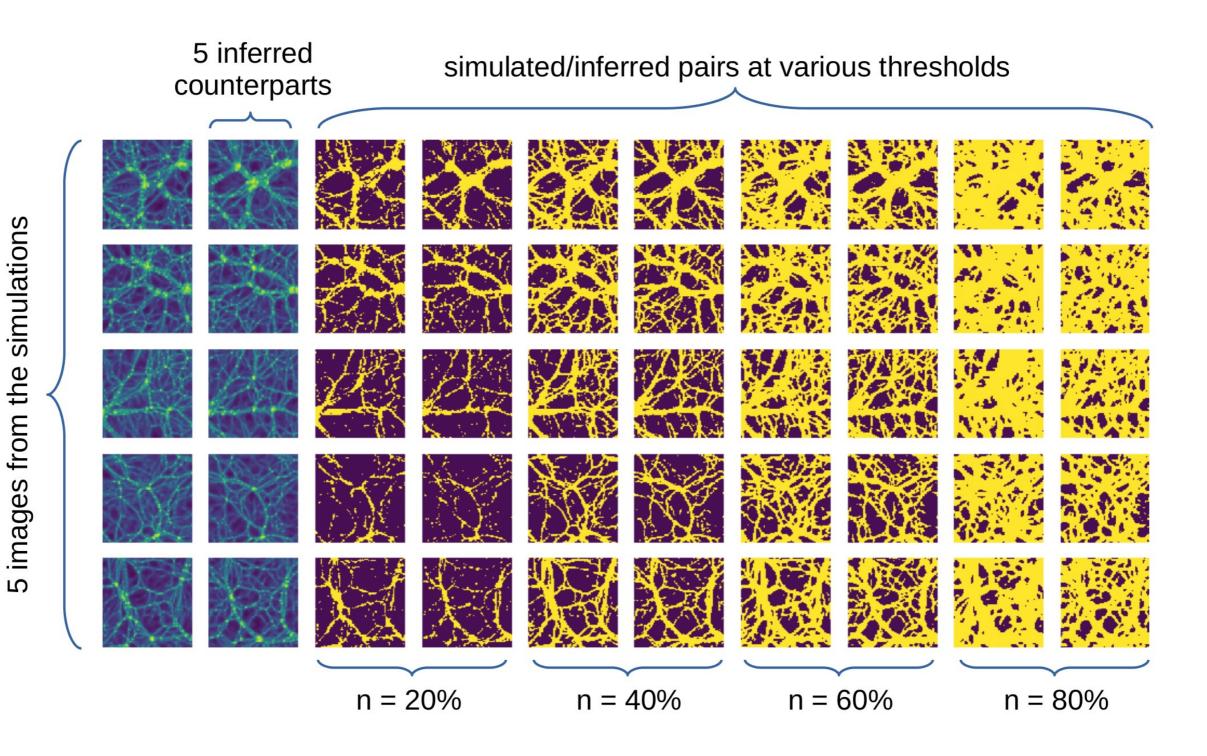
Autoencoders : visual inspection

 \rightarrow We show AE results for 2D simulations

10 "true" images randomly chosen from the simulations

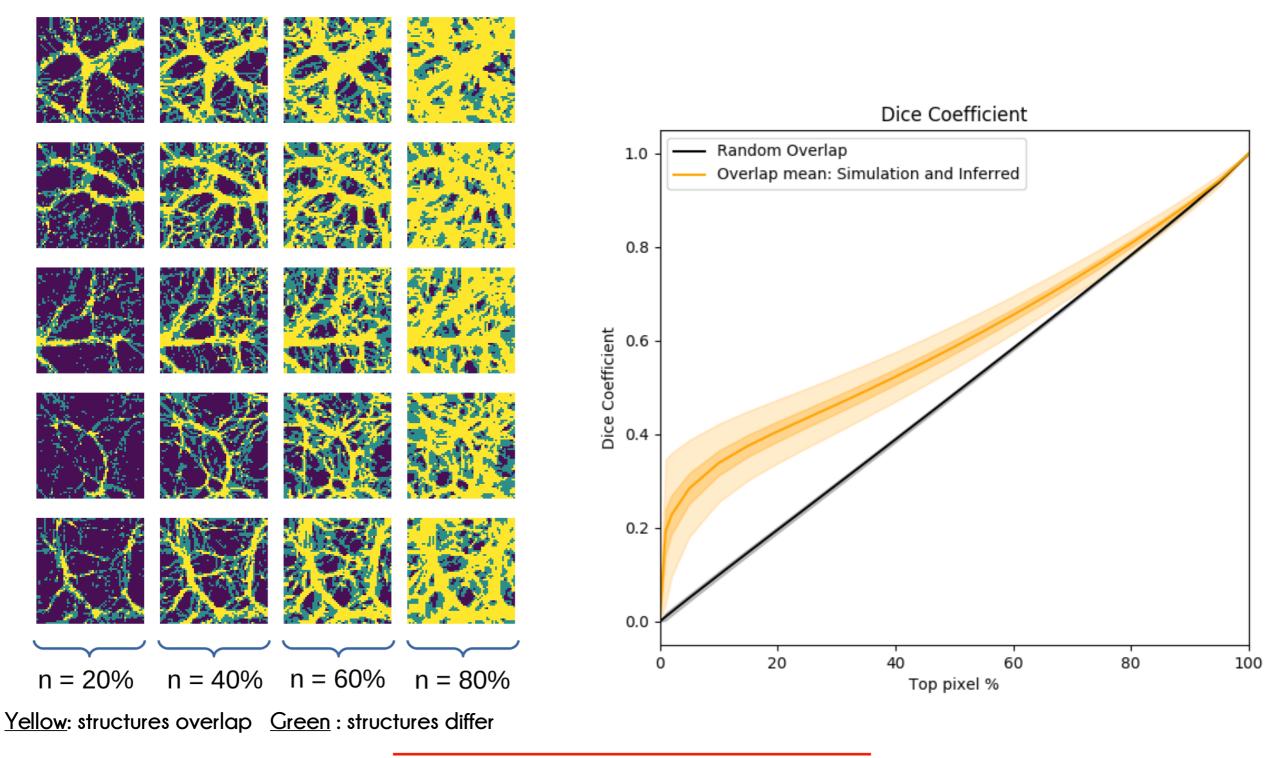


And their 10 counterparts as inferred by the AE



16

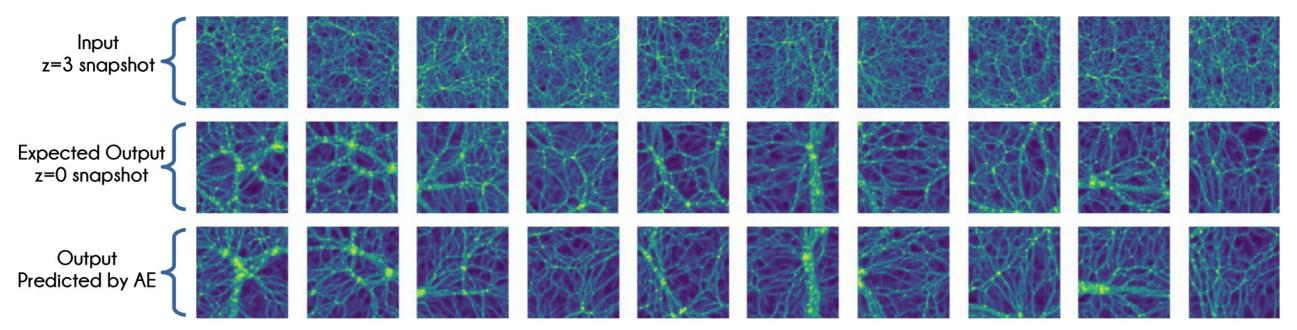
Overlap of the thresholded structures



- GANs are a good alternative for fast generation of simulation-like datasets
- We have a working AE that is easy to build from a GAN and provides imperfect but satisfactory results
- We have a series of statistical estimators to quantify agreement between input and output beyond visual inspection → gives a basis of comparison for future work

- Given GANs' great performance in 2D, we can expect this to translate well to 3D
- Using our working AE structure, we can now move on to use it for predictive purposes → encouraging results in 2D simulations already !

Sneak Peek : predicting z=0 images from z=3 inputs (2D simulations, test set results)



Thank You