

Chaotic diffusion of fundamental frequencies of the Solar System

Nam Hoang

Supervised by: Jacques Laskar and Federico Mogavero IMCCE – Observartoire de Paris

Milankovitch cycles

Milankovitch cycles:

Ice Archives

Petit, Jouzel, Raynaud et al, Nature, 1999

Fundamental Frequencies

Orbital Variation of the Earth can be approximated by a quasiperiodic series of combinations of frequencies:

- Eccentricity Frequencies (g_i)_{i=1.8}
- Obliquity Frequencies (s_i)_{i=1,8}

Example: Eccentricity Cycles of the Earth:

- o 405 kyr: g₂ g₅
- \circ 100 kyr: $g_4 g_5$, $g_3 g_2$, ...

Milankovitch cycles: Cyclostratigraphy

Kuiper et al. 2008 Science

Celestial Mechanics

- The Solar System is chaotic
 with Lyapunov exponent
 5 Myr⁻¹ (Laskar 1989)
- Fundamental Frequencies change over time
- Fundamental Frequencies can only be precisely determined up to 60 Myr (Laskar et al. 2011)

Numerical Implementation

- The averaged model of the solar System (Laskar 1990)
 - => Longer time step => 2000 times faster
 than the complete equations
- PDF is estimated by Kernel Density Estimator
- The PDF uncertainty is estimated by Moving Block Bootstrap (Kuffner et al. 2019)
 - The resampling unit a block of solutions

Goal: the PDFs of the Fundamental Frequencies

Benchmark:

- Consistency and Robustness (with respect to sampling of IC)
 - Response: Sample 12 sets of IC differently: X₁₋₄, Y₁₋₄, Z₁₋₄ generate 10,000 solutions each, and compare!
- Accuracy (with respect to the complete model)
 - Response: Compare with the solutions from the complete models
 (2500 complete solutions integrated in the future)
 (Laskar and Gastineau 2009 Nature)

Density Estimation of $g_{1,2,3,4}$, 95 % CI

Geological Application

The uncertainty of any astronomical signal is quantified!

Kuiper et al. 2008 Science

Next step

- A systematic formalism to combine the uncertainty from the geological records and the uncertainty from the astronomical frequencies:
 - Bayesian approach (Meyers & Malinverno 2018)

Geological Application: Newark-Hartford data

Eccentricity

Olsen, Laskar et al. 2019 PNAS Newark-Hartford data 210 Myr ago

Geological Application: Newark-Hartford data

Density Estimation, 95 % CI

Geological Application: Libsack core

Bandpass filtered Libsack signal with window of [2.6 "/yr, 4.53 "/yr]

Ma et al. 2017, Nature

Geological Application: Libsack core

Density Estimation, 95 % CI, batch $\{Z_i\}$

Geological Application: Libsack core

