Stellar binarity rate in Gaia EDR3 Blending in gravitational microlensing surveys

Tristan Blaineau

IJCLab

Elbereth Conference 2021

Gravitational microlensing

Microlensing

Gravitational lensing but only the **magnification** is detected.

This magnification is **time-dependent**.

Characteristic scales : Einstein angular radius θ_E (R_E); Einstein time $t_E = \theta_E/\mu$.

Search for heavy lenses as dark matter :

- Intermediate mass black holes as dark matter ($M\sim 100M_{\odot},\ \theta_E\sim 4mas,\ t_E\sim 700d)$
- Study deflector population by observing a lot of sources (in the Large Magellanic Cloud, LMC) over a long period (years).
- ⇒ estimate the number of expected lenses effects, compare to observed.
 ⇒ depends on : survey efficiency, number of monitored stars, ... etc

Gravitational microlensing

Microlensing

Gravitational lensing but only the **magnification** is detected.

This magnification is time-dependent.

Characteristic scales : Einstein angular radius θ_E (R_E); Einstein time $t_E = \theta_E/\mu$.

Stellar binarity rate in Gaia EDR3

Search for heavy lenses as dark matter:

- Intermediate mass black holes as dark matter ($M \sim 100 M_{\odot}$, $\theta_F \sim 4 mas$, $t_F \sim 700d$
- Study deflector population by observing a lot of sources (in the Large Magellanic Cloud, LMC) over a long period (years).
- ullet \Rightarrow estimate the number of expected lenses effects, compare to observed. ⇒ depends on : survey efficiency, number of monitored stars, ... etc

What is the effective number of monitored stars : Blending in the LMC

A source seen in an on-earth telescope can be (is) composed of **several** stars.

Figure: Left : image from Hubble. Right : image from EROS of the same zone. The red circles are identified sources in EROS and have a diameter of 3 arcsec.

What is the effective number of monitored stars : Blending in the LMC

A source seen in an on-earth telescope can be (is) composed of **several** stars.

Two competing effects on number of detection:

- Greater number of monitored stars.
- Light of amplified star blended with the others ⇒ lower relative amplification.

We need to understand what is hidden behind a catalogue source.

What is hidden behind a source?
 Comparison between catalogue and HST.

Figure: Spatial correlation function of HST toward LMC

What is hidden behind a source?
 Comparison between catalogue and HST.

Figure: Spatial correlation function of HST toward LMC

• In HST : minimum separation of \sim 0.5 arcsec \rightarrow 25000 AU in LMC.

What is hidden behind a source?
 Comparison between catalogue and HST.

Figure: Spatial correlation function of HST toward LMC

- In HST : minimum separation of \sim 0.5 arcsec \rightarrow 25000 AU in LMC.
- Einstein radius $\theta_E \sim 4$ mas \rightarrow $R_E \sim 200$ AU projected in LMC (for a deflector of $100 {\rm M}_{\odot}$).
- 2 sources closer than R_E are lensed together

What is hidden behind a source?
 Comparison between catalogue and HST.

Figure: Spatial correlation function of HST toward LMC

- In HST : minimum separation of \sim 0.5 arcsec \rightarrow 25000 AU in LMC.
- Einstein radius $\theta_E \sim 4$ mas \rightarrow $R_E \sim 200$ AU projected in LMC (for a deflector of $100 \mathrm{M}_{\odot}$).
- 2 sources closer than R_E are lensed together
- R_E < separation < 25000 UA : uniform or clustered ?

Use of Gaia EDR3

Aim: quantify the physical binary population unresolved in HST, in the scope of the blending.

We use *Gaia* EDR3 to study nearby stellar clustering (\rightarrow 3D data), and we extrapolate the results to the LMC (50 kpc).

- ullet between 50 and 500 pc, parallax relative error < 20%
- absolute magnitude interval, in Gaia completeness domain
- 20° outside the galactic plane

Red lines: *Gaia* completeness range.

Black lines: selected range.

First remarks

Uniform random distribution : $dP = 2\pi nN \sin \alpha d\alpha \approx 2\pi nN\alpha d\alpha$

n : stellar density

N: total number of stars

lpha : angular separation

P: number of pairs

- Overabundance at small scales ⇒ physically bound systems.
- pairs with separation < 10 arcsec : 99 % of stars appears only once
 ⇒ binary stars largely dominating.

Minimal separation in Gaia EDR3

- ullet Can't resolve stars closer than ~ 0.4 arcsec.
- ullet Density fluctuations (instrumental effects) \Rightarrow discard pairs < 2 arcsec

Figure: Angular separation 2D distribution along ecliptic longitudinal and latitudinal axis, red circle has 2 arcsec radius.

- Divide the sample in radial distance shells, and for each :
 - Count pairs by physical separation (in AU)

- Divide the sample in radial distance shells, and for each :
 - Count pairs by physical separation (in AU)
 - Subtract random coincidences contribution

- Divide the sample in radial distance shells, and for each :
 - Count pairs by physical separation (in AU)
 - Subtract random coincidences contribution
 - Normalize to number of stars in shell

We fit a power-law function to the weighted mean.

Integrate between R_E (200 AU) and 25000 AU.

Stellar binarity rate (sep > 200 AU)

 $f_{BS}(200AU) = 2.75\% \pm 0.04 \text{ (stat)}$

Discussion & Conclusion

Extrapolating toward LMC:

- ullet neighbourhood o LMC
- ullet magnitude ranges (binary rate among bright stars < faint stars)

Discussion & Conclusion

Extrapolating toward LMC:

- neighbourhood → LMC
- ullet \neq magnitude ranges (binary rate among bright stars < faint stars)

We quantified the binary system rate in unresolved separation domains (HST in LMC).

- Was not studied in the past microlensing surveys.
- \bullet Stellar binarity rate (for separation > 200 AU) : \sim 2.75% (assuming validity of extrapolation from neihgbourhood to LMC)
- ⇒ Limited impact on heavy lenses microlensing survey efficiency
 (→ on constraints on black holes fraction in the dark matter halo)

Discussion & Conclusion

Extrapolating toward LMC:

- ullet neighbourhood ightarrow LMC
- ullet magnitude ranges (binary rate among bright stars < faint stars)

We quantified the binary system rate in unresolved separation domains (HST in LMC).

- Was not studied in the past microlensing surveys.
- \bullet Stellar binarity rate (for separation > 200 AU) : \sim 2.75% (assuming validity of extrapolation from neihgbourhood to LMC)
- ullet \Rightarrow Limited impact on heavy lenses microlensing survey efficiency (\rightarrow on constraints on black holes fraction in the dark matter halo)

Thanks for your attention.

Backup

Parallax relative errors

Figure: Caption

Figure: Left : accidental pairs; Center : binary stars; Right: Red clump binary stars

Figure: From Raghavan et al. 2010