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1General context

𝐷

• Many datasets 𝐗 = {𝒙𝑖}𝑖=1
𝑁 are given as sets of 𝐷-dimensional datapoints. Identifying and extracting patterns in it is essential for

understanding the underlying physical process that generated it and infer further properties of the process at hand.

• Most of these datasets do not span the entire ℝ𝐷 space but stand only on a lower-dimensional manifold.

Health status of patients, 
𝐷 ~ 100Gas properties of the Cosmic 

Web, 𝐷 ~ 10

Galaxy distribution in the local 
Universe, 𝐷 = 3, 4

Images, 𝐷 ~ 103 − 106

Gene expressions, 𝐷 ~ 104 − 106



2

Galaxy distribution of a slice in the Illustris 
simulation.

Cosmological context: The Cosmic Web

Observed local galaxy distribution from SDSS,
𝑡 = 13.7 billions years

• The initial matter distribution in the universe is assumed Gaussian and homogeneous with small perturbations. These primordial

density fluctuations gave birth, under the effect of gravity, to the structures observed today (Zeldovich+89).

• This spatial arrangement, called the Cosmic Web, falls into 4 main types of structures: Clusters, Filaments, Sheets or walls, Voids.

Gravity

Initial density fluctuations, Gaussian field, 
𝑡 = 380 000 years



3Cosmological context: Filaments

• Filaments contain the largest fraction of mass in the Universe for a small part of the volume (Cautun+14).

• They also have been shown to host a large part of baryons in the form of hot and diffuse gas (Galarraga-Espinosa+20).

• Identifying filaments through the galaxy distribution is essential to (i) understand the impact of environment on the formation and

evolution of galaxies and (ii) study their physical properties in other observables (SZ, X-Ray, Lensing, etc.).

Mass and fraction volume in Cosmic Web elements 
(Cautun+14).

SZ Patch from the Planck tSZ map of the cluster pair A399-A401 
(Bonjean+18).



4Principal graph: Context

Schematic view of the aim of principal curve or graph extraction.

• Inspired from “principal curves” informally corresponding to curves passing “in the middle” (Hastie+89) of the point-cloud distribution.

• Principal graphs (Gorban+05) have been introduced to alleviate some restrictions in the curve formulation, as for instance the non self-

intersecting condition.

• Here, we propose a formulation where we assume that the observed set of points are generated by the underlying one-dimensional

manifold that we model as a graph whose nodes are Gaussian clusters.



5Principal graph & Mixture Models

• Method: Mixture Model ➔ the probability that a datapoint is found at a position 𝒙𝑖 ∈ ℝ𝐷 given parameters 𝚯 of the model is

𝑝 𝒙𝑖 𝚯) = ෍

𝑘=1

𝐾

𝜋𝑘 𝒩 𝒙𝑖 𝚯) + 𝛼𝜌(𝒙𝑖)

with 𝚯 = 𝛼, 𝜋1, … , 𝜋𝐾 , 𝝁1, … , 𝝁𝐾 , 𝚺1, … 𝚺𝐾 , 𝜌 𝒙 the uniform density over the data support volume 𝒟 ⊂ ℝ𝐷.

• Assumption: Spherical Gaussian clusters, ∀ 𝑘 ∈ {0,… , 𝐾}, 𝚺𝑘 = 𝑰𝐷𝜎𝑘
2.

Schematic view of the aim of principal curve or graph extraction and 
basis of the proposed formalism.

Gaussian centres 𝝁𝑘 𝑘=1
𝐾

Variances 𝜎𝑘 𝑘=1
𝐾

Paves the distribution 
with Gaussians clusters

Assumes an additional 
uniform background



6Regularised mixture models (RMM)

Gaussian centres 𝝁𝑘 𝑘=1
𝐾

Variances 𝜎𝑘 𝑘=1
𝐾

Schematic view of the aim of principal curve or graph extraction and 
basis of the proposed formalism.

Graph edges

• The graph acts like a prior on the parameter space constraining the solution as

log 𝑝 𝝁 ∝ −
𝜆𝜇

2
σ𝑖=1
𝐾 σ𝑗=1

𝐾 𝑨𝑖𝑗 𝝁𝑖 − 𝝁𝑗 2

2
with 𝐴𝑖𝑗 = ቊ

1 if i ~ j,
0 otherwise.

➔ Gaussian form with a 𝐿2 form constraining the smoothness of an estimate. Here, we do not impose the smoothness on the Euclidean

space but directly using the graph structure 𝒢.

Encodes the graph 
topology



7Full model and learning

• Optimal values of the parameters 𝚯 can be obtained by using the Expectation-Maximisation algorithm (EM, Dempster+77, Bishop+06)

𝚯(𝑡+1) = argmin𝚯 ෍

𝑖=1

𝑁

෍

𝑘=1

𝐾

𝑝𝑖𝑘
𝒙𝑖 − 𝝁𝑘 2

2

𝜎𝑘
2 +෍

𝑖=1

𝑁

𝑝𝑖
𝑏𝑘𝑔

log 𝜌(𝒙𝑖) + 𝜆𝜇෍

𝑖=1

𝐾

෍

𝑗=1

𝐾

𝑨𝑖𝑗 𝝁𝑖 − 𝝁𝑗 2

2
+⋯

• 𝜆𝜇 is a trade-off parameter between how much the graph should fit the data and how much it should be smooth.

• EM leads to the following update equations:

𝑝𝑖𝑘 = 𝑝 𝑧𝑖 = 𝑘 𝒙𝑖 , 𝚯
(𝑡)) =

𝜋𝑘𝒩 𝒙𝑖 𝜽𝑘)

σ
𝑘′=1
𝐾 𝜋𝑘′𝒩 𝒙𝑖 𝜽𝑘′)+𝛼𝜌(𝑥𝑖)

𝑝𝑖
𝑏𝑘𝑔

= 𝑝 𝑧𝑖 = 𝐾 + 1 𝒙𝑖 , 𝚯
(𝑡)) =

𝛼𝜌(𝑥𝑖)

σ
𝑘′=1
𝐾 𝜋𝑘′𝒩 𝒙𝑖 𝜽𝑘′)+𝛼𝜌(𝑥𝑖)

𝝁𝑘
(𝑡+1)

=
σ𝑖=1
𝑁 𝑝𝑖𝑘

𝜎𝑘
2 𝒙𝑖 + 2𝜆 σ𝑗=1

𝐾 𝑨𝑘𝑗𝝁𝑗
(𝑡+1)

σ𝑖=1
𝑁 𝑝𝑖𝑘

𝜎𝑘
2 + 2𝜆 σ𝑗=1

𝐾 𝑨𝑘𝑗

𝜎𝑘
(𝑡+1)

=
1

𝐷 σ𝑖=1
𝑁 𝑝𝑖𝑘

σ𝑖=1
𝑁 𝑝𝑖𝑘 𝝁𝑘 − 𝒙𝑖

T 𝝁𝑘 − 𝒙𝑖

1/2

𝜋𝑘
(𝑡+1)

=
1

𝑁
σ𝑖=1
𝑁 𝑝𝑖𝑘

𝛼(𝑡+1) =
1

𝑁
σ𝑖=1
𝑁 𝑝𝑖

𝑏𝑘𝑔

Data fidelity term

Regularisation 
parameter

Probabilistic association terms to 
Gaussians or background

Topological prior given by 
the graph structure



8Full model and learning

Galaxies {𝑥𝑖}𝑖=1
𝑁

Nodes {𝑓𝑘}𝑘=1
𝐾

Edges {𝐴𝑖𝑗}

3*Variances {𝜎𝑘
2}𝑘=1
𝐾

• Optimal values of the parameters 𝚯 can be obtained by using the Expectation-Maximisation algorithm (EM, Dempster+77, Bishop+06)

𝚯(𝑡+1) = argmin𝚯 ෍

𝑖=1

𝑁

෍

𝑘=1

𝐾

𝑝𝑖𝑘
𝒙𝑖 − 𝝁𝑘 2

2

𝜎𝑘
2 +෍

𝑖=1

𝑁

𝑝𝑖
𝑏𝑘𝑔

log 𝜌(𝒙𝑖) + 𝜆𝜇෍

𝑖=1

𝐾

෍

𝑗=1

𝐾

𝑨𝑖𝑗 𝝁𝑖 − 𝝁𝑗 2

2
+⋯

• 𝜆𝜇 is a trade-off parameter between how much the graph should fit the data and how much it should be smooth.

Data fidelity term

Regularisation 
parameter

Probabilistic association terms to 
Gaussians or background

Topological prior given by 
the graph structure



9Graph prior: Minimum spanning tree

• Historically the first method used

to exhibit the filamentary structure

(Barrow+85). It associates to a

galaxy distribution a unique graph

with no parameter minimising the

global distance.

• The proposed approach:

✓ Leads to a smoother version

which keeps the same definition

for filaments (Bonnaire+20).

✓ Can be extended to take into

account cycles that can be

observed in the spatial

distribution. (Bonnaire+20,

submitted).

✓ Can describe the local size of the

filamentary pattern through the

variances.

Fig. 8. Galaxy distribution of a slice of the 
IllustrisTNG simulation (Pillepich+18).

Fig. 9. The corresponding minimum 
spanning tree.

Fig. 10. The smooth BMST learnt by the 
T-ReX algorithm (Bonnaire+20, 

Bonnaire+21).

BEFORE

AFTER



10Astrophysics with the RMM

Evolution of the connectivity 𝜅 with 
the mass of the node (Gouin+21).

The connectivity 𝜅 is the number of detected filaments 
crossing a spherical volume around a massive node.

A node accreting matter through filaments in a 
simulation (Credit: Miguel Aragon-Calvo)

Study the physical properties of 

clusters (mass, shape, accretion 

history, etc.) with respect to 

their connectivity

Toy dataset with 20% background noise (Black dots). The learnt 
RMST (red) with 3*variances of nodes (grey shaded areas).

Simulation of galaxy distribution coloured by 
with respect to the background (grey points) or 

to each branch (coloured points).

Study the physical properties of 

galaxies (mass, star formation, 

etc.) and their host filaments 

(length, thickness, curvature)



11Summary and perspectives

Summary

• Filaments are interesting objects to assess cosmological/astrophysical hypotheses

• Graph regularised mixture models can be used to extract a model of the 1D manifold that generated the data

• Not presented: Extensions of the tree topology (persistent homology), application of the RMM to other problematics (road network

extraction), exploitation of the reformulation in statistical physics of the clustering to gain an insight on the dataset

Future works

• Information content of cosmic structures (cosmological parameters)

• Study the links between the characteristics of filaments and their galaxies

• Time evolution of the graph structure (in simulation)

• Write a manuscript…



Additional & back-
up slides
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1. Nodes

2. Filaments

3. Walls

4. Voids

21.3Mpc/h deep slice of DM density as computed by Illustris simulation, 
width is 106.5Mpc/h (Vogelsberger M. et al., 2014)

Time
5.9 Gyrs 3.3 Gyrs 2.1 Gyrs

The Cosmic Web
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Name Global methodology Filaments definition

MST
Barrow et al., 1985

Compute the Minimum Spanning tree over the 

galaxy distribution

Branches of a post-processed version of the 

MST

MMF
Aragon-Calvo, M., et al. 2007

Nexus
Cautun M. et al., 2013

Scale-space representation of the continuous 

density field*

Locally defined through eigenvalues of

the Hessian matrix

T-Web
Forero-Romero et al., 2009

Compute the tidal shear tensor and extract the 

morphology of the field

Locally defined through eigenvalues of

the tidal shear tensor

DisPerSE
Sousbie et al., 2011

SpineWeb
Aragón-Calvo, M., et al., 2010

Study the topological properties of the continuous 

density field* through the Discrete Morse Theory

Connections between singularities (maxima,

minima and saddle points)

Bisous
Tempel et al., 2014

Stochastic fit of parametric and interactive 

cylinders in the galaxy distribution
Aligned and close cylinders

SCMS
Chen et al., 2015

Subspace Constraint Mean-Shift algorithm is 

applied on galaxy distribution
Principal curves of the point cloud distribution

* Continuous density fields are obtained by performing a Delaunay Tessellation Field Estimation (DTFE)

Overview of (a few) existing procedures
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Example of critical points with the integral lines thus 
delimiting ascending (black) or descending (white) 

manifolds (Sousbie et al., 2010)
Skeleton provided by DisPerSE (2𝜎 persistence, 1 smoothing of the DTFE) on 

a 2Mpc/h slice of Illustris-3

DisPerSE (Discrete Persistent Structure Extractor)

▪ Identify topological features (peaks, voids, walls and filaments) from a N-D distribution

▪ The persistence measures the robustness of the extracted features to remove spurious detections
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▪ Uses elements from image processing to build a scale-space representation of

the continuous field (obtained via DTFE)

▪ The strength of Nexus is to compute the signature over a range of scales

▪ Steps:

1. Smooth the field with a gaussian kernel of variance 𝑅𝑛

2. Perform the spectral decomposition of the Hessian at each position

3. Compute the signature for each position and structure

4. Update 𝑅𝑛+1 = 2 𝑅𝑛 and iterate

▪ Physical criterion are then used to threshold the signature values

Images from Cautun+14.

Nexus
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Comparison of existing procedures. Filaments are in blue. (Images from Linbeskind+17)

Different definitions lead to different results

Bisous

Spineweb DisPerSEMST

MMF T-WebNexus+

Halos
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(left) A 2Mpc/h slice of Illustris-3 with the 2𝜎 (top) or 5𝜎 (bottom)
persistence DisPerSE skeleton (right) Probability map thresholded at
𝑝 = 0.1 (top) and 𝑝 = 0.25 (bottom)

T-ReX vs DisPerSE (2D)
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𝑻𝒖𝒔 𝑻𝒔 𝑵 𝑫 𝑩

𝑻𝒖𝒔 1 1 0.85 0.62 0.37

𝑻𝒔 0.48 1 0.62 0.62 0.24

𝑵 0.53 0.81 1 0.62 0.30

𝑫 0.22 0.46 0.35 1 0.12

𝑩 0.66 0.87 0.86 0.62 1

𝐻1

𝐻2
• The measurement of the similarity between results highlights differences:

𝑆 𝐻1, 𝐻2 =
𝐻1 ∩ 𝐻2
|𝐻1|

where 𝐻1 and 𝐻2 are two detection maps and ∙ denotes the cardinal

• 𝑆 𝐻1, 𝐻2 can be seen as the ratio of true positive results provided by 𝐻1

when considering 𝐻2 as a reference

T-ReX vs Nexus+ vs Bisous vs DisPerSE (3D)
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• A graph 𝐺 = (𝑉, 𝐸, 𝑤) is a mathematical object made of nodes 𝑉𝑖 , of edges linking nodes together {𝐸𝑖} with a weight 𝑤𝑒 associated to

each edge.

A quick introduction to graph theory

• Examples of graphs:

• Internet => Nodes are URL addresses. Two nodes are connected if there is a link allowing the passage of on to another.

• Road or air network => Nodes are cities (or airports) and are linked if there is a path between the two.

• Cosmic Web => Nodes are galaxies. Two galaxies are linked if they are sufficiently close with 𝑤𝑖𝑗 = 𝑥𝑖 − 𝑥𝑗 2
. We can also

extend this notion to the entire CW with nodes and filaments.

• A graph can be represented by a matrix describing interactions

between nodes: the adjacency matrix whose value is 1 when

nodes are connected and 0 otherwise.

𝐴 =

0 1 1 0 0
1 0 1 1 0
1 1 0 1 1
0 1 1 0 0
0 0 1 0 0

𝑉1

𝑉3

𝑉4

𝑉5

𝑉2
𝑒12

𝑒13

𝑒35

𝑒34

𝑒24

𝑒23
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• The Laplacian matrix is another way to algebraically represent a graph, with 𝑫 the diagonal degree matrix, 𝑨 the adjacency matrix,

𝑳 = 𝑫 − 𝑨

• In the RMM, we constrain the smoothness of the graph through log 𝑝 𝝁 ∝ −
𝜆𝜇

2
σ𝑖=1
𝐾 σ𝑗=1

𝐾 𝑨𝑖𝑗 𝝁𝑖 − 𝝁𝑗 2

2
.

• We look for the graph that is “short” AND fits the data => smoothness constraint

• The quadratic summation can be written as the norm of 𝝁 on the graph structure can be written in terms of the Laplacian matrix as

𝝁 𝒢
2 = σ𝑖=1

𝐾 σ𝑗=1
𝐾 𝑨𝑖𝑗 𝝁𝑖 − 𝝁𝑗 2

2
= 2 Tr 𝝁T𝑳𝝁 .

• This is equivalent to constraining the 𝐿2 of a vector to constrain its smoothness in the Tikhonov regularisation but the norm is being 

computed on the graph structure 𝒢.

Graph Laplacian and smoothness

Total length of the graph



22Regularised mixture models

• The graph acts like a prior on the parameter space constraining the solution as

log 𝑝 𝝁 ∝ −
𝜆𝜇

2
σ𝑖=1
𝐾 σ𝑗=1

𝐾 𝑨𝑖𝑗 𝝁𝑖 − 𝝁𝑗 2

2
with 𝐴𝑖𝑗 = ቊ

1 if i ~ j,
0 otherwise.

• This prior has a Gaussian form with a 𝐿2 constraint like usually done when constraining the smoothness of an estimate. Here the idea is

the same, except that we do not impose the smoothness on the Euclidean space but directly using the graph structure 𝒢.

Fully encodes the 
graph information

Schematic view of the aim of principal graph extraction and basis of 
the proposed formalism.

• Additional embedding of the spatially coherent evolution of the learnt

variances

log 𝑝 𝜎𝑘
2 ∝ −𝜆𝜎[log 𝜎𝑘

2 + 𝜎𝒩𝑘
/𝜎𝑘

2]

with 𝜎𝒩𝑘
= 𝒩𝑘

−1σ𝑖∈𝒩𝑘
𝜎𝑖
2 and 𝑁𝑘 = 𝑖 𝐴𝑖𝑘 = 1 the set of neighbouring nodes 

of 𝑘 in the graph is the mode of the distribution.

• A prior on amplitudes is used to avoid singular solutions, log 𝑝(𝜋𝑘) ∝ −
𝜆𝜋

2

1−𝛼

𝐾
− 𝜋𝑘

2
.

• The full prior distribution on 𝚯 is log 𝑝 𝚯 = log 𝑝(𝝁) + σ𝑘 log 𝑝(𝜎𝑘
2) + σ𝑘 log 𝑝(𝜋𝑘).

Gaussian centres 𝝁𝑘 𝑘=1
𝐾

Variances 𝜎𝑘 𝑘=1
𝐾

Graph edges



23T-ReX: Effects of hyper-parameters

• Hyper-parameters of the full model are 𝒴 = (𝜆𝜇 , 𝜆𝜎 , 𝜆𝜋) and 𝐾. All hyper-parameters in 𝒴 have an impact on the force of the prior of

the corresponding parameter indicated as a subscript.

• There is a wide range of values for which the algorithm provides similar results.



24T-ReX: Initialisation

• There are four parameters in the model are 𝝁, 𝜎𝑘 𝑘=1
𝐾 , 𝜋𝑘 𝑘=1

𝐾 and 𝛼 to initialise.

• 𝝁 is initialised with datapoints 𝑿, possibly with a random sub-sampling or gridding to have 𝐾 ≪ 𝑁.

• Variances can be initialised as ∀𝑘 ∈ 1,… ,𝐾 , 𝜎𝑘
2 = 𝜎0

2 with 𝜎0
2 chosen in a similar way as in Chen+14 for the Subspace Constrained

Mean-Shift algorithm (SCMS), using prescription from kernel-density estimation method like the Silverman rule (Silverman+86)

𝜎0 = 𝐴0 𝑁𝑑 + 2𝑁 −
1

𝑑+4𝜎min

where 𝜎min is the minimum variance in all dimensions of the datasets.

• Amplitudes of Gaussian clusters are initialised uniformly as ∀𝑘 ∈ 1,… , 𝐾 , 𝜋𝑘 =
1−𝛼

𝐾

• 𝛼, the amplitude of uniform background should be initialised as a first guess of the outliers level in the dataset

• Although EM is known to highly depend on the initialisation because it can be trapped in local maxima near the initialisation point,

there are ways to alleviate the problem using simulated annealing procedures (Bonnaire+20b).

• When the dataset is large, these solution comes with a large computational cost. In all our runs, we did not find this problem sufficiently

significant to invoke such solutions.



25T-ReX: Average graph prior

• Even if it has a lot of convenient features, the MST topology can not represent cycles.

• In the model, the graph intervenes only through its algebraic representation (like the adjacency or Laplacian matrices).

• We are not restricted to the MST topology and we can obtain a regularised version of any kind of graph as long as we can compute

those matrices, with ഥ𝑨 = 1/𝐵σ𝑏=1
𝐵 𝑨𝑏,

𝑨 𝑖𝑗 = 𝑨MST 𝑖𝑗 , ഥ𝑨>𝑚 𝑖𝑗

Turquoise and orange: Persistent 
homology based prior (Kurlin+15).

Red: MST.
Dark blue: Added edges.

Probability distribution function of ഥ𝑨 values. 
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• To assess the reliability of the path obtained using the learning and get rid of the tree topology (not allowing cycles), we can use a

bootstrap method to get 𝐵 tree estimates.

• Those trees allow to compute a probability (frequency) to cross a given region of the space during all the realisations

Probability maps



27Expectation-Maximisation (1)

• Considering a Mixture Model with 𝐾 components, we have the log-likelihood

log 𝑝(𝑿|𝚯) =෍

𝑖=1

𝑁

log ෍

𝑘=1

𝐾

𝜋𝑘 𝑓 𝒙𝑖 𝚯) .

• This log-likelihood cannot be optimised analytically because of the summation occurring inside the logarithm function.

• To alleviate this problem, EM introduces a set of latent variables 𝒁 = 𝑧𝑖 𝑖=1
𝑁 that describes the partition of the dataset such that 𝑧𝑖 ∈

{1,… , 𝐾} encodes which one of the 𝐾 Gaussian component generated the observation 𝒙𝑖 .

• The new log-likelihood conditioned on 𝒁 can be written

log 𝑝 𝑿, 𝒁 𝚯) = ℒ 𝚯; 𝐗, 𝐙 = ෍

𝑖=1

𝑁

log 𝜋𝑧𝑖𝑓 𝒙𝑖 𝚯) .

• This completed log-likelihood can be optimised more easily an alternating procedure in which we estimate the values of 𝑧𝑖 and then 

maximise the likelihood.



28Expectation-Maximisation (2)

• We can re-write the likelihood as a marginal over the latent variables

𝑝 𝑿 𝚯) =෍

𝒁

𝑝 𝑿, 𝒁 𝚯)

• For any distribution over the latent variables 𝑞 𝒁 , we have

log 𝑝(𝑿|𝚯) = log෍

𝒁

𝑞(𝒁)
𝑝(𝑿, 𝒁|𝚯)

𝑞(𝒁)

• Jensen’s inequality tells us that, from the concavity of the log function and considering σ𝒁 𝑞(𝒁) = 1,

log 𝑝 𝑿 𝚯) ≥෍

𝒁

𝑞 𝒁 log
𝑝 𝑿, 𝒁 𝚯)

𝑞 𝒁
= 𝐿 𝑞,𝚯 .

• Hence, 𝐿 𝑞,𝚯 defines a lower-bound on the log-likelihood. Increasing the lower-bound consequently should increase the likelihood.

• Re-writing 𝐿(𝑞, 𝚯) using the decomposition 𝑝 𝑿, 𝒁 𝚯) = 𝑝 𝒁 𝑿,𝚯)𝑝 𝑿 𝚯), we get that

log 𝑝 𝑿 𝚯 = 𝐿 𝑞, 𝚯 + 𝐷𝐾𝐿 𝑞(𝒁)||𝑝 𝐙 𝐗,𝚯

with 𝐷𝐾𝐿(𝑞| 𝑝 = σ𝑞 log
𝑞

𝑝
≥ 0 the Kullback-Leibler divergence.



29Expectation-Maximisation (3)

• Hence, we know that we need 𝐷𝐾𝐿 𝑞||𝑝 𝐙 𝐗,𝚯 to cancel out to maximise the lower-bound hence leading to the E-step

ො𝑞 𝒁 = 𝑝 𝒁 𝑿,𝚯

• We can then compute the lower-bound, i.e. the expectation over ො𝑞(𝒁), 𝐿 ො𝑞, 𝚯 = σ𝑍 ො𝑞 𝒁 log
𝑝 𝑿,𝒁 𝚯)

ො𝑞 𝒁
.

• The set of new parameters is obtained by maximising 𝐿(ො𝑞, 𝚯) in the 

M-step as

𝚯t+1 = argmax𝚯 L ො𝑞, 𝚯 .

• EM has the following theoretical properties:

1. Monotonic increase of the log-likelihood at each iteration,

2. Guaranteed convergence towards a local maximum of the 

log-likelihood (although this maximum is local and can 

depend on the initialisation),

3. Computational complexity of 𝑂(𝑁𝐾𝐷).

Schematic view of the EM algorithm iteratively finding the 
maximum of the log-likelihood. Image from Bishop06.
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• The probabilistic formalism of mixture model allows the assignment of each data point (galaxy) to the component, among the 𝐾 + 1, that

the most probably generated it (background or node of the graph).

• In practice, we use the latent variables 𝑧𝑖 ∈ 0,… , 𝐾 + 1 the assignment of the galaxy 𝑖 at position 𝑥𝑖. During the E-step, we compute

∀ 𝑘 ∈ 0,… , 𝐾 + 1 , 𝑝𝑖𝑘 = 𝑝 𝑧𝑖 = 𝑘 𝒙𝑖 , 𝜽𝑘)

• Hence we can estimate ො𝒛𝒊 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝒌

𝒑𝒊𝒌 and get the most probable component.

• Together with the identification of filaments through branches, we can associate each galaxy to a given filament

Galaxy classification using the RMM

Fig. 11. Toy dataset with 20% background noise (Black dots). The 
learnt RMST (red) with 3*variances of nodes (grey shaded areas).

Fig. 12. Datapoints coloured by values of Ƹ𝑧𝑖 with 
respect to the background (grey points) or to 

each branch (coloured points).

Fig. 13. Proportions of galaxies in each 
environment of the Eagle simulation identified 

by T-ReX.
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• Cluster halos are nodes of the Cosmic Web

• The halo connectivity increases with its mass coherent with the hierarchical formation scenario.

• Moreover, we show that connectivity traces the dynamical state of halos and this result can be attributed to 2 distinct assembly

histories of relaxed and unrelaxed halos (Gouin+21, in prep.).

Halo connectivity in the Cosmic Web

Fig. 17. Evolution of the connectivity with the mass 
of the cluster for different accretion histories.

Fig. 16. Evolution of the connectivity 𝜅 with the 
mass of the halo.

Fig. 15. Illustration of the definition of the 
connectivity

Fig. 14. A node accreting matter through filaments in 
simulation (Credit: Miguel Aragon-Calvo)



32Statistical physics formulation

• The clustering problem aims at partitioning a given dataset 𝑿 = 𝒙𝑖 𝑖=1,…,𝑁 into 𝐾 several classes.

• It can be rephrased in statistical physics terms by associating an energy cost to a given configuration (i.e., a set 𝒀 = 𝑦𝑖 𝑖=1,…,𝑁

with 𝑦𝑖 ∈ {1,… , 𝐾} describing the association of the 𝑖th datapoint) and a set of clusters’ positions 𝝁

< 𝐸 𝝁, 𝒀 > =෍

𝑖=1

𝑁

෍

𝑘=1

𝐾

𝑝 𝑦𝑖 = 𝑘 𝐸𝑘 𝝁𝑘 , 𝒙𝑖 .

• The free energy can be written, assuming a quadratic cost 𝐸𝑘 𝝁𝑘 , 𝒙𝑖 = 𝒙𝑖 − 𝝁𝑘 2
2, as

𝐹 = −
1

𝛽
෍

𝑖=1

𝑁

ln෍

𝑘=1

𝐾

𝑒−𝛽 𝒙𝑖−𝝁𝑘 2
2
.

• We see that 𝐹 ∝ − log 𝑝 𝑿 𝚯 , the log-likelihood of a Gaussian Mixture Model with centre positions 𝝁 and variances 𝜎𝑘
2 = 1/2𝛽

➔Maximizing log 𝑝(𝑿|𝚯) is equivalent to minimizing the free energy



33Reformulation of the problem

• The clustering problem aims at partitioning a given dataset 𝑿 = 𝒙𝑖 𝑖=1,…,𝑁 into 𝐾 several classes.

• It can be rephrased in statistical physics terms by associating an energy cost to a given configuration (i.e., a set 𝒁 = 𝑧𝑖 𝑖=1,…,𝑁 with 𝑧𝑖 ∈

{1,… , 𝐾} describing the association of the 𝑖th datapoint) and a set of clusters’ parameters 𝝁

𝐸 𝝁, 𝒁 =෍

𝑖=1

𝑁

෍

𝑘=1

𝐾

𝑝 𝑧𝑖 = 𝑘 𝐸𝑘 𝝁𝑘 , 𝒙𝑖 .

• The principle of maximum entropy tells us that, among all the probabilities that maximizes 𝐸, the Boltzmann distribution is the least 

informative

𝑝 𝝁, 𝒁 =
𝑒−𝛽𝐸(𝝁,𝒁)

σ𝒁 𝑒
−𝛽𝐸(𝝁,𝒁)

.

• Marginalizing to obtain the most probable set of parameters

𝑝 𝝁 =෍

𝒁

𝑝 𝝁, 𝒁 =
𝑍(𝝁)

σ𝝁𝑍(𝝁)

• And, in term of free energy 𝐹

𝑝 𝝁 =
𝑒−𝛽𝐹(𝝁)

σ𝝁 𝑒
−𝛽𝐹(𝝁)
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• Simulated annealing in EM was introduced by Ueda+98

to overcome the problem of dependency on the

initialisation.

• The variance plays the role of the temperature.

• When 𝝈𝟐 > 𝑻𝒄
𝐡𝐚𝐫𝐝, all clusters are collapsed at the centre

of mass of the dataset.

➔ “paramagnetic” phase

• When 𝝈𝟐 < 𝑻𝒄
𝐡𝐚𝐫𝐝 , clusters are hierarchically moving

towards the centre of mass of sub-datasets.

➔ “ferromagnetic” phase

• The study of the linear stability of the fixed-point

equations teaches us that 𝑻𝒄
𝐡𝐚𝐫𝐝 = 𝐦𝐚𝐱𝐞𝐢𝐠𝑪, with 𝑪

the data covariance matrix.



35Exploiting the phase transitions

➔By following, during the annealing, the local size of the represented features,

i.e. the maximum eigenvalue Γ𝑘 of the covariance matrix, namely

Σ𝑘 =
1

𝑁𝑘
෍

𝑖=1

𝑁

𝑝𝑖𝑘 𝒙𝑖 − 𝝁𝑘
T 𝒙𝑖 − 𝝁𝑘 .

• The successive transitions can be traced during the annealing and provides

information on the structure of the dataset (number, size and hierarchy of

clusters) independently of the number of components 𝑲.

• Interestingly, the overlap between the inferred configuration and the true one

𝑄(𝒁, ෡𝒁) =
max
𝜋∈Π

1
𝑁
σ𝑖 𝛿 ො𝑦𝑖,𝜋(𝑦𝑖) −

1
𝑞

1 −
1
𝑞

,

acts like an order parameter taking increasing values in each phase.

Can we learn something from this formulation and more particularly from these successive transitions?

Colors indicate in which final cluster the center ends. 

Evolution of the ratio 
Γ𝑘

𝜎2
as a function of 𝜎2. 
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Soft annealing for multi-scale clustering

• Relaxing the constraint that, at a given time, all clusters have the same variance leads to a soft version of the annealing where we put a

prior distribution on the variances (namely an inverse Gamma distribution) whose mode becomes the annealing parameter.

• The threshold temperature 𝑇𝑐
soft can still be computed from the (modified) update equations as the maximum eigenvalue of the squared

block matrix of order 𝐷 + 1 defined as

𝑴 = 𝑪/𝜎0
2 𝒂T

𝒃 𝑐
,

with 𝒂, 𝒃, 𝑐 data-related quantities.

Principal graphs learning

• In the principal graph setting, update equation for 𝝁𝑘 is modified by the interactions between centres on the graph.

• The temperature 𝑇𝑐
graph

can be obtained by studying the linear stability of this new update and is given by the spectral radius of

𝑴 = 𝑰𝐾 −
1

𝐾
𝑱𝐾 ۪𝑪 𝜎2𝑰𝐾𝐷 +

2𝜆𝜇𝐾𝜎
4

𝑁
𝑳۪𝑰𝐷

−1

.



37

• With real datasets come the usual issues of noise and outliers but in astronomy we add:

✓ Observational effects: Redshift-space distortions (Finger-of-God effect), redshift

estimation (photo-Z vs spectro), etc.

✓ Selection effects: Parts of the sky scanned multiple times, masked region.

• Often considered in pre-processing operations and not by algorithms themselves: fill

masked regions with Poisson noise for voids finder, incorporate selection function in

DTFE estimate, etc.

Sources of errors in galaxy surveys
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A similar problem: Blood vessels detection

Eye vessels network from DRIVE database (a) Original image (b) 
Corresponding manual segmentation

Review of existing procedures in the biomedical field for automatic vessels 
segmentation (Moccia+18)

Related works in biomedical field


