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General context

* Many datasets X = {xl-}?’:l are given as sets of D-dimensional datapoints. Identifying and extracting patterns in it is essential for

understanding the underlying physical process that generated it and infer further properties of the process at hand.

* Most of these datasets do not span the entire R? space but stand only on a lower-dimensional manifold.
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Cosmological context: The Cosmic Web

* The initial matter distribution in the universe is assumed Gaussian and homogeneous with small perturbations. These primordial
density fluctuations gave birth, under the effect of gravity, to the structures observed today (Zeldovich+89).

* This spatial arrangement, called the Cosmic Web, falls into 4 main types of structures: Clusters, Filaments, Sheets or walls,

Wall Filament Node
£ 2%
t t role
Spherical perturbation contraction along Z contraction along Z,Y contraction along Z,Y,X 60 ;
50 .
/ \ :
.”?{(‘r— \\
= 1 40
Gravity

y [Mpc/h]

w
o

207:

10

Initial density fluctuations, Gaussian field,
t = 380 000 years

0 10 20 30 40 50 60 70
x [Mpc/h]

Observed local galaxy distribution from SDSS, o o ]
t = 13.7 billions years Galaxy distribution of a slice in the Illustris

simulation.




Cosmological context: Filaments

* Filaments contain the largest fraction of mass in the Universe for a small part of the volume (Cautun+14).
* They also have been shown to host a large part of baryons in the form of hot and diffuse gas (Galarraga-Espinosa+20).

* Identifying filaments through the galaxy distribution is essential to (i) understand the impact of environment on the formation and

evolution of galaxies and (ii) study their physical properties in other observables (SZ, X-Ray, Lensing, etc.).
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Principal graph: Context

* Inspired from “principal curves” informally corresponding to curves passing “in the middle” (Hastie+89) of the point-cloud distribution.

* Principal graphs (Gorban+05) have been introduced to alleviate some restrictions in the curve formulation, as for instance the non self-

intersecting condition.

* Here, we propose a formulation where we assume that the observed set of points are generated by the underlying one-dimensional

manifold that we model as a graph whose nodes are Gaussian clusters.

Schematic view of the aim of principal curve or graph extraction.



Principal graph & Mixture Models

« Method: Mixture Model = the probability that a datapoint is found at a position x; € R? given parameters O of the model is

Paves the distribution
with Gaussians clusters

K

p(xil®) = ) 1 V(x| @) +

k=1

with @ = {a, q, ..., Tk, Uy, ) B, 21, - 2k}, p(X) the uniform density over the data support volume D c RP,

* Assumption: Spherical Gaussian clusters, V k € {0, ..., K}, X}, = IDJ,E.
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Schematic view of the aim of principal curve or graph extraction and
basis of the proposed formalism.



Regularised mixture models (RMM)

* The graph acts like a prior on the parameter space constraining the solution as
_ Encodes the graph

N , topology
logp(p) —7” e X5t Al - ”jllz with A;; = {

1if i~j,
0 otherwise.

=» Gaussian form with a L, form constraining the smoothness of an estimate. Here, we do not impose the smoothness on the Euclidean
space but directly using the graph structure G.
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basis of the proposed formalism.



Full model and learning

* Optimal values of the parameters @ can be obtained by using the Expectation-Maximisation algorithm (EM, Dempster+77, Bishop+06)
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* A, is a trade-off parameter between how much the graph should fit the data and how much it should be smooth.

* EM leads to the following update equations:
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Full model and learning

* Optimal values of the parameters @ can be obtained by using the Expectation-Maximisation algorithm (EM, Dempster+77, Bishop+06)
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l Regularlsatlon

Topological prior given by
Data fidelity term parameter

the graph structure

* A, is a trade-off parameter between how much the graph should fit the data and how much it should be smooth.
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Graph prior: Minimum spanning tree

Historically the first method used
to exhibit the filamentary structure
(Barrow+85). It associates to a
galaxy distribution a unique graph
with no parameter minimising the

global distance.

The proposed approach:

v’ Leads to a smoother version
which keeps the same definition

for filaments (Bonnaire+20).

v’ Can be extended to take into
account cycles that can be
observed in the spatial
distribution. (Bonnaire+20,
submitted).

v’ Can describe the local size of the
filamentary pattern through the

variances.
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Astrophysics with the RMM

200

150
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Simulation of galaxy distribution coloured by
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The connectivity k is the number of detected filaments h|story, etc.) with reSPECt to Evolution of the connectivity k with
crossing a spherical volume around a massive node. their connectivity the mass of the node (Gouin+21).

A node accreting matter through filaments in a
simulation (Credit: Miguel Aragon-Calvo)



Summary and perspectives

Summary
* Filaments are interesting objects to assess cosmological/astrophysical hypotheses
* Graph regularised mixture models can be used to extract a model of the 1D manifold that generated the data

* Not presented: Extensions of the tree topology (persistent homology), application of the RMM to other problematics (road network
extraction), exploitation of the reformulation in statistical physics of the clustering to gain an insight on the dataset

Future works

Information content of cosmic structures (cosmological parameters)

Study the links between the characteristics of filaments and their galaxies

Time evolution of the graph structure (in simulation)

Write a manuscript...
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The Cosmic Web 13
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Overview of (a few) existing procedures

Name Global methodology Filaments definition
MST Compute the Minimum Spanning tree over the Branches of a post-processed version of the
Barrow et al., 1985 galaxy distribution MST
MMF
Aragon-Calvo, M., et al. 2007 Scale-space representation of the continuous Locally defined through eigenvalues of
Nexus density field” the Hessian matrix
Cautun M. et al., 2013
T-Web Compute the tidal shear tensor and extract the Locally defined through eigenvalues of
Forero-Romero et al., 2009 morphology of the field the tidal shear tensor
DisPerSE
Sousbie et al., 2011 Study the topological properties of the continuous Connections between singularities (maxima,
SpineWeb density field” through the Discrete Morse Theory minima and saddle points)

Aragon-Calvo, M., et al., 2010

Bisous
Tempel et al., 2014

SCMS
Chen etal., 2015

Stochastic fit of parametric and interactive
cylinders in the galaxy distribution

Subspace Constraint Mean-Shift algorithm is
applied on galaxy distribution

Aligned and close cylinders

Principal curves of the point cloud distribution

* Continuous density fields are obtained by performing a Delaunay Tessellation Field Estimation (DTFE)



= |dentify topological features (peaks, voids, walls and filaments) from a N-D distribution

= The persistence measures the robustness of the extracted features to remove spurious detections

Example of critical points with the integral lines thus
delimiting ascending (black) or descending (white)
manifolds (Sousbie et al., 2010)
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Skeleton provided by DisPerSE (20 persistence, 1 smoothing of the DTFE) on

a 2Mpc/h slice of Illustris-3




= Uses elements from image processing to build a scale-space representation of

the continuous field (obtained via DTFE)

* The strength of Nexus is to compute the signature over a range of scales

= Steps:

1.  Smooth the field with a gaussian kernel of variance R,

2.  Perform the spectral decomposition of the Hessian at each position

3.  Compute the signature for each position and structure

4. Update R,.; = V2 R,, and iterate

= Physical criterion are then used to threshold the signature values

Structure Soft constraints Strict constraints
cluster IA1| =~ [A2] >~ |As| A1 <0; A2 <05 A3 <0
filament, IA1| =~ [A2] > |A3] A1 <0; A2 <0

wall |)\1| > |/\2| |}n1‘ > |)\3‘ A1 <0

Images from Cautun+14.
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Different definitions lead to different results
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T-ReX vs DisPerSE (2D)
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(left) A 2Mpc/h slice of Illustris-3 with the 20 (top) or 50 (bottom)

persistence DisPerSE skeleton (right) Probability map thresholded at
p = 0.1 (top) and p = 0.25 (bottom)
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T-ReX vs Nexus+ vs Bisous vs DisPerSE (3D)
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A quick introduction to graph theory

« Agraph G = (V,E,w) is a mathematical object made of nodes {V;}, of edges linking nodes together {E;} with a weight w, associated to

each edge.

* A graph can be represented by a matrix describing interactions
between nodes: the adjacency matrix whose value is 1 when

nodes are connected and 0 otherwise.

0 1.1 0 O
1 01 1 0
A=11 1 0 1 1
0 1. 1 .0 O
0 01 0O

* Examples of graphs:

Internet => Nodes are URL addresses. Two nodes are connected if there is a link allowing the passage of on to another.

Road or air network => Nodes are cities (or airports) and are linked if there is a path between the two.

Cosmic Web => Nodes are galaxies. Two galaxies are linked if they are sufficiently close with w;; = ||xl- — xj||2. We can also

extend this notion to the entire CW with nodes and filaments.



Graph Laplacian and smoothness

* The Laplacian matrix is another way to algebraically represent a graph, with D the diagonal degree matrix, A the adjacency matrix,
L=D-A

Au

* Inthe RMM, we constrain the smoothness of the graph through log p(u) « - {{21 Zﬁ-(zlAij”ui — [,lj”j.

Total length of the graph

* We look for the graph that is “short” AND fits the data => smoothness constraint

* The quadratic summation can be written as the norm of u on the graph structure can be written in terms of the Laplacian matrix as

lellg = X0t Xjer Ayl - ujlli = 2Tr{n"Lp}.

* This is equivalent to constraining the L, of a vector to constrain its smoothness in the Tikhonov regularisation but the norm is being

computed on the graph structure §G.



Regularised mixture models

e The graph acts like a prior on the parameter space constraining the solution as

_ Fully encodes the
" graph information

1if i~j,

ith4;; =
WAy {0 otherwise.

|
logp(n) x —/17” K X Al — u,-||§

e This prior has a Gaussian form with a L, constraint like usually done when constraining the smoothness of an estimate. Here the idea is
the same, except that we do not impose the smoothness on the Euclidean space but directly using the graph structure G.

e o o o
* Additional embedding of the spatially coherent evolution of the learnt o . :*~‘
:‘ N\ @ ° ;/0 X o .*o
variances * ° ;*‘ /o
° .\; o 0*‘ %
()
logp(0£) & ~Ao[log o + o, /] o« To%le,
e %%
with oy, = |V |71 Qe of and Ny, = {i |A;, = 1} the set of neighbouring nodes
of k in the graph is the mode of the distribution. Schematic view of the aim of principal graph extraction and basis of

the proposed formalism.

] : : L : Am [1- 2
* A prior on amplitudes is used to avoid singular solutions, log p(m),) < ——= —Z_ nk] :

2 LK % Gaussian centres {uk}’,gzl

« The full prior distribution on @ is logp(®) = logp(u) + X logp(cf) + X log p(my,). Variances {0y }=1  —— Graph edges



T-ReX: Effects of hyper-parameters

* Hyper-parameters of the full model are Y = (4,5, 4;) and K. All hyper-parameters in Y have an impact on the force of the prior of

the corresponding parameter indicated as a subscript.

* There is a wide range of values for which the algorithm provides similar results.




T-ReX: Initialisation

There are four parameters in the model are u, {0} }%_1, {m}X_, and «a to initialise.
W is initialised with datapoints X, possibly with a random sub-sampling or gridding to have K < N.

Variances can be initialised as Vk € {1, ...,K},0f = o¢ with 62 chosen in a similar way as in Chen+14 for the Subspace Constrained

Mean-Shift algorithm (SCMS), using prescription from kernel-density estimation method like the Silverman rule (Silverman+86)

1
0o = Ag(Nd + 2N) d+40y,;,

where oy,in is the minimum variance in all dimensions of the datasets.

Amplitudes of Gaussian clusters are initialised uniformly as Vk € {1, ..., K}, m; = 1_Ta

a, the amplitude of uniform background should be initialised as a first guess of the outliers level in the dataset

Although EM is known to highly depend on the initialisation because it can be trapped in local maxima near the initialisation point,

there are ways to alleviate the problem using simulated annealing procedures (Bonnaire+20b).

When the dataset is large, these solution comes with a large computational cost. In all our runs, we did not find this problem sufficiently

significant to invoke such solutions.



T-ReX: Average graph prior

* Even ifit has a lot of convenient features, the MST topology can not represent cycles.
* Inthe model, the graph intervenes only through its algebraic representation (like the adjacency or Laplacian matrices).

* We are not restricted to the MST topology and we can obtain a regularised version of any kind of graph as long as we can compute
those matrices, with A = 1/BY5_. A,,

(A);; = ((AMST)ij» (Z>m)i,~)
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Probability maps

* To assess the reliability of the path obtained using the learning and get rid of the tree topology (not allowing cycles), we can use a

bootstrap method to get B tree estimates.

* Those trees allow to compute a probability (frequency) to cross a given region of the space during all the realisations
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Expectation-Maximisation (1)

* Considering a Mixture Model with K components, we have the log-likelihood

K

N
logp(X1@) = > log| ) m f(x:10)
i=1

k=1

* This log-likelihood cannot be optimised analytically because of the summation occurring inside the logarithm function.

* To alleviate this problem, EM introduces a set of latent variables Z = {z; zl_vzl that describes the partition of the dataset such that z; €

{1, ..., K} encodes which one of the K Gaussian component generated the observation x;.

e The new log-likelihood conditioned on Z can be written

N
logp(X,Z|0) = L(0;X,Z) = z log(m,,f (x;1©)).

=1

* This completed log-likelihood can be optimised more easily an alternating procedure in which we estimate the values of z; and then

maximise the likelihood.



Expectation-Maximisation (2)

* We can re-write the likelihood as a marginal over the latent variables
p(X18) = > p(X,Z|0)
Z

* For any distribution over the latent variables q(Z), we have

p(X,Z|0)

logp(X|®) = log ) q(2) [W
VA

 Jensen’s inequality tells us that, from the concavity of the log function and considering )., q(Z) = 1,

l0gp(X10) 2 ) q(2)l0g™ 7= = 1(q,0).
Z

* Hence, L(q, ®) defines a lower-bound on the log-likelihood. Increasing the lower-bound consequently should increase the likelihood.

* Re-writing L(g, ®) using the decomposition p(X, Z|0) = p(Z|X, 0)p(X|0), we get that
logp(X|©) = L(q, ) + Dy, (q(2)||p(ZIX, ©))

with Dg; (qllp) = X q log% > 0 the Kullback-Leibler divergence.



Expectation-Maximisation (3)

Hence, we know that we need Dy (q||p(Z|X, G))) to cancel out to maximise the lower-bound hence leading to the E-step

We can then compute the lower-bound, i.e. the expectation over §(Z), L(G,0) = )., G(Z) log

q(Z) = p(Z]X,0)

The set of new parameters is obtained by maximising L(g, ®) in the

M-step as

0! = argmaxg L(g, ©).

EM has the following theoretical properties:

1.
2.

Monotonic increase of the log-likelihood at each iteration,
Guaranteed convergence towards a local maximum of the
log-likelihood (although this maximum is local and can
depend on the initialisation),

Computational complexity of O(NKD).

p(X,Z|©)
q(2)

gold  gnew

Schematic view of the EM algorithm iteratively finding the
maximum of the log-likelihood. Image from Bishop06.



Galaxy classification using the RMM

The probabilistic formalism of mixture model allows the assignment of each data point (galaxy) to the component, among the K + 1, that
the most probably generated it (background or node of the graph).

* In practice, we use the latent variables z; € {0, ..., K + 1} the assignment of the galaxy i at position x;. During the E-step, we compute
VkE{O,...,K+1}, Pik =p(zi=k|xl-,9k)

* Hence we can estimate zZ; = argmax p;;, and get the most probable component.
k

* Together with the identification of filaments through branches, we can associate each galaxy to a given filament
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Fig. 11. Toy dataset with 20% background noise (Black dots). The respect to the background (grey points) or to environment of the Eagle simulation identified

learnt RMST (red) with 3*variances of nodes (grey shaded areas). each branch (coloured points). by T-ReX.



Halo connectivity in the Cosmic Web

* Cluster halos are nodes of the Cosmic Web
* The halo connectivity increases with its mass coherent with the hierarchical formation scenario.

* Moreover, we show that connectivity traces the dynamical state of halos and this result can be attributed to 2 distinct assembly
histories of relaxed and unrelaxed halos (Gouin+21, in prep.).
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Fig. 14. A node accreting matter through filaments in Pad
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Statistical physics formulation

The clustering problem aims at partitioning a given dataset X = {x;};—1 __y into K several classes.

* It can be rephrased in statistical physics terms by associating an energy cost to a given configuration (i.e., a set ¥ ={y;};=1 . n

with y; € {1, ..., K} describing the association of the it datapoint) and a set of clusters’ positions u

N K
<E@Y)>= ) > ply =10 Bl x).
i=1k=1

* The free energy can be written, assuming a quadratic cost Ej, (ig, x;) = ||x; — mll3, as

N K
In z o~ Bllxi—pill3
1 k=1

e 1
b 4
l

« We see that F o« —log p(X|®), the log-likelihood of a Gaussian Mixture Model with centre positions g and variances g2 = 1/2f3

=> Maximizing log p(X|0®) is equivalent to minimizing the free energy



Reformulation of the problem

* The clustering problem aims at partitioning a given dataset X = {x;};-1 _y into K several classes.

* It can be rephrased in statistical physics terms by associating an energy cost to a given configuration (i.e., a set Z = {z;};-1 .y with z; €
{1, ..., K} describing the association of the i™ datapoint) and a set of clusters’ parameters u

N K
F@?) =) > vz =k Bl x).
i=1k=1
* The principle of maximum entropy tells us that, among all the probabilities that maximizes E, the Boltzmann distribution is the least
informative
e_ﬁE(”'Z)
p(n,Z) = S oD

* Marginalizing to obtain the most probable set of parameters

P = Y p(2) = i
Z

2uZ(p)

 And, in term of free energy F
e_BF(M)
p(”) - Z”e_ﬁF(ll)




Phase transitions in hard annealing

* Simulated annealing in EM was introduced by Ueda+98 41
to overcome the problem of dependency on the N
initialisation. _
) 01 i
* The variance plays the role of the temperature. 4
-2
« When g% > Thard 3| clusters are collapsed at the centre
of mass of the dataset. -4
=>» “paramagnetic” phase —61
« When o2 < Thard  c|ysters are hierarchically moving ~10:0 =75 =50 =25 0.0 25 5.0 1.5
towards the centre of mass of sub-datasets. 104 :
|
=> “ferromagnetic” phase m i
. . o 107] i
* The study of the linear stability of the fixed-point :
1

equations teaches us that Thard — max eig C, with C

the data covariance matrix.



Exploiting the phase transitions

Can we learn something from this formulation and more particularly from these successive transitions?

=» By following, during the annealing, the local size of the represented features,

i.e. the maximum eigenvalue I, of the covariance matrix, namely

N
1
Xy = N_Z pi (¢ — ) T Oy — ).
kisa

* The successive transitions can be traced during the annealing and provides
information on the structure of the dataset (number, size and hierarchy of
clusters) independently of the number of components K.

* Interestingly, the overlap between the inferred configuration and the true one

1 1
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Q(Z,Z)— 1_1 )
q

acts like an order parameter taking increasing values in each phase.
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Phase transitions in other settings

Soft annealing for multi-scale clustering

* Relaxing the constraint that, at a given time, all clusters have the same variance leads to a soft version of the annealing where we put a

prior distribution on the variances (namely an inverse Gamma distribution) whose mode becomes the annealing parameter.

e The threshold temperature TCSOft can still be computed from the (modified) update equations as the maximum eigenvalue of the squared
block matrix of order D + 1 defined as

M = (C/ag aT>’
b c

with a, b, ¢ data-related quantities.

Principal graphs learning

* Inthe principal graph setting, update equation for u;, is modified by the interactions between centres on the graph.

 The temperature TCgraph can be obtained by studying the linear stability of this new update and is given by the spectral radius of
1 2A,Ka* -1
M = [(IK —E]K)®C] [aZIKD + o L®ID] .



Sources of errors in galaxy surveys

* With real datasets come the usual issues of noise and outliers but in astronomy we add:

v' Observational effects: Redshift-space distortions (Finger-of-God effect), redshift

estimation (photo-Z vs spectro), etc.
v’ Selection effects: Parts of the sky scanned multiple times, masked region.
* Often considered in pre-processing operations and not by algorithms themselves: fill

masked regions with Poisson noise for voids finder, incorporate selection function in

DTFE estimate, etc.

CfA: 0° < 6 < 30°

6" v < 12000 km s




Related works in biomedical field

A similar problem: Blood vessels detection

Eye vessels network from DRIVE database (a) Original image (b)
Corresponding manual segmentation

Method Year Anatomical region Imaging technique Image processing method Method Year Anaiomical region Imaging technique
Feng et al. [20] 2010 Irain MRA Unsupervised machine learning .
Hussouna et al. [21] 2006 Brain MRA (Sec. V-A) Klepaczko ct al. (78] 2016 Brain MREA
Oliveira et al, [22] 2011 Liver CT Tian et al. [79] 2004 Abdamen, Brain, CT, DSA
G I:d B'I'- ||25:|24| %}g ENT ':‘35}_' Heart, Lung & Retina Inirarcd, US & MRA
xetal. ver Law et al. [80) 2007 Brai MRA
kx et al. [25] 2009 Lung cr Wane el al ||31|| 2000 i o
Asad et al. [26] 2017 Rutina CFP ang e ’
Mapayi et al. [27] 2015 Retina P Liang et al. [82] 2005 Microscopy
2015 Retina CFP Zhao et al. [§3] 2015 CFP & FA
c 2008 Retina CFP Fhao et al, [&4] 25 CFP
Al-Rawi et al. [30] 2007 Retina P Wang et al. [85] 2015 CFP
Xiao el al. [86] 013 CFP
Hanaoka et al. [31] 2015 Brais MRA Supervised machine leaming Law et al. |87] 2006 Retina CFr
Siroai et al, [32] 2014 Brain Microscopy {Sec. V-B)
Merkow et al. [33] 2006 Candiovascular and Lung CT and MRI
Sankaran et al. (3] 2016 Coronary CTA Raobben ci al. [88] 2016 Brain MREA
Schaap ot al [35] 201 Coroniary m Rempfler ot al, [89] 2015 Brain MRA
Zheng el al. (36] 2011 Corortary o Yurcidin ¢t al. [90] 2012 Brain IDRA
Mekovei et al. [37] 1995 Coronary T < i ! -
Smistad et al, [38] 2006 Femworal region, Carotid uUs Cetin et al. [91] 2015 Brain MEA
Chu et al [39] 2006 Liver X-ray fMuoroscopic Coronary CTA
r?ﬂ:""‘“ e "1- If?lll %:; :"‘f"’ i Cetin et al. [92] 2013 Brain MRA
gupla ot al clina . oo
Mo et al. [42] 2017 Retina CFP Shim et al. [93 2006 = B lary gﬁ
Lahiri et al. [43] 2017 Retina CFP Shim et al. [93] TAIR -
Annunziats et al. [44] 2016 Retina Microscopy Cherry et al. [94] 2015 Colon CTA
Fu et al. [45] 2016 Retina P Shin et al. [95] 2016 FA
Luo et al. [46] 2016 Retina CFP Carrillo et al. [96] 2007 : MRA
Liskowski et al. [47] 2016 Retina P Coronary, pulmonary arterics CTA
Li ct al. |48] 206 Retina o Amir-Khalili et al. [97] 2015 E‘aml.'ldw us
Javidi et al. [49) 2016 Hetina P - - ;
Maninis ¢ al. [S0] 2016 Retina P Benmansour et al. [98] 2011 CTA
Prentasvic et al. [51] 2016 Retina cr Biesdorf el al. [99] 2015 CTA
Wu et al. [52] 2016 Retina CIP Lugawer ed al. [100] 2014 CTA
Annunziata, et ol Eil 201.: Retina Microscopy Tang ct al. [101] 2012 MR
Ammn.:m!a etal. [$4] 2015 Retina Mictoseopy Wang ct al. [102] 2002 CTA
Wega el al, [55] 2015 Retina CFP N al, [107 2010 o1
Wang et al. [S6] 2015 Retina CFP Friman et al. [103] I TA
Fraz. el al. [57] 2014 crpe
Ganin et al. [58] 2014 CFP Li et al. [104] 2009 CTA
Orlando ef al. [59] 2014 i CFP Wink et al. [105] 2002 MEA
Rodngoes et al 1611 2013 Retma oct Zengetal (106 2017 CrA
Fraz ot al. [62] 2012 Retina P Baver et al. [107] 2010 . T
Zhang et al. [63] 2012 Retina CFP Amir-Khalili et al, [108] 2005 I:,ndmwm: images
Marin et al. [64] 2011 Retina CFP Amir-Khalili ef al. [105] 2002 Endoscopic video
Lupascu et al. [65] 2010 Retina e Chen et al. [109] 2016 CFp
Salem et al. [66] 2007 Relina aP Chen et al. [110 2014 CFP
Soares t al. [67] 2006 Retina P Bhuiyan et all |||||| 2013 CFP
Staal et al. [63] 2004 Retina CFP Ligo ¢t al |.IIZJ 013 Pk
Rouchdy et al. [113] 2003 CFr
Lee et al, [69] 2015 Aorla & mesenteric arlery CTA Edge-hased deformable models Stuhmer ¢t al. [114] 2013 CFr
\"f:lclmiﬂ ﬂII\I-TIIT:ﬂI % rain et Mur:“qﬁa (Sec. VI-A) Turetken ot al. [115] 2013 Microscopy
Aw et al. rain & Coronary g Liao et al. [11 2002 PP
Moreno et al. [72] 2013 Coronary CTA Kanl ot al |“ ng| 2002 EH,
Wang et al. [73] 2012 Coronary CTA aul cl al. -
Cheng et al. [74] 2005 Carotid, Coronary Delibasis et al. [118§] 2010 CFP
Liver, & Lung Breilenreicher et al. [119] 2003 —_ —
Zhu et al. [75] 2009 Lung CTA Benmansour et al. [120] 2009 — —
Zhang et al. [76] 2015 Retina P Wink et al. [121] 2004 o X-ray
Patwardhan et al. [77] 2012 — us

Review of existing procedures in the biomedical field for automatic vessels

segmentation (Moccia+18)



