Analysis of two multiple cluster systems detected with SZ effect and observed with VLT/VIMOS

Raphaël WICKER

Dir : Marian DOUSPIS

Introduction : Cosmological generalities

PLCKG214.6+37.0 (or PLCK1) and PLCKG334.8-38.0 (or PLCK2)
Results from VIMOS analysis
Future prospects, baryons as a cosmological probe

Conclusion

Introduction : Cosmological generalities

We use a cosmological model : \wedge CDM

Describes the universe and its evolution thanks to cosmological parameters

Introduction : Cosmological generalities

Thanks to these parameters and gravitation, it is possible to understand the formation of the large scale structure inside the cosmic web.
"> Hierarchical formation

PLCKG214.6+37.0 (or PLCK1) and PLCKG334.8-38.0 (or PLCK2)

Two multiple cluster systems, discovered in Planck SZ data, in 2011. Multiple nature revealed by short XMM-Newton observations in 2011. Observed again in 2013, in X-ray (XMM-Newton) and optical spectroscopy (VIMOS)

Colored : Planck SZ data Contours : XMM-Newton X-ray data

Left : PLCK1
Right : PLCK2
$z_{P L C K 1} \simeq 0,45$ (slight doubt on B) Planck Collab. 2013 $z_{\text {PLCK2 }} \simeq 0,35$ Planck Collab. 2011

PLCK2

Main idea behind the optical analysis : properly constrain the redshifts of the systems. Here, using the online tool marz.

There seems to be a separation between the components C and the rest of the system...

But a lot of parasite effects

PLCK 1

Clear
 separation between the
 "A-C pair" and the "cluster B" !

$z_{A-C}=0,450 \pm 0,004$ $z_{B}=0,498 \pm 0,004$
(Lecoq et al. in prep)

PLCK 1

Gas as seen by XMM-Newton (X-ray contours) vs Galaxies seen by VIMOS (optical)

Next steps:

- Computing Star Formation Rates and stellar masses with SED fitting
- Analysing the SZ contribution
- Going further with PLCK2

Future prospects, baryons as a cosmological probe

Future prospects, baryons as a cosmological probe

- Tiny fraction, but at the origin of all our observables
- Mass contained mainly in galaxy clusters
\Rightarrow Carry a lot of cosmological information

The baryon/gas mass fraction in clusters can be used to constrain cosmological parameters, like Ω_{m}, H_{0} etc.

Need to be careful to systematics and non-cosmological effects

Conclusion

- Important results on the structure of the two first Planck discovered "triple systems"
- Analysis for two objects which may be repeated on other systems to constrain their baryon content and use it as a cosmological probe

Introduction : Cosmological generalities

Composition of a galaxy cluster

Intermediate/Transitional Galaxies Quasars

Why use SED fitting when we have spectroscopy?

Main approach in spectroscopy to compute SFR : Luminosity of $\mathrm{H} \alpha$ line or [OII] line

[OII] line for a galaxy at $z=0,49$ withour wavelength range and \mathbf{R}

$H \alpha$ line for our wavelength range and R

