

On Ice Ages and the Earth's Dynamical Ellipticity

Mohammad Farhat

Jacques Laskar (Director) Gwenaël Boué (Supervisor)

February 9, 2021

In the context of planetary tidal and rotational evolution

We seek to model long term dissipative effects under various geophysical aspects.

- Tidal dissipation and the "Time-Scale Problem" of Lunar age.
- Geophysical processes: plate tectonics, mantle convection, and surface loading.

Touma & Wisdom (1994)

The Earth's dynamical Ellipticity

• Dynamical Ellipticity:

$$H = \frac{C - (A+B)/2}{C}$$

- Present observations → 0.5% excess.
- History is hardly constrained!

Love Numbers and the VE Response

Sea Level Equation in Simplest Form

Because both vertical displacement and sea surface variations are function of sea level itself (Farrel & Clark 1976)

$$\mathbf{S} = \frac{\rho_i}{\gamma} \mathbf{G}_s \otimes_i \mathbf{I} + \frac{\rho_w}{\gamma} \mathbf{G}_s \otimes_o \mathbf{S} - \frac{m_i}{\rho_w A_0} - \frac{\rho_i}{\gamma} \mathbf{G}_s \otimes_i \mathbf{I} - \frac{\rho_w}{\gamma} \mathbf{G}_s \otimes_o \mathbf{S}$$
(1)

S =sea level change m_i = ice mass variation ρ_i, ρ_w = ice and water densities A_0 = area of oceans G_s = sea level Green function $\otimes_i, \otimes_o = 3D$ convolutions I = ice thickness variation $\overline{(x)}$ = ocean averaging $\mathcal{G}_{lm} = \frac{3}{\rho^E} \sum_{l=1}^{N} \frac{\Delta \mathcal{L}_{lm,n}}{2l+1} \Big(1 + k_l^{L,e} + \sum_{i=1}^{M} \frac{k_{li}^L}{s_{li}} (e^{s_{li}(t-t_n)} - 1) \Big) H(t-t_n)$ (2) $H = \frac{C - (A+B)/2}{C}$ (3) $\delta H(t) \approx 3\delta J_l(t) = -\frac{1}{a}\sqrt{2l+1}\mathcal{G}_{l0}(t)$ (4)

Mohammad Farhat

mohammad.farhat@obspm.fr

IMCCE

Evolution of Dynamical Ellipticity: $s_6 - g_6 + g_5$

Evolution of Dynamical Ellipticity: Ice Sensitivity

10/13

Mohammad Farhat

mohammad.farhat@obspm.fr

IMCCE

Evolution of Dynamical Ellipticity: Viscosity Sensitivity

Evolution of Dynamical Ellipticity: Constraining by J_2 SLR Observations

12/13

Thank you for your attention!