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Recent observations Introduction

Satellites exploring the magnetospheric plasma have several times reported the
observation of solitary potential structures [Vasko 2017, Le Contel 2017,
Holmes 2018, Steinvall 2019].

Electrostatic obs [Ergun 1998] Electromagnetic obs [Steinvall 2019]
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Solitary waves are observed in various regions of the Earth’s magnetosphere.
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What is an Electron Hole ?

Introduction

Electron phase-space holes (EH) are a kinetic-scale plasma structures (~ 10Ap)
and persist during long time (7 > 10 w;l).
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EH = spatial structures measured by temporal spacecraft setup
They are characterized by a bipolar electric field E) parallel to the magnetic field
By = Bpe, with a positive electric potential ¢(x), caused by a self-consistent
decrease in density of electrons ne(x) = —pe/e in interaction with this potential.

Bt

3/13



EH geometry and fields generation

Qualitative illustration of electromag-
netic EH model
2011]:

[adapted from Tao
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Introduction

The total EH magnetic field includ-
ing this effect is found using a Lorentz
transformation (y ~ 1):

1
5B:(5B/— C_QVEH x E

where 0B’ is obtain by Biot and
Savart:

g _ Mo ///Jo 5’30135
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EH geometry and fields generation Introduction

Qualitative illustration of electromag-
netic EH model [adapted from Tao

2011]:
B“‘
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1. What are the possible sources of generation?

The total EH magnetic field includ-
ing this effect is found using a Lorentz
transformation (y ~ 1):

1
0B = 6B’ — C_QVEH x E

where 0B’ is obtain by Biot and
Savart:

B =2 oo —gpe

Questions :

2. What are 3D EH properties in ambiant magnetic field?
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Simulation strategy PIC code

Spacecraft missions  (Geotail,
FAST, Cluster, THEMIS, MMS ...)
have measured two types of moving
structures:

® Fust structures (v ~ c/4),

e Slow structures (v < ¢/10).
Electron holes (EHs) typically form
from thermalizing mechanisms:

¢ unstable counterstreaming
instability,

® bump-on-tail instability,
resulting of between two different plasma populations or accelerated beam driven
(e.g. plasma double layer, magnetic reconnection, astrophysical jets).
= It is possible to simulate this with a PIC code.

Br——

5/13



Simulation conditions PIC code

Using SMILEI PIC code with magneto-

MMS data [Holmes 2018] . . _
-z spheric plasma physical parameters:
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vp = [2 —4] vr, ny = [0.05 — 0.2] ng ,
e we=[08-50]w,, B = Bye, ,
w=m/M =1/1836
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=i Solitary waves in the magnetotail are
-5 three-dimensional potentials generated
) -30 -20 -10 0 10 20 30 . .
3 through nonlinear evolution of an elec-
Vi 4 0 (107 km/s)

tron bump-on-tail instability.
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Simulation conditions

flvx)Inp

vplvr=2.0, np/ng=0.16
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PIC code

Using SMILEI PIC code with magneto-
spheric plasma physical parameters:

T, =16T, = 4 keV , T, =[1—10]T,,
Vp = [2 - 4] vr, ny = [005 - 0.2] no ,
we = [0.8 = 5.0]wy, B = Bye,,

w=m/M =1/1836

Solitary waves in the magnetotail are
three-dimensional potentials generated
through nonlinear evolution of an elec-
tron bump-on-tail instability.
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Electron Hole generation PIC code

EH are generated with PIC simulations = cylindrical three-dimensional
potentials which can be generated through nonlinear evolution of an electron beam

instability
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Electron Hole generation PIC code

EH are generated with PIC simulations = cylindrical three-dimensional
potentials which can be generated through nonlinear evolution of an electron beam
instability
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Electron Hole generation

PIC code

EH are generated with PIC simulations = cylindrical three-dimensional

potentials which can be generated through

instability
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nonlinear evolution of an electron beam
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EH velocity
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PIC code

Form Lorentz eq:

1
(SB/ — 0B = fQVEH x E
C

Common assumption [Anderson 2009] :
® Perpendicular magnetic field,
® VEH = VEH€||,
® /B’ =0 (6E x By drift ignored),
allows to calculate:




EH velocity
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PIC code

Form Lorentz eq:
, 1
/B — 0B = fQVEH x E
c

Common assumption [Anderson 2009] :
® Perpendicular magnetic field,
® VEH = VEH€|,
® /B’ =0 (JE x By drift ignored),

allows to calculate:

= we cannot neglect induce 6B’ o< Jg(nyp)
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Observation comparison PIC code

Examples of EH induced fields shapes @ T
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Observation comparison PIC code

Examples of EH induced fields shapes ©
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Observation comparison PIC code

Examples of EH induced fields shapes ©
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= PIC simulations can generate quantitatively and qualitatively EH
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Polarisation current correction in 3D BGK solution

EH ezists in different regions of magnetosphere = We need to taking account of
ambient magnetic field value ||By|| (= we/wp).

Due to or; > ore and wp ~ we > wy, : bounce frequency = add electronic
polarisation effects (ions are frozen) as a perpendicular perturbation:

2
ppo
Tou —€0w2 5 O(V 1 ¢) N Vo d = 0 [V‘ <2’;V¢¢>] __9ppal

ot ot ot

Hence we modify Vlasov-Poisson system [Lee 1983, Vasko 2017] in
cylindrical coordinates (7,6, x) along magnetic field as:

V-st(X,V)_ msv(ls w{gVXe])].af‘gé}:,’v)_O
V2¢(X):—(MX);/’W)
0
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Polarisation current correction in 3D BGK solution

EH ezists in different regions of magnetosphere = We need to taking account of
ambient magnetic field value ||By|| (= we/wp).

Due to or; > ore and wp ~ we > wy, : bounce frequency = add electronic
polarisation effects (ions are frozen) as a perpendicular perturbation:

2 2
29(V 9 w Opoe
ha=a 3G Y = Vedw=—g [V‘<of5w>]:‘ o

Hence we modify Vlasov-Poisson system [Lee 1983, Vasko 2017] in
cylindrical coordinates (7,6, z) along magnetic field as:

ofs(x,v)
V-st(X,V)—[ SV({) Vxe)]-av =0
0?¢(x w2 X
856(2 )4 (1 + wﬁ_‘,> V2 $(x) = —pio)

)
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EH existence in 3D BGK solution

Introducing £ = m,v?/24qsp(z) = C** along a magnetic 2
line, electron distribution function could be separated in <«
two families: passing

_ fp(g)a & > 0 0 7~ T
fe(€) = { 1), £<0 trapped / —¢e¢

with "at co" condition : f,(€ — o0) = fe(£). Hence,
Poisson equation become:

O fi(E)dE g0 0%0(x) ¢ oo £ (€ +o0 fz( )
————— = 2wy _
/—e¢ 2m(€ +ep) e Ox? T \/WJF m— = g(eg)
f1(€) is defined over the half-space £ < 0, we obtain (where g(0) = 0):
V2m ay -
/ dV \/T = Z5(6)) + L5561, 2) + Tpassing (f) + Tists

fi(&) =
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EH existence in 3D

From MMS observations (e.g.
we assume:

¢(r’ l‘) =

and f,(€) as a Maxwellian. The trapped elec-
tron distribution function must be physical
fi(€ = —egpp) > 0, we obtain two existence cri-
terion (where O — 1 + w[“),/w,z)

¢o exp(—x /%H)exp(

[Holmes 2018]),
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Distribution function visualisation BGK solution

f+(€) calculation depends on the choice of the potentiel ¢(z) and f,(&) :

. " (0+/2E/m — u.)?
fp(E)7at o0” = \/21701)7’ Z exp [— 2:; ]

o==+1
0.4 fp(€) at oo
5(E)
Inrwimz
J— . 0.3 L
ue = 0 case: — o
® Analytic solution for 3 02
Ipassing:
0.1
® ft(g) = I¢ + Ipassinga
® up, = VY cannot represent a
. . 0.0 \—/‘
realistic model.
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Distribution function visualisation BGK solution

f+(€) calculation depends on the choice of the potentiel ¢(z) and f,(&) :
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Conclusion

® We showed that we are able to generate EH by PIC code using bump-on-tail
wstability with real magnetospheric plasma physical parameters,

¢ Simulated EH are comparable to EH MMS measurements,

® BGK model could be adjust in 3D and with magnetospheric ambient
magnetic field ||Bo]|.
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